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Abstract

An introduction to computer algebra systems, their capabilities and
limitations. Solution of systems of polynomial equations is a theme through-
out. A discussion of some basic algorithms is followed by three applica-
tions. Showing the power of computer algebra systems for a quick analysis
of problems is the main goal of the present paper.

1 Introduction

General computer algebra systems are large software packages intended for
‘Mathematical computation’, in particular symbolic and algebraic computation,
in an interactive way. In the next section some remarks are made on the ori-
gin, development, capabilities. use and limitations of computer algebra systems.
The differences with numerical computation are indicated. Algorithms are dis-
cussed in section 3. Ged's of polynomials are important in computer algebra.
It is shown why the usual Euclidean algorithm 1s not fit for ged computations.
The remainder of that section s devoted to the solution of polynomial equa-
tions; resultants and Grébner bases are intraduced. Section 4 on applications
18 the main part of the paper. Three problems are discussed which I received
in mathematical form without knowing their origins. It starts with a rather
easy problem on a recurrence relation. It shows nevertheless the usefulness of
computer algebra systems for a quick analysis and solution of problems met in
practice. The second application brings out the same point. The last applica-
tion is more complicated. Several methods are used and the results compared.
Apart from the first application the connecting. principle in this paper is the
solution of systems of polynomial equations.
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2 Computer algebra systems

Electronic computers have been used from the earliest days for numerical com-
putations. [t is not generally known that the history of symbolic computation on
computers is almost as old. In 1933 there appeared two Ph.D. theses at M.I.T.
on differentiation of functions using a computer. Now almost 40 years later a
whole series of computer algebra systems is available which can take over quite a
number of tasks that were reserved to mathematicians, physicists and engineers
in the old days. General computer algebra can handle floating point numbers,
arbitrary large integers, rational numbers, complex numbers, polynomials, ra-
tional functions, elementary functions (sin, cos. exp,log}, matrices (with entries
each of the foregoing entities), Taylor series, etc. Arithmetic operations on these
entities are performed with absolute precision. Computer algebra systems can
handle very large expressions efficiently and error-free. Lots of useful procedures
are built in: gcd and factorisation of integers and polynomials, differentiation
of expressions, symbolic integration (integration in closed form), Taylor series
expansions, solution of linear, polynomial and (certain) differential equations,
etc. One can specily one's problems in a language near to "human’' mathematics,
The user can add his own algorithms to the built-in ones, customizing in this
way the computer algebra system to his needs or specialism.

The history of the development of computer algebra systems is complicated.
We shall not go into details. The interested reader may consult 1], [2] and [3)
of the References at the end of this paper. Many individuals and groups have
played a role, among them (high-energy) physicists who created systems like
REDUCE, SCHOONSCHIP and FORM. Another well-known computer algebra sys-
tem is MACSYMA. The development of MACSYMA started in the early seventies
at M.I.T. It has been used in many applications. Of the more recent systems
[ mention MAPLE, MATHEMATICA and AXIOM. MAPLE was born in 1980 and
grew up at the University of Waterloo. This efficient and powerful system is
widespread now. It is used in the examples in the present paper. MATHEMATICA
1s even newer (1985). [t was designed by Stephen Wolfram and has become the
best-known computer algebra system, partly by its eficient commercialization.
but also by the quality of its user interface and the useful packages of appli-
cations to many areas of research and engineering. More than his competitors
Wolfram realized the importance of a good user interface, splendid graphics
and polished documentation. AX1OM became available in 1991. In fact it has a
fong history as an ambitious mternal research project of 1BM under the name
SCRATCHPAD. Now it is maintained and distributed by NAG, well-known by 1ts
numerical software library. lts design is quite different {rom the other computer
algebra systems.

A few words on special computer algebra systems which are designed for
more restricted areas of mathematics. Some ¢xamples: CAYLEY for group the-
ory, MACAULAY for algebraic geometry (Grobner bases), FORM for high energy
physics (successor to SCHOONSCHIP), CaS for algebraic number theory, LIE for
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Lie algebra calculations, etc.

The maturation of computer algebra systems has taken a long time. First the
basic algorithms had to be invented or improved and implemented. For this a lot
of research was needed (cf. (9]). The use of computer algebra systems was not
encouraged by system operators because of the enormous demands of memory
and processor time. Moreover, the systems were not friendly to the user. The
last decade the picture has changed. Efficient algorithms were available, but
above all hardware has become very quick and cheap. A system like MAPLE
performs well on a § 3000 PC (replacing the expensive mainframe of earlier
times). Nice user interfaces have removed an obstacle to wide-spread use.

Why are computer algebra systems interactive? Well, there is a profound
difference from the use of numerical software. In the latter case Lhe solution
strategy does not depend on numerical values computed ‘en route’. The actual
numerical computations take place once the mathematical analysis has been fin-
ished. The running of the program is controlled in that the use of memory (and
¢pu time) can be estimated in advance. Computer algebra systemns, however,
are often used for analyzing problems. To a certain extent they replace pencil
and paper, and even some human thinking and computing. The user’s decision
on the next step in the computer will often depend on the result of the previous
step.

Though modern computer algebra systems are powerful tools for pure and
applied mathematical research, a word of caution must be said. Computer
algebra systems are not going to replace numerical computations in the next
few years. What can be expected is a growing use of symbolic computation in
the problem solving phase and for automatic generation of code for numerical
computations. Computer algebra systems can do some amazing things, e.g.
symbolic integration. However, they have their limitations. For instance, to the
often asked question ‘Can they solve differential equations?’ the answer is ‘Yes,
afew’. In fact it is an enormous challenge to mathematicians, pure and applied,
to invent algorithms for many domains of mathematics. Only the first small
steps have been taken, the great things are for the {uture.

3 Algorithms

For a mathematician algorithms are the most interesting part of computer al-
gebra systems. At first sight he will be impressed by the enormous speed of
the computations with big numbers and complicated polynomial expressions.
After some time he will find out that even the quickest computer can be crip-
pled by ill-designed algorithms. This is true a fortiori for those algorithms that
are applied thousands of times, sometimes unnoticed because called indirectly.
This holds e.g. for automatic simplification procedures. For this reason lots
of ingenuity and energy have been spent on the development of efficient basic
algorithms. A good account of this research can be found in D. Knuth’s famous
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expression swell’, is well-known in computer algebra. Note that inside the above
algorithm another algorithm is hidden: the simplification of the rational num-
ber coefficients. The mathematicians have gone out of their way to construct
better ged algorithms for polynomials: ¢.g. several other "polynomial remainder
sequences’ such as subresultant sequences. However, the most efficient method
is based on another non-intuitive idea: modular calculations and the Chinese
remainder theorem. Modular computations play a role in many places. One
of the powerful tools of computer algebra is the factorization of polynomials
(in one or several variables) in irreducible factors. Here modular factorization
(Berlekamp's algorithm) is the starting point.

3.2 Solving systems of polynomial equations

Let fi,..., f+ be polynomials in the variables z,,...,z, and coefficients in a
field (e.g. the field Q of rational numbers, the real numhers R or the complex
numbers C ). Problem: find the common zeros of f1,.. ., f, (in Q, R, resp. C).
A common zero is an n-tuple of numbers £;,..., ¢, such that L&, 6) =0
for all 3.

Many problems in pure and applied mathematics come down to the solution
of (systems of) polynomial equations. A classical tool is the resultant. It is par-
ticularly useful when solving a system f(z,y) = 0,9(z,y) = 0 of two equations
in two unknowns. Write the polynomials in the form

=/ mlz)y™ + -+ fi(z)y + fol2),

9=9.(2)y" +  +q(x)y + go(7),

where f,, and g, are non-vanishing polynoials in z. Then the resultant of ]
with respect to y is the polynomial in z alone, defined by

fmlz) - folz)
resultant,(f, g) = on(@) - .;7;-,((;)) - folz)
lz) - aola)

To be more precise: there are n rows with coefficients from f followed by m
rows with coefficients from g. Let us temporarily write R(z) for this resultant.
The main property of resuitants: For any number £ the following statements
are equivalent

(i) There exists a (complex) number 1 such that f(¢,7) = 0,9(é,7) =0.

(i) R(§) = 0.

Now it is obvious how a system of equations f(z,y) = 0,9(z,y) = O can be
solved. First compute the resultant R(z). Then solve R(z) =0, a palynomial
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equation in one variable. Let £ be a solution, Then the main property garantuees
the existence of a common solution of the equations f(¢,y) = 0, g(&,y) =0. The
latter ones are again equations in one unknown.

Example,

f=81:3+241:2y+24zy2-‘—-8y3—21z2—54.ry-21y2+163:+16y,
g=522+6ry+5y2—122—12y+8.

We want to solve the system f(z,y) = 0, g(xz, y) = 0. For this we compute the
resultant R(zx) of f, g with respect o y and factorize it;

Rlz)=64(4z-1)(4z-3)(2z - 1) (z - 1)°.

The zeros are z = 1/4,5/4,1/2,1. First look at ¢ = 1/4. We know that
f(1/4,y) = 0,9(1/4,y) = 0 have a common solution, which turns out to be
y = 5/4 (e.g. by computing ged(f,g)). In a similar way one finds the other
solutions: z=5/4,y=1/4, z=1/2,y=1/2andz =1,y = 1.

The determinant defining the resultant looks bad for computations. How-
ever, there is a link with the Euclidean algorithm which leads to a quick caleu-
lation of the resultant. The basic formula is

resultant,(f,g) = (= 1)™" g resultant,(g,r),

where r is the remainder of f divided by g and d is the degree of r as a poly-
nomial in y. Resultants play a role in many parts of computer algebra and in
applications. They can also be used for the solution of more general systems of
polynomial equations as we shall see in section 4.

A rather recent and very importam development in connection with polyno-
mial cquations is the theory of Grobner bases and the algorithm of B. Buchberger
(Ph.D. thesis of 1965). Consider the following problem: Let f, fi,.. ., f, be poly-
nomials in zy,...,z, with coefficients in a field. Decide whether f belongs to
the ideal generated by fi....,f,. Buchberger solved this problem by defining
special sets of generators for the ideal. so-called Grobner bases. for which the
problem is immediately (algorithmicallv) soivable. He also devised an algorithm
for computing a Grobner basis from the given generators fi,..., f,. For non-
algebraists this problem does not look exciting. But look at this application.
One wants to solve the system of polynomial equations

y23+ry2-:z:z2—3y22+z2—zy+2yz=0,

zyz® + %y? - 2t - 3zyz? + Y+ 0 -zly +2zyz - 3:° +y+22 =0,

y223+z5+zy3—zyz2—3y2z2—-324-~:z:2y—zy2-+-3y22+223-3z27-2z =



Computer Algebra 7

Applying Buchberger's theory one can proceed as follows. Let fi. fa, f5 be the
left hand sides of the above polynomial equations. Consider the ideal / generated
by f1, f2, f3. Now compute a Grobner basis in / (using the lexicographic order
on the monomials). This yields a system of polynomial equations in ‘triangular
form’

x2—zy=0, y -2t =0, 22-3:2242:=0

which can easily be solved. The method of Buchberger is almost ideal. The
only drawback is that the algorithm is sometimes inefficient as we shall see in
the next section.

4 Applications

4.1 A recurrence relation

The following problem was posed by a researcher of physical chemistry depart-
ment of the Ruhr University at Bochum, Germany. It arose in statistical me-

chanics. A sequence of numbers 91,92, ... is given. Another sequence fo. f1.. ..
is defined recursively by

fo=1,fan=gus® - Z <:>fn_k forn> 1.

=l

Here s is a parameter. The question is to compute the f, efficiently, preferably
by finding some explicit expression.

What can we do with such a problem? Well. a mathematical solution avoid-
Ing computers is certainly possible. We shall come back to this. However. one
can save one's mental energy using a computer algebra system and a general
strategy. One simply writes down the commands which compute the successive
fn. Using MAPLE this goes as follows:

g:=[23,11,-17,5,23,-2,7,34] : # example input list

£{0]:=1;
for n from 1 to nops(g) do

f£(n]:=expand(g(n]+*s"2-sum(’binomial(n,i)=f (n~i)?,’i'=1,.n))
od;

The result is

£[0] := 1
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2
£(1] (=238 -1

2
f[2] (= -368 +1

£{3] =198 -1

2
£{4) =478 + 1
2
£(5] := - 1678 -1
2

(6] := 3028 + 1

2
£(7] 1= - 3368 -1

2
£(8] (=603 + 1

This yields a result but no insight. Let us do now the same computation with
a 'general’ g.

g::[gl,32,g3,g4,g5,56,g7,gej;

The result is
(0] =1
1] 1=s g1 -1

(2] :=g28 -2 gL+ 1
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2 2 2
f(3) :=g38 -3g2s +3s gl-1

2 2 2 2
f(4] ;= g4 s -4g3s +6g2s -48 gi+1
2 2 2 2 2
£[5) :=gss -5g4és +10gds -10g2s +65s8 gi-1
2 2 2 2 2
f(6] :=g6s -6g5s +15g48 - 20 g3 s + 15 g2 s
2
- 68 gl +1
2 2 2 2 2

(7] 1= g7 s -1-21g28 -35g4ds + 35 g3s8 -7 g6s

2 2
+21 gbs +78 g1

2 2 2 2 2
f(8] :=g8s +1+28¢g2s +70g4ds - 56 g3s + 28 gbs

2 2 2
- 56 gbs-88 gl -8g7s

Here one recognizes immediately Pascal's triangle and the conjectured general
formula is

Fu = (=1 = 92 31y (})a

i=1
which can easily be proved by induction.

Final remark. The same result can be found by the well-known generating
functions technique. This costs some thought and there is more risk of errors.

4.2 Common solutions of two differential equations

A few months ago I got the following problem from an American friend who
had got it in his turn from friends of friends. Consider the differential equations
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where
As(z,y) = =4z%y+ 14y’ — 9tz?y’
Ay(z,y) = —8zy® + 16z% + 9tzdy? 3)
Ai(z,y) = 8zly-— 16y — 9tz?y’
Ao(z,y) = dzy? - 14z® + 9tzdy?

Both (1) and (2) are ordinary, non-linear differential equations for the unknown
function y of the (real or complex) variable z. ¢ plays the role of a parameter,

Problem. Determine the common solutions (if any) of (1) and (2).

It was conjectured that y = z and y = —z were the only common solutions.
That was all that I knew. I had no idea about the origin of the problem. I was
able to solve the problem quickly thanks to MAPLE and I sent the solution to
my {riend. A couple of days later I got an electronic message from the mathe-
maticians Th. Hasanis and Th. Vlachos of the University of loannina in Greece
thanking me for my help and promising some preprints ({6, [7]). From the title
(6] one sees that the problem comes from differential geometry. Explaining the
context would take more time and space than solving the problem. Moreover
it does not contribute anything to the solution. So we shall not dive into dif-
ferential geometry. Before discussing the solution I must state my big surprise
when [ received the report [6] soon afterwards and started reading the appendix.
There was an analysis and partial solution of the problem absolutely similar to
what ['m going to explain, including the computer calculations!

Let us now try to solve the problem. Each of these equations on its own
is unpleasant. So what hope remains for finding common solutions? After
looking a bit more at the equations one might get the following idea. Differ-
entiate the second equation with respect to r. Then some new equation (6) in
z,y.dy/dz,d%y/dz? appears. Elimination of d*y/dz? from (1) and (8) yields
an equation (7) in r,y.dy/dz. Now we have the two equations (2) and (7) in
T,y,dy/dz. Elininating dy/dz {rom these equations yields an equation (8) in
z,y. This 1s necessarily a polynomial equation: it defines y as a function of z.
Any common solution of the given differential equations (1) and (2) must be a
solution of (8). So try to find the solutions of (8).
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So far so good. But what does (8) look like? Can we really perform all

those derivations and eliminations? Let us try. To simplify our notations write
: =dy/dz,w = d*y/dz? and

P = Az(z,y)2° + Aa(z,y)2* + Ay (2, y)z + Ao(z,y).

Then equation (1) becomes

)+ (4)

and (2) becomes
P =0. (5)
Now dP/dz can be computed by hand (unpleasant) or by MAPLE (or any other
computer algebra system). The result is
apP 2,22 3,3 P 2,2
g = 2Ttz y 2" — 18tzy~z° — 18tzy°z + 27tz’y (6)
-8y’ +482%:% - 8y?z% + 16zyz — 42z ~ 44°
+(18tz%y%z ~ 27t2y% 2% ~ 91zy® ~ 12 z?y:?
+42y°2% +322%2 ~ 162y ~ 8z%y - 16¢y%)w =0.

Now substitute w from (4) in (6) and obtain

Q = (27w?yt + 1227y - 424420 (7
+(-126tz%y° — 56 2%y + 184 ry®) 2
+(72tzxy? ~ 18ty + 3221 - 84 £fy? - 264%)2°
+(—54tz%y® + 132 2%y - 126 zy%)2?
+(72tz'y? - 45tx?y* + 322 + 482%y? + 16 vz
+72tzy° - 1182y - 4 zy®.

Now we must eliminate : from the equations (5) and (7). The mathematical
tool for this is the resultant as we have seen in section 3. The resultant R =
resultant,(P, Q) of P and Q with respect to z is a polynomial in ¢, z, y with the
following property: if t = g,z = zy,y = yg, 2 = 2y is a common solution of P =
0,Q = 0, then t = tg,z = zp,y = yo is a solution of R = 0. The computation
of R = resultant,(P, Q) is a matter of seconds (awkward by paper and pencil)
and returns a polynomial in ¢,z,y with 67 terms which we do not reproduce
here. Instead we try to factorize R as a product of irreducible polynomials. The
result is

R=97122"y'(z+y)(z-y) f g, (8)
where

f=az? - 14y® + 9tz’y?
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and

g = 10497600t°z'%y® + 23783625 ¢52'9y!0 + 18862875 1214 y1?
+18862875 t° 'y + 23783625 t32'7y!0 + 10497600 1228 8
+39657600 ¢*z'%® ~ 96782040 t*2'%y® + 18669690 ¢4 !4 y!0
~71893980 ' 2" y'? + 18669690 t*z 'y — 96782040 ¢18y'0
+39657600 t*z%y!® - 43545600 ¢°z'8y* — 33988896 t2 100
+99268416 (32118 - 65010276 1%z 2y'0 - 65010276 ¢3210y!?
+99268416 °z3y'* ~ 33088896 1°2%y'® — 43545600 %24 y!8
—58521600 ¢*z'%y? + 163236096 t>z'y* — 250000056 122" °
+180082080 ¢*z*2y® — 158754744 t22'0y'0 + 180082080 ¢%2%y*?
—250900056 *z%y'* + 163236096 t2*y'® ~ 58521600 ¢%z°y'8
—14336000 tz*® + 142511360 tz'%y? - 203510080 t' ¢
+299759904 tx'?y® - 63472352 12"y - 63472352 1z8y'0
+290759904 tz°y'? - 203510080 tz' y'* + 142511360 tzy'®
~14336000 ty'® + 26880000 £'° - 70294400 £ 2
+43869056 ' y* + 34700192 01940~ 104814400 28
+347001922°y"'? + 43869056 z' y'? — 70294400 £y
+26880000 y*°.

Remark. Computer algebra systems are strong in factorization of polynomials.
From the human point of view there is a big difference between the above compu-
tation of the resultant and the factorization. With a lot of energy, precision and
scratch paper one may succeed in calculating the resultant avoiding computers
(though the risk of making errors is considerable). The factorization is much
harder. Yes, there is an algorithm, otherwise computers would be unable to
perform this task. However, this algorithm is much more complicated than the
one for computing the resultant. Few mathematicians do know that algorithm.
Instead when meeting polynomials in their research, they try to factorize by ad
hoc methods. However, if unsuccessful, they cannot be sure that the polynomial
is irreducible. As opposed to this if a computer algebra system cannot factor a
polynomial. that polvnomial is guarantueed irreducible. (That is to say... Some
months ago somebody discovered that the reducible polynomial

' = M 510217 + 202! - 2020 — 2002? - 40028 ~ 30027
-2100z% - 6000z® — 1000z* + 1000023 + 1000022 + 100000

cannot be factored by MAPLE V)

Back to our problem. The common solutions of (1) and (2) must be solutions
of R =0, whence of one of the factors of R. So we must check each of £ = 0,
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y=0z+y=0,z-y=0, f=0,g =0 and see whether it yields a common
solution of (1) and (2). This is easy for the first four: y = £ and y = =2 are
common solutions, £ = 0 and y = 0 are not. Next, f =0 leads to

2z -2z
= , Y= e
Vii-sizz VT iz oz

and an elementary calculation shows that neither satisfies (2) (neither for general
{ nor for special values of t).

y

The analysis in 6] stopped here. But there is still some serious work left
which I shall briefly explain. MAPLE was used for most computations that follow.
Let y be a function of z (and the parameter t) defined by g = 0. Claim: y is not
a common solution of (1) and (2). This is somewhat harder to prove. Assume
t # 0 (the easier case t = 0 is left to the reader). A function y of z satisfying
g(z,y) = 0 is called algebraic. It is defined everywhere in the complex plane as a
multivalued analytic function of z (for any value # 0 of t. Because of the highest
term —143360000ty'® of g there are no poles or 'branched’ poles at = = 0). Let
us study the branches at z = 0. The equation ¢(0,y) = 0 has three solutions
y=0,y= \/13752, y= —\/—1‘378"8'. We shall treat theses cases separately.

(i) Branches at (0,0). The plain curve defined by g(z,y) = 0 has a singularity
at the origin. The nature of that singularity can be seen from the lowest order
part. Up to a constant factor that part equals

840000y’ — 2196700z%y'* + 1370908z y!? + 108438125y'° (9)
—-3275450z%y® + 1084381'%y% + 1370908z!%y*
-2196700z!*y? + 840000z1°.

This form is irreducible over Q (Check by computer algebra!). So (0,0) is an
ordinary multiple point of multiplicity 16. Hence the branches are regular func-
tions having power series expansions y = a1z + apz® + azz® + - - .. Substituting
this series in (2) and comparing coefficients of the various powers of z leads to
the following equation

(ay = 1)(a; + 1)(a} = a? + 1) = 0.

However, none of the solutions a; leads to a tangent line y = a;z to g at (0,0),
because (9) does not vanish when such y = a;z is substituted.

(ii) Branches at (0, /15/8t). Write y = yoy + v where yo = V/15/8t. Expand
g(z, yo+v) as a polynomial in z, v. The lowest order term is v (times a constant).
This means that the tangent to the curve g(z,y) = 0 at (0. yo) is horizontal and
that (0,y0) is an ordinary powt of the curve. So the branch admits a power
series expansion y = yo + bov® + b3v® + ..., Substituting this power series in
g = 0 and equating powers of v one finds by = —197/2250tyg. In a similar way
substitution of y = yo + b3v? + b3v° + -+ in (1) leads to by = 1/15tyg. Thisis a
contradiction.
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(iii) Branches at (0, —+/15/8¢). Similar to (ii).

Conclusion. [t is doubtful whether the basic idea of the solution could have
led to success without the use of a computer algebra system. It would have
certainly taken much more time than the one morning that [ needed. It is a
brute force solution [ admit. But once this solution is obtained one has gained
sufficient insight and feeling in order to try and find a solution avoiding the
computer. This may be considered more satisfying, but it is also an unrealistic
luxury in a situation where 'time is money’. A great advantage of computer
algebra systems lies in the possibility of quick analysis of a wide variety of pure
and applied mathematics problems.

4.3 A problem from kinematic geometry of mechanisms

Last summer there was a discussion in the MAPLE User Group on dual curves
and surfaces. It was started by Mr. Ross McAree of the Robotics Laboratory,
Department of Mechanical Engineering at the University of Melbourne. He
asked for help in computing the 'dual' of a surface in 3-space. He rightly stated
that the computation comes down to the solution of a system of polynomial
equations (with parameters). He used MAPLE’s ‘solve’ for the (easy) case of
quadratic surfaces and concluded that the procedure becomes hopeless for sur-
faces of higher degree. He got several reactions. It was explained to him that
all this was good.old algebraic geometry and that the natural tool to compute
the dual surface is Grébner bases. This was demonstrated for a quadratic sur-
face. Though [ agreed in principle, I had my doubts. So I showed the MAPLE
User Group the example of a plane curve of degree 3 (an elliptic curve in ho-
mogeneous form) for which the dual curve should be computed using MAPLE's
Grobner basis package. The computation went on for one hour on a Sun4/490
and then | stopped it. This was for me the starting point of some more experi-
mentation which finally led to a complete solution of McAree's problem (to be
formulated below). Further on I shall come back to kinematic geometry, but [
shall first explain the simple mathematics of dual curves and surfaces and show
varicus computations.

Let us start with plane curves and dual curves. A plane algebraic curve C is
given by a polynomial equation f(z,y) = 0 (with some obvious restrictions). In
order to keep things simple inhomogeneous coordinates and equations are used
instead of the more customary homogeneous ones. Let (zg,yg) be a (general)
point of the curve (i.e. f(zg,yo) = 0). Then the tangent line at (zg,yo) to the
curve has the equation

f=(zo, o)z + fy(zo,y0)y = (fo(z0, yo)zo + fy(za, yo)yo) = 0.

For the equation az + by + ¢ = 0 of a straight line the pair (a/c, b/c) is called
the line coordinates of that line. So the tangent line at (zg,yo) to C has line
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coordinates

—fz(IO)yO) - —fy(xO\yO)

°T Felzovo)za + f(zow0we’ - Falzor vo)ze + fulzo,yo)yo
Now we drop the subscript 0 and define a map o from C into the plane by
¢(Ivy) = (5171)' where f = —f:/h, n= "'fv/h‘v h = If! + yfy'

The interesting point is now that o(z,y) runs through an algebraic curve C'
when (z,y) runs through C. C' is called the ‘dual curve of C'. How do we find
an equation for C'? A minute's thought shows that we must eliminate z, y from
the 3 relations f =0, £ = ~f,/h, n = - [y/h or, written differently,

[=0,f:+ER=0, fy+nh =0

Example. f = z(z - 1)(z = 2) - y*. Here are the MAPLE commands:

with(grobner):

frex»(x-1)*(x-2)-y"~2:

fx:=diff (f,x):

fy:=diff(f,y):

hizx*fx+y*fy:

G:sgbasis({f,sh+fx,th+fy}, [x,y,s,t],plex);

Note that s is used instead of € and ¢ instead of n. You need not know precisely
what the last line means. A Grobner basis is computed and the theory says that
it will contain one polynomial depending on s and ¢ alone. That polynomial f’
defines the dual curve C'. The MAPLE computation takes about 1000 seconds
on a 15 MIPS computer and yields

ffo= —46'n® - 214" - an® + 86 + 486%n? — 24¢n®
+126% +1326%n% + 4€° + 1086n? + 2792,

The word 'dual’ suggests a reciprocity. Indeed, if C' is the dual curve of C, then
C' is the dual curve of C".

The extension to surfaces in three-dimensional space is obvious. Let S be
the defined by the polynomial equation f(z,y,z) = 0. The tangent lines to the
curve are replaced by tangent planes to the surface. If fx+ny+(z+1=0is
the equation of a tangent plane, we call (£, 79, ¢) the coordinates of the plane, etc.
The dual §' of the surface S is defined by a polynomial equation f'(£,n,() =0
where f' is obtained by eliminating z,y, z from the polynomial equations

f=0»£h+f:=0‘77h+fy=0v<h+fz=0 (10)

and h=z f: +y f, + z f,. Now one might try to find f' the way we did before
in the curve situation using Grobner bases or otherwise. Finally, as expected,
the dual surface of S' is the surface S.
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Let us look now at McAree's problem. Here the surface S’ is given and §
must be found. S’ is defined by

f'= a2€4 + b + ¢t - 2(bc772C2 +calt + abfznz) - 4(52 +n%+ C2). (11)

a, b, c are parameters satisfying a+ b+ ¢ = 0. 'Dualizing' (10) we get the system
of polynomial equations

['=0,zh! & fl=0,yh + fy = 0,zR + fi = Q, (12)

where h' = {fe +nf, + (f;. The equation f = 0 of § will result by elimi-
nating §,7,¢ from (12). Since there is not much chance that a Grobner bases
computation using Maple will end in a reasonable amount of time, we shall
use a computer algebra system which is famous for its efficient Grobner basis
computations. First we try to solve the problem for special values of a,b,c:
a=2,b=~3,c=1 MACAULAY computes with homogeneous polynomials. So
we must homogenize f'. Then the MACAULAY session looks as follows.

Macaulay version 3.0, created 8/14/89

% ring R

! characteristic (if not 31991) ?

! number of variables 7?4

! 4 variables, please ? xyzw
! variable weights (if not all 1) ?

! monomial order (if not rev. lex.) ?

; largest degree of a monomial : 512
4 ideal I

! number of generators ? 1
P (1,1) 7 (4x74+9y~4+274)-2(~3y"22"2+2272x"2-6x"2y"2) \
;o ~4(x"2+y"2+2"2)w"2)

A <dual_variety I i J

4 type J

1 X6+3x4y2+3x2y4+y6+3x422+6x2y222+3y422+3x224+3y224+26+5x4w2 \
1 -Bx2y2w2-25/4y4w2-44x222w2-43/2y222w2+47/424w2+3x2w4+13y2w4 \
; +3322w4~-9w6

The computation takes a few minutes. The last expression is the polynomial
defining the dual surface in homogeneous form. The inhomogeneous form is
obtained by substituting w = 1. In a more attractive form it reads like this

J o= 2432y +32%yt + 8 + 322t + 6%yt + 3yt 2P (13)
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25
+3z%2% + 3y?z* + 28 + 52 - 8z2y? - —"‘—y4 ~ 441222

2
—?y 2 + 471—z4+3:c2 +13y% +332% - 9,

After this success one hopes that the MACAULAY computation for general pa-
rameter values is feasible. McAree and [ have tried in vain. So the computation
seems impossible. In fact it is not. Good old resultants perform the miracle! I
shall sketch the method leaving out details.

We start with f' as in (11) and define

W=8fernfo+ (i =ah' + fl, gg=yh' + fl, g3 = zb' + fe
We must eliminate now ¢,7,¢ from the equations
f'=0,91=0,92=0,93=0.
Let us start eliminating (. For this we use resultants with respect to (:
ki = resultante(f', ), ky = resultante(f', g2), k3 = resultant(f, g3)
and the equations
ki =0, k;=0,k3=0 (14)

must be fulfilled. These are polynomial equations in z.y,2.6,n with a,b as
parameters. It turns out that k; and k; are squares of polynomials, k; =
p} kg = p3, say. Moreover, k3 is product of a factor depending only on a,b
and a polynomial p3. So the system of equations (14) can be replaced by p; =
0,p2 = 0,p3 = 0. In the next step we eliminate 7 from these equations by
defining

q = resultant,(p\,p2). » = resultant,(p;, p3).
¢ and r are polynomials in z,y,z,£ and the parameters a,b. Writing down all
these definitions is easy enough. But can the computer algebra system really
perform all the computations?” The answer is yes, but the sheer size of the
expressions is enormous. MAPLE produces q as a product of a polynomial in

a,b alone and another factor § with 4641 terms. Similarly, r is product of
a polynomial in a,b alone and a factor # with 4393 terms. In spite of their
excessive size ¢ and 7 can be [actored in a reasonable amount of time. The
simplest non-trival factor of ¢ is

§ = b265z' - 2abgdz2y? +a2gdyt
—(4ab€? + 26267 + 4)z° + (4a%€? + 2ab€%)zy?
—(a%b€® + a?p2¢% & a%¢ - b%6)zt + (a®b€3 +ated)y?.
The simplest non-trivial factor of 7 is
o= (a%€d+ 2ab€° + b2zt + (2a%€% + 206€%)2% 2% + a?edzt
—(2b%€% - 2a%€% + 4)z° - (2ab€® — 2a%¢%)z2?
~(a®b€° + a?h?¢® - b2 ~ 2abé)z? — a¥be® 22,
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The final step is the elimination of £ from § = 0, 7 = 0. Define
R = resultant¢(q, 7).
Then s contains 2 non-trivial factors A, Ry where

Ry = dz% +4y® + 428 + 12247 + 122%2% + 1222y + 122224 + 12y
+12y%2* + 242%y%:% + (—a® + 8ab + 8b?)z* + (8a? + Bab — bz)y
—(a¥ + 10ab + b%)z* - (20a* + 38ab + 206%)z%y?
—(20a% + 2ab + 26%)y? 2% ~ (2a® + 2ab + 206%)z? ;2
+(~2a%b + 2a%b? + 8ab® + 4b*)z® + (4a* + 8a%b + 2a%b? - 2abd)y?
+(2a%b + 8a%b? + 2a6%)2% ~ (a*h? + 2a%H° + a?bY).

Ry will not be shown, because we can verify that R, is indeed the equation of
the dual surface. (Check that R)/4 specializes to (13) when a = 2,6 = =3).
Because of the reciprocity it suffices to prove that if (£,7,() is a point of §',
then its image (~f (/R =[y/h' = f/h") on the dual surface S of $' satisfies
Rl( fg/h' ~falH, —fs/h) = 0. In other words, f'(£,7,() = 0 should imply

Ri(=fe/h' = fy/R, h'). In order to see that this true one computes the
nnmcmlor of Iy( fz/h’, [u/h = [L/h") (a polynomial with 3275 terms) which
turns out to be divisible by f'.

[ got the expression 1) at about the time that M. McAree answered my
question on the origin of the problent. [t turned out to be a problem in kinematic
geometry of mechanisms which | shall explain succinctly below, and he had
candidate for S. Here I only state his conjecture: § is the 'sextic point surface’

defined by SPS = 4P3 + 27Q? = 0 where

P
Q

2t 4+ y? + 22 + {hohy + hghy + hahy ),
haz? + hyy? + hyz® + hyhgh,

1

and
hg ~hy =a, hy —hg =bhg—hg =c.
Indeed the reader will have no difficulty in checking that SPS + R; = 0, that
is to say under the implicit assumption h,, + Ay +~ hy = 0.
A final remark on the computation. The argument used to identify Ry = 0
as the equation of the dual of the surface $' can be applied directly to verify
McAree's conjecture, a computation of the dual is not needed!

The ‘mechanisms’ in the title of this section are, loosely speaking, objects
composed of rigid bodies connected by joints of several types. For obvious
practical reasons this was already an important discipline in the last century.
Modern robotics has renewed the interest.

The instantaneous movement of a rigid body can he described by an angular
velocity w around an instantaneous rotation axis and a translational velocity 7
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parallel to the rotational axis (with respect to a ‘fixed' object). For more than a
century such instantaneous movements have been studied by means of ‘screws’.
A screw is given by a straight line in three-space, the screw axis, and a 'pitch’,
a real number. In the case considered here the screw axis is the instantaneous
rotational axis and the pitch is the number A such that hw = 7. Note that the
screw does not describe the instantaneous movement of a body completely (7 or
w must be known too). However, the description in terms of screws turns out to
he very useful. Now think of a robot arm consisting of three rigid pieces a, 3,7,
a being connected by a screw S, to the (fixed) wall {i.e. S, is the screw defined
by the instantanecus movement of o with respect to the wall), 3 by a screw Sy
1o a, ¥ by a screw S, to 3. We want to know the instantaneous movement of v
with respect to the wall which is again given by a screw S (and a angular velocity
or translational velocity). Knowing S, we know the instantaneous movement of
vifeg. 7., 73, 7y are known. S itself is completely determined by S,, Sy, S+ and
e.g. the ratio w, : wy : w,. Hence for given (independent) S,, Sy, S~ the screw
S depends on two parameters. The possible S form a so-called ‘three-system’
{consisting of the screws ‘linearly dependent’ on S,,S84,S,). In the special case
of 8;,84,54 along the cartesian coordinate axis, an easy description of the
three-system is possible by means of the following equation

(ha = h)z? + (kg = h)y* + (hy = h)2? + (ha = h)(hg = h)(hy = h) = 0, (13)

where A,h,, hs, hy are the pitches of §,8,,S8s5,S,, respectively. For a proof
cf. ([8]), chapter 12, in particular formula (12.12). For fixed h equation (13)
represents a quadric and the two systems of straight lines on it are the axes of the
screws of the three-system having pitch h. For a given point (z,y, z) three values
of h satisfy (15). So there are three screws passing through (z,y, z). For the
three values of h there are three possibilities: (i) all three are real and different,
(i1) one is real, the two remaining being conjugate complex and different, (iii)
at least two are equal. The latter one is the ‘critical’ case, the transition from
(i) to (ii). (iii) holds when the discriminant of (15) with respect to A vanishes.
This discriminant is just SPS, il h, + hy + hy = 0 is assumed.

The intersection of the three-system with an arbitrary plane éz+ny+(z+1 =
0 gives (for fixed h) a conic section. An expression in coordinates z,y in that
plane can be obtained by eliminating z from (15) and éz+ny +(z+ 1 = 0.
This conic section degenerates in two straight lines (screw axis) when

(h = hg)(h = hy)€® + (h = hy)(h = ha)n? + (h = ha)(h = hg)(? +1=0. (16)

Hence in a given plane one finds two screws of the three-systern. More precisely.
for the screw axes one has the following possibilities: (i) both real and different,
(ii) both conjugate complex and different, (iii) coincidence. The latter case is

again the critical one. It holds if and only if the discriminant of (16) vanishes.
This discriminant is

QES = ((hg+hy)€® +(hy + o)’ + (ha + ho)¢?)?
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=4(&* +1° + () hohal® + hahan® + hahp¢® +1).

This is exactly the f' (cf. (11)) we started with, and McAree's conjecture was
that QES = 0 is dual to SPS = 0. The interested reader is referred to (8], in
particular Chapter 12 and Examples 12B, 4 and 6.
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