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ABSTRACT

In this paper we study the topology and geometry of the family of bisectors for a
convex distance d (Sections 1 and 2). Good properties for the Voronoi regions are
derived (Section 4 and 5). Although in this case bisectors are homeomorphic to lines,
pairs of them can exist intersecting infinitely many times (Section 3). This leads to
the conclusion that convex distances are not always nice in the sense of Klein and
Wood®. We prove also that d-balls whose boundary is given by finitely many algebraic
conditions produces nice distances (Section 3).

0. Introduction

Voronoi Diagrams in the plane for distances different from the Euclidean one
have been considered in several papers!'2:3:4:5,

Lee! has considered this problem for the class of all the Ly-distances for 1<
P<oo, and after studying the behaviour of bisectors, he describes an algorithm,
generalizing the standard divide and conquer approach, to construct the Voronoi
diagram.

Chew and Drysdale? consider the same problem for the more general class of
convex distance functions. They propose also the divide and conquer scheme, but
do not prove why essential parts of their algorithm, like contour scan during the
merge phase, can be applied to convex distance functions as it does to the Euclidean
distance.

Klein® provides details about a divide and conquer algorithm that works for
the class of nice distances in the plane. A distance d is nice if the following four
properties hold: (i) d induces the usual topology. (ii) The d-circles are bounded
with respect to the Euclidean distance. (iii) d verifies the between condition, i. e.
given any two distinct points A and C, there exists a point B, different from A
and C and such that: d(4,C) = d(4, B) + d(B, C). (iv) Bisectors are closed sets,
homeomorphic to the interval (0,1) and halve the plane in two unbounded regions;
moreover it is required that the intersection of any two bisectors has a finite number
of connected components.

Whereas the first three properties are fulfilled by every convex distance, it
remains open wheather property (iv) always holds.
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In this paper we provide the first detailed investigation of the class of sirictly
conver distances, their bisectors and their Voronoi regions.

First we show that any two d-circles (with respect to a strictly convex dis-
tance d) intersect at most twice (Th.1). Second we prove that for each bisector
Bi(P,Q), there exist an homeomorphism mapping the plane onto the plane that
sends Bi(P,Q) to a line (Th.2). As a consequence of the former result, any two
associated bisectors Bi(P,Q) and Bi(P, R) intersect at most once and, if they do,
they cross transversally (Th.7). This is the reason why the merge step works here
as for the Euclidean distance .

But bisectors of a strictly convex distance can behave quite differently from
the straight lines of Euclidean distance. For example, bisectors do not always have
an asymptotic line (Th.4). Moreover, there do exist pairs of bisectors Bi(P,Q)
and Bi(R, S) that intersect at an infinite number of points (Section 3). Therefore,
strictly convex distances do not in general fulfill property (iv) in the definition of
nice distances. However, we show that this problem does not occur if the d-circles
are semialgebraic (Th.5). This is, in fact, the case for all L,-distances and also for
most practical applications.

In conclusion in this paper we are able to close some major gaps in the existing
literature concerning Voronoi diagrams for convex distances.

1. Good Properties of d-circles

A strictly convez distance on the plane is the one induced by any norm and
such that the boundary of the unit ball defined by this distance contains no three
collinear points. The closure of the unit ball under a strictly convex distance can
be characterized as being a compact and strictly convex subset K of the plane that
contains the origin as an interior point and that is symmetrical with respect to it.
Conversely, any such set K can serve to define a normed distance in such a way that
the set K is the closure of the unit ball for this distance®. The distance induced by
K, between two points P and Q, is measured as follows: translate K so that it is
centered at P and call it Kp. Let Z be the unique point of intersection of the half
line from P through Q, with the boundary Bd Kp of Kp. Distance between P and
Q is the quotient of the Euclidean distances between P and Q and P and Z.

Strictly convex distances verifies the strong triangle inequality, i. e.: P does
not belong to the closed segment [X, Y] if and only if d(X,Y) < d(X,P)+d(P,Y)5.
Moreover, given two points P and Q, there exists a unique midpoint which is the
Euclidean midpoint of P and Q5. (Given two points P and @ on the plane, a point
R is a midpoint of P and Q for the distance d if and only if d(P,R) = d(R,Q) =
d(P,Q)).

Next we present some key properties that are verified by d-circles of a strictly
convex distance.

Let d be a strictly convex distance on the plane and let P and Q be any two
distinct points. The bisector Bi(P,Q) of P and Q with respect to the distance d is
defined as Bi(P,Q) = {X € R? : d(P,X) = d(Q, X)}. The d-circle of centre P and



radius 1, Cy(P,r) is defined as Cy(P,r) = {X € R? : d(P, X) = r} and equals the
boundary Bd By(P,r) of the open d-ball B4(P,r) centered at P and of radius r.
Theorem 1. If d is a strictly conver distance on the plane then any two d-circles
tnlersect al most in two points. As a consequence, given three poinis on the plane,
there ezist at most one d-circle containing them.

Proof. (See 7) Let C; and C; be any two d-circles. Let T and L be the common
outer tangents to C) and Cj, and t;, d;, and 23, d; be their corresponding points of
intersections with C) and C,, as shown in Fig. 1. Assume that T and L intersect
at some point c (the case where T and L are parallel can be dealt in the same way).
Let A;, B;, i = 1,2, denote the open arcs of C; between t; and d; such that A4, is on
the same side as A; and closer to c. As A;, B;, for i = 1,2 are strictly convex and
pairwise homothetical we have: A; N A, =0, A; N B; = @ and B; N B, = 0. Thus
C1NC; = A3 N B,;. The rays from ¢ through C; impose the same ordering on A,
and on By; let p (and ¢) denote the topmost (respectively the bottommost) point
in A, N B;. Since the open line segment (p, q) is contained in the interior of both
C) and C3, it separates the arc segment A, from B, avoiding a third intersection.
Hence C) and C, intersect at most twice.

Fig. 1

For the proof of the last assertion in the theorem suppose that there exist two
d-circles containing the three given points. This two d-circles would have those
three points in common, contradicting the above conclusion. U

2. Shape and Geometry of Bisectors.

Theorem 2. (topological structure of bisectors). Bisectors for a given strictly
convez distance are simple curves that divide the plane in two unbounded regions.



Moreover, there ezists an homeomorphism from the plane onto the plane, that sends
a line onto the bisector.

Proof. A point X is in the bisector Bi(P, Q) of P and Q if and only if X belongs to
the intersection of two, equal radii, d-circles centered in P and @ respectively. Two
such d-circles intersect at most in two points (cf. Th. 1) each of them belonging to
one of the half planes L* and L~ that line PQ determines.

Because of the central symmetry of the d-circles, it suffices to study Bi(P,Q) in
one of those half planes, say L+, as Bi(P,Q) in L~ is obtained from Bi(P,Q)NL*
via an angle 7 turn, centered in the midpoint O of P and Q.

Note that O = Ca(P,e)NCa(Q, ¢), where e is equal to d(P,Q)/2. So O belongs
to Bi(P,Q) and e is the smallest radius for which the d-circles do intersect.

Increasing the radius of this two equal radii d-circles centered in P and Q allows
to parametrize Bi(P, Q) defining f: R — Bi(P,Q) as follows:

f(t) = Ca(P, (It] + 1)e) N Cu(Q, (ft] + 1)e) N L*97®)

where sign(1) means the sign of parameter t. Function f is continuous, bijective
and lime—.o [|f()]| = oo (see ® for a detailed proof).

Compactifying both R and Bi(P, Q) with a point at infinity and defining the
image of the point of infinity of R to be the point of infinity of Bi(P,Q), we obtain
a continuous and bijective function from a compact space to a Hausdorff one, that
is, then, an homeomorphism.

Via Schoenflies theorem from general topology, we extend the homeomorphism
to the whole plane, yielding the desired result. LI

Now we are going to give more geometric information about bisectors. Let us
introduce some notation. In what follows suppose a strictly convex distance d on
the plane is given. Let us call C the unit d-circle. Given any two points P and Q
on the plane, let m be the slope of the line determined by the center of C and the
point S of contact of one supporting line of C parallel to the line PQ. There is
no loss of generality in supposing that line PQ is horizontal and that the midpoint
between P and Q is the origin O. Let Tm(P) and r,,(Q) be the lines of slope m
through the points P and Q respectively. These two parallel lines determine a band
of finite width between them.

Theorem 3. Bi(P,Q) is contained in the band determined by rn(P) and r,,(Q)
and is symmetrical with respect o the midpoint of P and Q. As a consequence, if
F() = (z(t), y(2)) is the parametrization of Bi(P,Q) in Theorem 2 then:

y(t)
tl—lorgo z_(tj -

Proof. Any point of the bisector Bi(P,Q) is a point of intersection of two equal
radii d-circles, centered at P and Q respectively. The one centered at Q is obtained



from the one centered at P via a translation of its center of vector PQ. These two
d-circles either don’t intersect, are tangent at the midpoint of P and Q, or are the
endpoints of a chord of slope m which, evidently, separates P from Q. Symmetry
of the bisectors follows from symmetry of the d-circles with respect to their centers
and the first assertion is proved.

To prove the consequence note that:

tlixg [y(t) - mz(t)| < k

where k is half of the vertical width of the band, unless m = co. In this case z(t)
remains bounded while y(t) — co. U

We conclude that the asymptotic direction of Bi(P,Q) is m. But this doesn’t
mean at all that an asymptotic line must exist for Bi(P,Q) and even if it exists
we only know its slope but not its exact situation. The following theorem gives a
necessary and sufficient condition for an asymptotic line for Bi(P,Q) to exist.

Let us introduce first some more notation. Given two distinct points P and
@, consider the d-circle centered in the midpoint of P and Q and passing through
P and Q. There is no loss of generality in supposing that this d-circle is the unit
circle C and that PQ is horizontal (changing the reference system and scaling if
necessary) so the origin O is the midpoint between P and Q. As before let S be the
point of contact of the supporting line of C parallel to the line PQ. Note that point
S is the highest point in C. Chords c(h) of C parallel to line PQ (i. e. horizontal)
at distance h from S are divided in two segments ¢; (h) and c2(h) by the line OS.
Let s1(h) and s3(h) be their respective lenghts (See Fig.2).

In what follows let us assume that P, Q, C, S, 51(h) and sy(h) are as described.
With this notation the existence of an asymptotic line for Bi(P, Q) is characterized
as follows. .

Theorem 4. A necessary and sufficient condition in order that an asymplotic line
for Bi(P,Q) ezists is the ezistence of the SJollowing limit:

m a2l
h—0 so(h)

If mit | ezists then the asympiotic line is the one having slope m and passing
through a point T € [P, Q] such that:

IP-Ti _,
IT=Q]

Proof. Note first that points in Bi(P, Q) are also characterized as being the centers
of increasing d-circles containing both P and Q, and that the bigger the radii, the
farther with respect to O the centers.
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Fig. 2

Let C(t) be a d-circle of radius ¢ through P and Q and let O(t) = (z(t), y(1))
its center.

We know this center is inside the band determined by r,,(P) and r,,(Q) and
we are interested in determining the evolution of its position as ¢ — oo, where by
position P(t) of a center O(t) we mean the ratio of the distances from that center

to the sides r,(P) and r, (Q) of the band in the PQ direction.

The key is to observe that O(t) = (z(t), y(t)) is on the line of slope m through
the highest point S(t) of C(t), as O is on the line of slope m through the highest
point S of C, and C(t) and C are homothetic (See Fig.3).

The position P(t) of O(t) = (z(t), y(t)) is determined by the ratio of the lenghts
of the segments that line S(¢)O(t) intercepts in the chord PQ of C(t) (See again
Fig. 3).

Obviously an asymptotic line for Bi(P, Q) will exist if and only if it exists

lim P(t)



Fig. 3

and in this case this limit indicates where is the asymptotic line situated inside the
band .

In order to calculate P(t) in C(t), we apply an homothecy which transforms
C(t) in C, doing the calculation in C . This is possible because the ratio between
lenghts remains invariant through an homothecy. This homothecy takes chord PQ
of C(t) to a chord of C parallel to PQ and at a certain distance k from S. It is easy
to see that as t — 0o, A — 0 and then:

. _ i S1(R)
Jm P(t) = ;11—13) sa(h)
Note that if / = 0 then the asymptotic line is rn,,( P) and that if I = co the asymptotic
line is r, (@Q). U

Remark 1. If an asymptotic line for Bi(P,Q) doesn’t exist, then if {; (respec-
tively I3) is:  lim,_,q :—;%} (respectively limj_.o -:—;-}-:—%) we have that the bisector
Bi(P,Q) approachs infinitely many times the line I, (respectively l3) of slope m
and intersecting segment PQ in a point T (respectively T*) such that: I;:g =
i (respcctivelyﬂ%‘_lqlﬂ = b;). This situation implies that Bi(P,Q) must have in-
finite inflection points inside the band determined by the lines I, and l;. Here, by
inflection points we mean a point in the curve Bi(P,Q) through which there is no

line that leaves the curve in one of the halfplanes determined by the line.

Remark 2. Let C and S be as before. Suposse that fi(zo—6,z0+6)— Risa
function such that f(zg) = S and whose graph equals C in some neighbourhood of
S. Note that as f is continuous and strictly convex, the lateral derivatives Fi(zo)

and fL(zo) always exist. Moreover, as S = f(zo) is a relative maximum for f, it
follows that f(zo) < 0 and f’.(zo) > 0.



If curve C is not differentiable at S, i. e. if fi(zo0) # f.(zo), the next
Proposition, whose proof is given in the Appendix, assures that limit { always exists
and explicitly gives its value. Let P, Q, C, S, s1(h), s2(h) and f as before.

Proposition 1. If curve C is not differentiable at S, i. e. f{(zo) and f_(zo) are
different, then l ezists and takes the value:

! = im s1(h) - 1/f (zo) — 1/m
T h=0sz(h) ~ 1/m — 1/£}(zo)

where m is the slope of line OS, unless m = oo but then:

_ —fi(=x0)

N fi(-’to) ’

If curve C is differentiable at S, then f}(zo) = fL(z0) = 0. It is possible, in
this case of differentiability of C at S, that limit I does not exist. But if limit / does
exist then the following Proposition, whose proof is also given in the Appendix, can
simplify its calculation.

Proposition 2. If curve C is differentiable at S, then the line OS, which de-
termines the segments c1(h) and ca(h), of lenghts sy(h) and sa(h) respectively, on
the chord c(h) of C, can be replaced by the perpendicular through S to PQ without
changing the value of the limit l (see Fig. {), i. e.

Cs(h) o pa(h)
52 = A )

Fig. 4



The next example consists on a strictly convex distance d such that any pair
of points P and Q, lying on an horizontal line, have a bisector Bi(P,Q) with an
asymptotic line not centered in the band determined by the lines ro, ( P) and rp, (Q).
In the calculation of limit ! we will make explicit use of Proposition 2.

Example. Consider two arcs of Euclidean circles of radius r and R, with r < R, the
second centered in the origin {0,0) and the first somewhere between the origin (0,0)
and point (0, R), so that these two arcs have a common tangent at point (0, R). As
indicated in Fig.5, they can be considered as part of a unit d-circle C whose highest
point is S = (0, R).

Fig. 5

Let us calculate limit { in this case, in order to study the existence of an
asymptotic line for bisectors of pairs of horizontal points for such a distance:

lim si(h) _ - lim Vi —(r—h)? \/li 2rh — h? \/ 2r — [T
h~03ﬂh) »»ovap (R-h)? A0 2Rh — h? h0 2R — h R
We conclude that for a pair of horizontal points P and @ and for the distance
d induced by such a C, an asymptotic line for Bi(P,Q) exists that is parallel to

the line passing through the center O (of C) and S, and such that its point T of
intersection with segment PQ verifies the relation:

IP-T|_ [T

NT-Qll R
In this case f'(zo) = 0 and f{(z,) # f (o). Then, as 1/r = f"(z0)/(1+ f'(z0)*/?
where r is the radius of curvature, it follows that :

fi(zo)

f2(zo)



The result in this example suggests that maybe we could, in some cases, elimi-
nate the direct computation of the limit [ if we know the second derivatives of curve
C at S, in view of the relation between the radii of curvature of curve C at § and
the second derivatives of function f at 9. Moreover limit [ can be calculated from
the knowledge of the derivatives of the curve C at S, as the following Proposition
(whose proof is included in the Appendix), establishes.

Proposition 3. If curve C is differentiable of order p at S and the following two
conditions hold:

(i) F'(29) = F*(20) = ... = f?(20) = 0.

(i) F5 (zo) and f2+'(zo) are distinct.
Then:

= fi+l(z°)

24 (o)

3. Nice and not so Nice Distances

Klein and Wood* gave no examples of "nice” distances different from the Eu-
clidean one, possibly because in the definition of "niceness” some conditions appear
which are difficult to stablish. Note that strictly convex distances verify trivially
(i) and (ii) in the definition of a nice distance. (iii) is also verified as strictly convex
distances are additive along lines®. First part of (iv) follows from Theorem 2. As
we will see in this Section, pairs of bisectors that intersect infinitely many times, do
exist for some strictly convex distances. Thus the class of strictly convex distances
is not included in the class of nice distances. However, among the strictly con-
vex distances, those which have a semialgebraic curve as the boundary of the unit
ball are nice in the sense of Klein and Wood, as it is proved in the next theorem.
With this result we are able to construct many and easy to handle examples of nice
distances, by giving a finite number of algebraic conditions.

Theorem 5. Let d be a strictly convezr distance such that the boundary of the
untt ball is a semialgebraic curve. Then the bisector of any two poinis is also a
semialgebraic curve. As a consequence the iniersection of any two bisectors has a
finite number of connected components.

Proof. Let P and Q be any two points. There is no loss of generality in supposing
that P is the origin O = (0,0) and that Q has coordinates (g,0). By symmetry it
is enough to study Bi(P,Q) in the half plane y > 0. Let:

h(z,9)=0,..,fr(z,9) =0,9:1(z,y) > 0,...,9,(z,y) >0,y > 0 (3.1)
fi(zy)=0,..., fi(z,¥) = 0,4i(z,y) > 0,...,4,(z,¥) > 0,y > 0 (3.2)

be the equations and inequations which define, on the halfplane y > 0, the bound-
aries Bp and Bg of the unit balls centered at P and Q respectively. A point



X = (zo,y0) is in Bi(P,Q) if and only if d(R, P) = d(R,Q), that, according to the
definition of d, means:

\/33 + y(2) — (20 - q)2 + yg (33)
Vit Sz2—9P+y

where (z1,1) is the unique point of intersection of line PX with Bp in y > 0 and
(z2,y2) is the unique point of intersection of line QX with Bg in y > 0. This
means that the bisector is the set of solutions of (3.3), where (z;,y) is the unique
solution of the system of equations and inequations (3.1) plus the linear equation
v = (¥0/%0)z; and (z32,y2) is the unique solution of the system of equations and
inequations (3.2) plus the linear equation (z — zo)/(y — %) = (¢—0)/(~¥0)- Being
therefore the bisector the projection of a semialgebraic set, it itself is semialgebraic
2, Being a semialgebraic set with empty interior and with an infinite number of
points, it must be a semialgebraic curve.

Last assertion follows from the fact that the intersection of two semialgebraic
sets is a semialgebraic set and any semialgebraic set has a finite number of connected
components 8. U )

The next example consists on a strictly convex distance d such that any pair
of points P and Q, lying on an horizontal line, have a bisector Bi(P,Q) without
asymptotic line in the band determined by the lines rn(P) and rp(Q). This fact
will have, as a consequence, the existence of a convex distance violating second part
of (iv) in the definition of nice distances.

Example. We are going to define a strictly convex distance d, with the property
of having some pairs of bisectors with infinitely many intersection points. The unit
d-circle C will be the union of two arcs ¢; and ¢ which are both isometric copies of
the graph G of the function g defined in the next paragraphs, pasted in a convenient
way.

First consider function f :[~1,1] — R defined as:

f(z) = z, ifz<0;
127, if2r —27-2 <z <271 27! with n an integer.

Note that on the negative X-axis f is the identity function and on the positive
X-axis f is a staircase function which is constant and equal to 2" in each interval
I, = (2" — 2n~2,27+1 _ 97—1] with n an integer. Now define g : [-1,1] — R as:

o) = [ )iz

Obviously function g is continuous and equals function £2/2 on the negative X-axis.
Function g equals z2/2 on the positive X-axis only at the points of the form 2" with
n an integer, because from 0 to 2™, the area under function f equals the area under



the identity function. At the rest of the points, that is on each of the intervals of
the form (2",2"*!), function g is linear. Think of the graph of function g as the
lower half of the boundary of a convex body. As it is not strictly convex, we want
to modify function f above. This modification will be made in two steps:

Step 1. Consider any two consecutives steps of function f, say step S,, over the
interval I, and step S, 41 over the interval I, 4, and connect them by a line segment
of big slope M, through the "midpoint” between the two steps. Function f with
this modification becomes a continuous function which looks like a true staircase,
where the jonction between two consecutive steps is a line segment of slope M.

Step 2. The horizontal steps of the staircase described in Step 1 will now be
slightly sloped, connecting any two consecutive jonctions of the staircase, say J,
and J,4; around step S,, by a line segment of small slope m through the point
(2",2") of step S, (see Fig.6 below).

A
|
1
1
H \
| ‘\
| e=asa Y
i \
a '
t h
! \
[\
1 ]
1 1 ] “
i H '
-
+
I R Rt \
~ -
., Ig ~~o
Wl );4 1'/2 }
Fig. 6

Note that the modifications made in Steps 1 and 2 on function f affect f only
on the positive X-axis, on the negative X-axis remaining unchanged, i. e. the
identity function.

Let us call f again, function f modified as indicated in Steps 1 and 2 and let
us consider as before g : [~1,1] — R defined as:

o) = | " f(z)de

Function g is of class C! because f is continuous. g equals function z2/2 on the
negative X-axis and equals function z2/2 on the positive X-axis only at the points
of the form 2" with n integer, because at these points the areas above and below
the graph of function f(z) = z are compensated (see Fig.6 again). At the rest of



the points, that is on each of the intervals of the form (2", 2n+1), being the integral
of a linear function, graph of function g is an arc of parabola. As ¢’ = f is strictly
increasing on the interval [0, 1], the graph of g above this interval is a strictly convex
curve. On the interval [~1, 0], being a single arc of the parabola z?/2, the graph of
g is also strictly convex.

Call G the graph of g and let the arc ¢; be ¢y = G and ¢ equal to ¢; rotated
around point (0, 1/2) an angle equal to . The unit d-circle C will be ¢; Ucy.

The key of this example is to observe that limit / doesn’t exist for bisectors of
pairs of points in a horizontal line as we are going to prove now.

First note that functions s,(h) and s5(k) defined on Theorem 4 are the two
branches 7; and 2 of the "inverse” function of g; because of this we can calculate
s1(h) = 11(h) = Vv2h, and s3(h) = 72(h) must be the value z such that the area
under f between the lines z = 0 and z = z equals h.

For points of the form h = 22*~! with n integer is s1(h) = s2(h) = 2" and then
its quotient:

si(h) _

82(’1) -
Let € be the quotient a/A, where A is the area of a square [2",2"*!]? and
a is the portion of A under the graph of f and between the lines z = 2" and
z = 2"+ — 27-1 (See Fig.6).
For points of the form h = 22*(1 + ¢) with n integer, we have s;(h) =

2" /2(1 + €) and sy(h) = 2"*+! — 2*~! and so:
a(h) _ o5 0T

82(’1)

Because 0 < ¢ < 1/8 (see Fig.6) we have:

2/3/2(1+ ) < 2/3v/2(0 + 1/8) = 1

and then we can conclude that :

m sl(h)
h—0 s2(h)

does not exist as:
Sl(h)
82(’1)

takes the values 1 and 2/3/2(1 + ¢) infinitely many times when A — 0. Accordingly
with Remark 1 following Theorem 4, the bisector Bi(P, Q) of any pair of horizontal
points P and @ must have infinitely many inflection points.

Now we can obtain the wanted conclusion: as bisectors are invariant through
simultaneous translation of the pair of points P and @, we can apply some small
translation to the pair of points P and @ in the direction of the band in which
Bi(P,Q) is contained. The bisector for the new pair of points P’ and Q', Bi(P',Q"),




would intersect Bi(P,Q) in an infinite number of points. This strictly convex dis-
tance d would not be nice in the sense of Klein and Wood as it has pairs of bisectors
whose intersection has an infinite number of connected components. This result is
really intriguing because the boundary of the unit d-circle is of class C! (from the
continuity of f) and has second derivative except at a countable set of points with
only one limit point.

4. The Topology of Voronoi Regions

Though strictly convex distances are in general not nice, they produce, as nice
distances do3, Voronoi diagrams with very good properties.

Let d be a strictly convex distance on the plane and A a finite collection of
points. Let H(P,Q) = {X € R? : d(X, P) — d(X,Q) < 0}. Then:

RiP)= ()| HEQ

QeA-{P}

is the Voronoi region of P with respect to A and:

Vory(A) = | ] BdRa(P)
PecaA

is the Voronoi diagram of A with respect 1o the distance d.

Theorem 6. (Properties of Voronoi regions) Let d be a strictly convez distance on
the plane and A a finite collection of points. Then:

(i) Ra(P) is an open and not empty subset of the plane and Ra(P)={X €
R? :d(X,P) < d(X,Q), for every Q € A— {P}}.

(ii) R4(P) is star-shaped as seen from P.

(iii) CIRs(P) = {X € R? : d(X,P) < d(X,Q), for every Q € A — {P}},
where Cl denotes the topological closure.

(iv) Upea C1 Ra(P) = R2.
Proof. (i) Note that function dp : R? — R* defined as dp(X) = d(P, X) is
continuous and then function g : R? — R defined as g(X) = dp(X) — do(X) is also
a continuous function. H(P,Q) is the set of points where function g takes strictly
negative values and so is open and it is not empty, as P always belongs to H(P, Q).
Being R4(P) a finite intersection of open sets, it is itself an open set containing
always point P. Last equality in (i) follows obviously from the definition.

(ii) is derived from the d-star-shapedness of regions, as d is additive along lines.
To prove it we follow Klein®. Being d-star-shapedness stable through intersections
it suffices to prove that H(P,Q) is d-star-shaped as seen from P . Let X € H (P,Q),
and Y € R? such that:

d(P,X)=d(P,Y)+d(Y,X)

IfY ¢ H(P,Q) then d(Q,X) < d(Q,Y) +d(Y,X) < d(P,Y) +d(Y,X) = d(P, X)
contradicting the fact that X € H(P,Q). SoY € H(P,Q).



(iii) Let us call F the set of points X € R? verifying: d(X, P) < d(X, Q) for
every Q € A— {P). Being F a closed set containing R4(P), it follows that F
contains the closure Cl R4(P) of Ra(P).

Conversely, if X € F let us prove that X is an accumulation point for R4 (P)
by proving that the whole open segment (P, X) is contained in every H(P,Q), for
every Q € A — {P} (and then the whole open segment (P, X) will be contained in
Ra(P)). Let Q € A— {P}:

(a) If d(X,P) < d(X,Q), then X € H (P,Q) and therefore not only the open
segment (P, X) but the closed segment {P, X] is contained in H (P,Q).

(b) If d(X, P) = d(X,Q), let Y € (P,X). K'Y ¢ H(P,Q) (i e. d(Y,P) 2
d(¥,Q)) then: d(X,Q) = d(X,P) = d(X,Y) +d(Y,P) > d(X,Y) +d(¥,Q), that
together with the triangular inequality leads to: d(X,Q) = d(X,Y)+d(Y,Q). But
this last equality would mean Y belongs to the open segment (X,Q), contrary to
the assumption of Y € (X, P). Then Y must belong to H(P,Q).

(iv) is obvious. U

5. Intersection Properties of Associated Bisectors

In the Euclidean case bisectors are straight lines and so any two bisectors
intersect at most once and transversaly. In the general case of an arbitrarly strictly
convex distance d, we just know that bisectors are simple curves and therefore we
ask how does the intersection of two bisectors look like. We have seen in Section 3
some wild behaviour of the intersection for some pairs of bisectors. In this section
we study this problem in the case of associated bisectors, i. e. when they are any
pair among the bisectors determined by three given points.

If the closure of the unit d-ball C! B4(0, 1) has a unique supporting line through
each point of its boundary (smooth boundary), then given any two points P and Q,
the set of d-circles passing through the two points fills the whole plane except the
points in the line through P and Q different from P and Q. Because of this, in the
case of smooth boundary, given three points P, Q and R, one of the two following
facts holds:

(i) Either they lie on some d-circle (d-cocircular), and then Bi(P,Q) and
Bi(P, R) intersect at the center of the unit d-circle containing P, @ and R.

(ii) Or they lie on a straight line (collinear), and then Bi(P,Q) and Bi(P,R)
don’t intersect.

If the closure of the unit d-ball Cl B4(0,1) has more than one (and then in-
finitely many) supporting line through some point of its boundary, then sets of
three points can exist that lie neither on any straight line nor on any d-circle. As
an example of, think of a strictly convex distance d whose unit d-ball has the shape
shown in Fig. 7(a) and note that the set of d-circles, passing through any two
points P and Q situated on a vertical line, just fills the shaded region of the plane
of Fig.7(b).
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A third point R out of this region and not on the straight line PQ, together
with points P and Q, form a set of three points which are neither d-cocircular nor
collinear. Note that, in this case, their associated bisectors Bi(P, Q) and Bi(P,R)
cannot intersect and they have the same asymptotic directions.

Proposition 4. Let P, Q and R be three points in the plane. Let m and m’ be the

asymptotic directions of the associated bisectors Bi(P, Q) and Bi(P, R) respectively.

Then:

(i) The associated bisectors Bi(P,Q) and Bi(P, R) intersect at most once.

(ii) The associated biseciors Bi(P,Q) and Bi(P,R) intersect ezactly once if and
only if the points P, Q and R are d-cocircular.

(iii) In the case of smooth boundary, the associated bisectors intersect if and only if
its asymptotic direcltions m and m' are different.

(iv) In the case of non smooth boundary, if the asymptotic directions m and m' are

different, the bisectors intersect ezactly once but nothing can be said if the directions

cotncide.

Proof. For (i) note that Bi(P,Q)()Bi(P, R) is not empty if and only if P, Q

and R are d-cocircular. From Theorem 1 of Section 1, at most one d-circle exists

containing three given points. (ii) is obvious from (i). For (iii), if m # m' then

bisectors intersect as a consequence of Theorems 2 and 3 of Section 2. Conversely,

if bisectors intersect, we know that P, @ and R are d-cocircular and therefore not

collinear. This means that the direction of the line PQ is different from the direction

of the line PR. Now, having smooth boundary, the contact points of the supporting

lines in this two directions must be different. Thus the asymptotic directions of the

bisectors are also different. U

We will say that the bisectors Bi(P, Q) and Bi(P, R) associated to three given
points P, Q and R intersect transversaly if the following two conditions holds:

(i) They intersect (necessarily in exactly one point).

(ii) It exists an homeomorphism frorn the plane onto the plane sending each of
the coordinate axes onto each bisector.

The two open regions that Bi(P,Q) determines are, each one, characterized as
the set of points where function f(X) = d(X, P)—d(X,Q) is less than (respectively
greater than) zero ({f < 0} and {f > 0}). We can say then that Bi(P,Q) divides



the plane into two regions each of them having an associated sign < or >. Note
that taking —f instead of f leads to the interchange of signs in the regions.

Similarly, the two open regions that Bi(P, R) determines are characterized by
the signs of function g(X) = d(X, P) — d(X, R).

If Bi(P,Q) and Bi(P, R) intersect, then around the intersection point appears
a set of regions characterized each of them by a pair of signs, first sign being the
one of function f, second sign the one of function g. This pair of signs will be called
a combination of signs. The possible combinations are <<, <>, >< and >>.

Transversality in the intersection of bisectors Bi(P, Q) and Bi(P, R) is equiv-
alent to the appearence of four regions, each of them with one of the possible
combination of signs®. Non appearence of some combination indicates that the in-
tersection is not transversal and in this case one of the remaining signed regions
will be not connected as shown in Fig.8.

><f <>

<<

Fig. 8

Theorem 7. Let P, Q and R be three points in the plane. If their associated
bisectors Bi(P,Q) and Bi(P, R) intersect, then they do it {ransversaly.

Proof. Suppose the intersection is not transversal and that the combination of
signs that doesn’t appear is >> as in Fig.8. Other cases can be reduced to this one
by changing the signs of functions f or g.

Bi(Q, R) is the set of points where function h(X) = d(X,Q) — d(X, R) equals
zero (Bi(Q, R) = {h = 0}) and depending on the signs of functions f and g, four
different cases can occur:

1. Case ++. h = —f + g (if f and g are both as defined)
2. Case ——. h = +f — g (if f and g both change signs)
3. Case —+. h = +f + g (if only f changes sign)

4. Case +—. h = —f — g (if only g changes sign)

Let us study separately two of the four cases, the other two being similar.
Case ++: f(X) = d(X,P) —d(X,Q) and g(X) = d(X, P) — d(X, R). Note that
the region signed <<, that is {f < 0}N{g < 0}, is by definition the Voronoi region
of point P, that would then be not connected, contradicting the connectedness of
Voronoi regions.

Case —+: f(X) = d(X,Q) — d(X, P) and g(X) = d(X, P) — d(X, R). Note that
in this case A(X) = d(X,Q) — d(X,R) = f(X) + g(X) can equal zero only where



f and g have opposite signs, therefore Bi(Q, R) = {h = 0} must be a subset of the
unions of the region signed >< with the region signed <>.

Bi(Q, R) = {h = 0} passes through the intersection point of Bi(P,Q) = {f =
0} with Bi(P, R) = {g = 0} and then has not any other point of intersection with
them.

Suppose first that {h = 0} intersects {f = 0} and {g = 0} transversaly. Then
it exists a non empty region of points X satisfying f(X) <0, g(X) < 0 and
h(X) > 0, i. e. it exists points X for which d(X,Q) < d(X,P) < d(X, R) and
d(X,Q) > d{(X,R) hold simultaneously, which is impossible. Therefore {h = 0}
must be enterely contained in either >< or <> region.

If {h = 0} is a subset of >< region. Then the region {h < 0} N {f < 0},
being the Voronoi region of point Q, must be non empty and then the region {h <
0} N {g > 0}, which is the Voronoi region of point R, is empty.

If {h = 0} is a subset of <> region, then either region {h < 0} N {f < 0},
which is the Voronoi region of point Q, or the region {h > 0} n{g > 0}, which is
the Voronoi region of point R, is not connected.

In all cases we arrive to a contradiction. U
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Appendix

Proof of Proposition 1. Let z; and z3 be the two unique solutions of the equation
f(z)— f(z0) = h (obviously z; and z2 depends on k). Note that, from the existence



of lateral derivatives, both:

. sl(h) .
Jim, =5~ and lim )
exist. If m # oo then:
s1(B) _ oy 8B) R

h—0 s;(h) A—~0 h h—o 32(’1)

. (mo—z)—h/m . flzo)— f(z2) _ 1/fL(z0) — 1/m
= i e Y~ F®) A% (zz —20) 4 hfm  1Jm— 114 (z0)

If m = oo then:

Ca(®) . s . b _
Jim ) AR T A )
To—T1L_ f(zo) — f(z2) _ —fi(20)

= llli-rﬂl f(zo) — f(.‘l.‘l) h—0 X2 — 2o - f’_(.’b‘o) )

u

Proof of Proposition 2. Let p;(%) and pz(k) be the lenghts of the segments that
the perpendicular through S to PQ determines on chord c(h). All we need to prove

is that: h) )
. 51 — 1 Pl
M w2 (B) ~ A pa(h)”
But s;(k) for i = 1,2 differs from p;(k) for i = 1,2 in +h/m, where m is the slope of

line OS and thus is a finite constant —co < m < +oo. For instance, if m is negative
we would have s;(h) = p1(h) + h/m and s2(h) = p2(h) — h/m and then:

. si(h) . pi(R)+h/m _
yim, s;(h) = jim, p:(h) “him

oy pi(h) ,. 14+ h/mpi(h)
= lim p2(h) Jim 3 h/mps(h)

So it suffices to prove that:
,l'irra h/pi(h) =0

for i = 1,2. Let S = (2o, y0) and suppose as before that f : (zo — 6,20+ 6) = R is
a function such that f(zo) = S and whose graph equals C in this neighbourhood of
zo. As S is a local maximum of C, f must have a Joca! maximum in zo, and then

f(zo) = tim LB =S(=0) _ g

T—Zo r—Xg

Being f continuous in o, when h — 0 is z; — zq for i = 1,2. Asfori=1,2:

ol _ 1f(=i) = f(zo)l
{pi(h)| |zi — zol




it follows that:

f(zi) = f(z0) _
a0 pi(h)  zimze  Ti—Zo )

u

Proof of Proposition 3. Let z; and z; be the solutions of the equation f(z) —
f(zo) = h. By the generalized Cauchy Theorem applied to [z1,zo] and to [zo,z2]

we have:
f@) = fzo) ___ S7(0)
(z1 = zo)P*t — (p+ 1) — z0)

and
f(z2) = f(z0) _ 2 (n)
(z2—zo)pt!  (p+1)!(n— z0)

for some £ € [z, 2] and some n € [zo,z2]. Then, as s;(h) = z1 — zo and s2(h) =
T3 — xp, we obtain that:

tim S _ i e FP() = SP(z0))/ (0 = 20) _ \[f?(_)
a=055(h) =0\ (FP(€) — f7(z0))/(€ — z0) )

as claimed. U




