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Abstract

For an algebraic curve C with genus 0 the vector space £{D) where D is a divisor of degree 2
gives rise to a bijective morphism g from C to a conic C; in the projective plane. We present an
algorithm that uses an integral basis for computing £{D) for a suitably chosen D. The advantage
of an integral basis is that it contains all the necessary information about the singularities, so
once the integral basis is known the £(D) algorithm does not need work with the singularities
anymore. If the degree of C is odd, or more generally, if any odd degree rational divisor on
C is known then we show how to construct a rational point on C;. In such cases a rational
parametrization, which means defined without algebraic extensions, of C, can be obtained. In
the remaining cases a parametrization of C, defined over a quadratic algebraic extension can be
computed. A parametrization of C is obtained by composing the parametrization of C, with
the inverse of the morphism g.

1 Introduction and Outline

There exist several algorithms for computing parametrizations of algebraic curves C with genus
g(C) = 0. To parametrize a curve means to compute a birational equivalence of the curve with a
projective line P!. This means computing an isomorphism between the function field of the curve
C and the function field of the projective line. The algorithms in {11, 12, 13] and [7] produce
parametrizations using an algebraic extension of the constants of degree at most 2.

In [9] an algorithm is given that, given a point on the curve, computes a parametrization. When
a rational’ point is given the algorithm performs well. But if no point is given this algorithm will
choose a point, which can introduce a large (at most the degree of the curve) algebraic extension.
Then the algorithm produces a parametrization over this algebraic extension. The use of a possibly
large algebraic extension is a disadvantage of this approach. Basically the method consists of
computing a divisor D on the curve, consisting of only 1 point, and then computing £(D) using
integral basis computation. The problem with the method is that the divisor D need not be rational,
and the algebraic extension used to denote this divisor appears in the output as well.

'in this paper “rational” means: defined over the same constants field L over which the curve itself is defined.
More precisely: invariant under the action the Galois group Gal(Z/L).



The approach in this paper is to compute a vector space £(D) where now D is a rational divisor
(note: this does not mean that the places in D are rational, only that D itself is invariant under the
Galois group). We can take D equal to —1 times a canonical divisor. It follows from the Riemann-
Roch theorem that the degree of D is —1-(2¢(C)—2) = 2 and the dimension of £(D) is 3. We give
an algorithm that computes a basis g1, g2, g3 of £L(D) by using integral basis computation. Then
the map (g1, g2, g3) from the curve C to the projective plane P? is a bijective morphism from C to
a conic C, in P2. We can compute the inverse morphism, so a morphism from C; to C. Now a
parametrization of C is found by computing a parametrization of C,, and composing it with the
morphism from the C; to C.

The problem that remains is to compute a parametrization of the conic C,, preferably a rational
parametrization. Note that we can always find a point over an algebraic extension of degree < 2
by intersecting C, with a line. So we can always compute a parametrization using an algebraic
extension of degree < 2. It is known that if the degree of C is odd then C has a rational point.
So in such cases it must be possible to construct a rational point on the conic C;. We use to
following approach to find such a point. Construct (if possible) a rational divisor of odd degree on
C. This can be done if we can find a place on C that is defined over an algebraic extension of odd
degree. For example if the degree of the curve is odd such a place can be found by intersecting the
curve with a line. Or if one of the Puiseux series that were used in the integral basis algorithm
is algebraic of odd degree. Then construct a rational divisor on C, from this. After adding to
this divisor a suitable multiple of the divisor consisting of the two points at infinity we obtain a
divisor D, on C; of degree 1. Then the quotient G1/G2, where G, G is a basis of £(Dz), has one
unique pole on C,. This will be a rational point P on the curve C,. We can use it to compute
a rational parametrization of C;. By composing this with the morphism from C; to C a rational
parametrization of C is obtained. Or, instead of computing the inverse of the morphism (g1, g2, g3)
we can use the point P to construct a rational parameter (a parameter is generator of the function
field of C). This parameter is a bijective morphism from C to P1. A parametrization of C is then
obtained by computing the inverse morphism from P! to C.

So for any odd degree curve we can compute a rational parametrization and for even degree
curves a parametrization defined over a field extension of degree < 2. The algorithm in this paper
is implemented and is available via WWW {from
http://www-math.sci.kun.nl/math/compalg/IntBasis
and by e-mail request.

2 Preliminaries, notations and assumptions

In this paper the ground field is ). The algorithm works over other ground fields L of characteristic
0 as well, provided that one has the basic computer algebra tools for L like algorithms for solving
linear equations and factoring polynomials over L.

In this section we list our notations and a number of facts about algebraic curves. For proofs
and more facts see Chapter IV in [6].

e Fis a homogeneous polynomial of degree n in @[z, v, z] which is irreducible over §. Then F
defines an irreducible algebraic curve C(P?) in the projective plane P? = P?(Q). @ denotes
the algebraic closure of €.



e Q(C) is the function field of this curve. Denote f = F,—1, i.e. fis F with z = 1 substituted.
The function field Q(C) can be identified with Q(z)[y]/(f).

e A place P on the curve is a discrete valuation ring P C Q(C) such that Q(C) is the fraction
field of P and P is integrally closed in Q(C). A place P corresponds to a valuation

vp : Q(C) — Z| J{0}.

The algebraic curve C is the set of all places P. Every place P of C contains a local ring of
precisely one point on the curve C(P?). This defines a map

C — C(P?) c P2 (1)

The local ring of a point P is a place if and only if P is a regular point. So we can identify a
regular point with a place.

e A non-constant morphism from a curve C;j to a curve C; is a pair (m,g) such that g :
©Q(C2) — Q(C4) is a homomorphism (hence an embedding) and m : C; — C; is a map such
that for any place P € C; we have m(P) = {h € Q(C,)|g(h) € P}, i.e. m(P) = g~'(P).

e Tor elements g € Q[z, y] write deg(g) is the degree of g in z and v, i.e. the maximal 7 + j for
which the monomial z'y’ has a non-zero coefficient in g. Write deg,(g) as the degree of ¢
considered as a polynomial in y.

By abuse of notation we will consider the symbols ¢ and y as variables but also as elements
of the function field Q(C) = Q(z)[y]/(f). An element h € Q(z)[y]/(f) can be represented in -
a unique way as a polynomial in y of degree < deg,(f) with coefficients in Q(z). It can also
be represented as hy/hy where h; € Q[z,y] with deg,(hy) < deg,(f) and h; € Qlz).

o We assume that deg,(f) = deg(f) = n. This is equivalent with the assumption that (0,1,0)
is not a point on the curve. It is also equivalent with y in Q(C) is integral over Q[z]. “Integral
over a ring R” means “root of a monic polynomial over R”. Then the map

(2,9,2) € C(P?) — (z,2) € P? (2)

is defined. Combined with (1) this gives a morphism from C to P!. This morphism corre-
sponds to the embedding of the function field Q(z) of P! in the function field Q(C) of C.
Denote ep for a place P on C as the ramification index of this morphism.

A second assumption is that F,—o =1 € Q[y] is square-free. This means that the points at
infinity (the points on the line z = 0) are regular and are not ramified (i.e. have ramification
index 1). The two assumptions can be satisfied by applying a linear transformation on z,v, z
in F.

e §(C) can also be identified with the field Q(z)[y]/(F, =1). We can write elements of Q(C) as
rational functions in z and y, but also as rational functions in z and y. A conversion from
a function in z-y syntax to z-y syntax is done by first making the function homogeneous
(multiply all terms in the numerator and denominator by a suitable power of z such that the
numerator and denominator become homogeneous polynomials of the same degree) and then
substituting = 1. The function z'y’ is, written in z-y syntax, equal to yj/zi‘*j.

In both syntaxes we always write elements of the function field as polynomials in y of degree
< n, with rational functions in z or z as coeflicients.



e A place is called finite if vp(z) > 0 (in other words: z € P) and infinite if vp(z) < 0 (then
vp(z) = —1 because of the assumption that there are no ramification points at infinity).
Denote A C C as the set of finite places. This corresponds to the part of the curve on the
affine plane A? = {(z,y,1)|z,y € @} C P2 Denote B C C as the set of infinite places. This
corresponds to the part of the curve on the line z = 0. Denote

Oa= ()P and Og= (] P.
PeA PeB

O4 is the set of functions with no poles on the affine part of the curve and Op is the set of
functions with no poles at infinity. So O4()Op is the set of functions with no poles on the
curve, hence equal to @.

O 4 is the integral closure of §[z] (this is the set of functions in the function field of P! with
no poles except at infinity) in the function field.

Op is the integral closure of @[z](z) (this is the set of functions in the function field of P?
that have no pole at z = 0) in the function field.

o A divisor D is a formal Z-linear combination of places

D=)> np-P
PeC

where np € Z is zero in all but a finite number of places P € C. The set £(D) is defined as
L(D) ={g € Q(C)lvp(g)+np >0 forall Pe C}.

This is a € vector space (note that 0 € £(D) because vp(0) = 00). The degree of the divisor

D is defined as
deg(D) = Z np.
PeC

Assume that the genus g(C) of the curve is 0. If deg(D) > 0 then
dim(L(D)) = deg(D) + 1

according to the Riemann-Roch theorem. Suppose g; and g, are non-zero elements of L(D)
and h = g1/g2 is not a constant. Then the number of poles (which is also the number of
roots) N, counting with multiplicity, of h is < deg(D). Then @(h) C Q(C) is a field extension
of degree N. Yor generic elements g;, g2 this number N equals deg(D).

If the divisor D has degree 2 and g1, g2, g3 is a basis of £L(D) then the 6 monomials 9ig;, 1 <
t < j < 3 span the vector space £(2D) of dimension 5 (proof: choose a place P. For divisors
of the form 2P it is easy to see that the statement holds. Then it also holds for D by writing
D as 2P plus the divisor of an element of the function field). So these monomials are linearly
dependent and hence g1, g2, g3 satisfy a homogeneous polynomial relation F3(91,92,93) = 0
of degree 2. Let C; be the curve defined by F,. Then the map

(91,92,93) : C — Cy(P?) C P? (3)



defines a morphism from C to C;. The function field of the image of this morphism is
Q(91/93,92/93)- The morphism corresponds to the embedding of this field in the function
field @(C) of C. It is bijective because

@(j—;,g—z = Q(C). (4)

To see that this equation holds note that g1/g3,92/¢3,1 is a basis of L(P; + P;) for some
places P, and P, on C. Choose a non-constant element h € L(P;). A function i with only 1
pole generates the function field, so Q(C) = @(k). Now L(P;) C L(P; + P;) so h is a Q-linear
combination of ¢1/g3,92/93, 1 hence Q(R) C Q(g1/93,92/93). See also Chapter IV, Example
3.2.2 in [6)].

e Let K be the divisor of the differential dz, K is called a canonical divisor.”[;Hrom the
assumption that there are no ramification points at infinity it follows that
E=(> (ep-1)P)- (25 P).

PcA PeB

Denote D = —K. The degree of a canonical divisor is 2¢(C) — 2 = -2, so
deg(D) = 2.

Denote “the divisor of the line at infinity”

Deo= > P

PeB

The elements of £(2D,) have pole order < 2 on B, in other words: they are elements of
;1703. Furthermore they have no poles on A, which means that they are elements of O as
well. Since D < 2D, we have

£(D) € £(2Doo) = 04 ;1503.

3 Rational parametrization by a conic

The topic in this section is computing, for a given curve C, a birational equivalence with a conic
C,. The steps in the following algorithm are explained in sections 3.1, 3.2 and 3.3.

Algorithm Rational Parametrization by a conic

Input: f € Q[z,y] and two variables s and t.

Output: (if f is irreducible in @[z, y] and has genus 0): A polynomial f, € Q[s,t] of degree < 2
and two elements X (s,t) and Y (s,t) of Q(s)(t]/(f2) giving a bijective morphism from the curve C,
defined by f; to the curve C defined by f. In a number of cases a rational point P on C, will be
given in the output as well.

1. n:= deg(f)



10.
11.
12. ¢
13.

14.
15.
16.
17.

18.
19.

20.

. if n # deg,(f) then apply recursion on fr=z4y (f with 2 + y substituted for z) end if
. F := the homogeneous element of @[z, y, z] of degree n for which f = F,_,.

. if F =g ;=1 is not square-free then apply recursion on (F=;4z).=1 end if

=z

. Compute an integral basis bo,...,bn-1 of the form b; = b;;/b; 2 with b; 2 € Q[z] monic and

where b;; € Q[z,y] is monic in y with deg,(b;) = <.

. if (n—1)(n—-2)/2 -3, deg(bi2) # 0 then exit “the genus is not 0” end if
cdi=buo12

. Compute a basis 1, Ro/d, ..., Rn-1/d of L(Ds)

. v:=(1,Ro/d,...,Rn-1/d,zRo/d,...,zR,_1/d) is a basis for £L{2D)

a:= £ € Qa)[y)/(f)

v := a basis for those elements g in the vector space spanned by v for which ga € O4
i:=n

while the number of elements in the basis v is > 3 do

(@) t:i=1-1
(b) a;:%

(c) v := a basis for those elements g in the vector space spanned by v for which ga € Oy4
end do
g; := d times the ’th element of v for 1 = 1,2,3
Fo(s,t,u) := }:ajksjtklﬂ‘j‘k, 0<7<2,0<Lk<2-jwherethe ajk, s,t and u are variables
1:=0
while the number of variables ajx in F3 is more than 1 do

(a) 7 := the remainder of a division of (F2(91,92,93))z=i bY fr=i

(b) Solve the system {coefficient(r,y,7)=0]7 = 0,...,n— 1} and substitute the solution in
P

(¢)i:=1+1
end do

Substitute the value 1 for the one remaining variable a;i in F3

if deg (F;) =1 or deg,(F2) = 1 then apply a permutation on s,t,u to obtain deg,(F3) = 1
and apply the same permutation on g¢q, g2, 93. end if

f2 = (FZ)u=1



21.

22.

23.
24.
25.
26.
27.
28.

29.

gow g1/93 — s and g2/g3 — t gives an isomorphism from Q(z)[y]/(f) = Q(g1/93,92/93) to
Q(s)[t]/(f2)- Denote this isomorphism by ¥.

if deg,(f2) = 1 then s generates Q(s)[t]/(f2) so ¢1/93 generates Q(z)[y]/(f). Compute
rational functions X (s),Y(s) € Q(s) such that ¢ = X(g1/93) and y = Y(g1/93) and go to
step 30. end if

Py(X) := the characteristic polynomial of ¥(z) over the field extension Q(s) C Q(s)[t]/(f2)-
P;(X) := the characteristic polynomial of ¥(z) over the field extension ©(t) C Q(t)[s]/(f2)-
P := Py(X) - P(X) '

X (s,t) := solve X in Q(s)[t]/(f2) from the equation P =0

Repeat steps 23 to 26 with y instead of z and Y instead of X

Check the result heuristically as follows: take a point sg, 2o on the curve Cy, i.e. f2(so,%0) = 0,
and check if f(X(so0,%0),Y(S0,%0)) = 0. Use modular arithmetic to speed up this check.

Try to find a rational point P on C,

(a) if f, has a rational point at infinity then finding P is easy, go to step 30 end if

(b) if n is odd or during the Puiseux series computation that was done to compute the
integral basis a Puiseux series was found that corresponds to a place that is algebraic
over ) of odd degree then

i. Py := a place on C which is algebraic of odd degree m over €
ii. P, := the point (g1(P1), g2(P1), g3(P1)) € P?
ii. if m = 1 then P := P;, go to step 30 end if
iv. G = Eaijsitj, 0<7<1,0<L1<(m+1)/2 - 7 where a;; are variables
v. solve the system {G(Pj}) = 0|P; € the set of conjugates of P, over ©}
vi. G1,G, := a basis of solutions
vii. P := the pole of G1/G;
end if

30. exit X(s,t),Y(s,t), f2 and, if found, the point P.

If a rational point P on C; is found then we can compute a rational parametrization of C, and
combine it with (X(s,1),Y(s,t)): C2 — C to find a rational parametrization of C. If no rational
point P is found then we take a point in a quadratic algebraic extension and find a parametrization
of C, (and hence of C) over this extension.

3.1

The steps in the algorithm

Step 1 to 4. Note that the characteristic of the ground field should be 0, otherwise the recursion
need not terminate. After step 4 the there are no singularities nor ramification points at infinity
and (0,1,0) is not a point on the curve.



Step 5, 6 and 7. We can compute elements b; € @(z)[y]/(f) (a so-called integral basis, cf. -
[14, 3, 8]) such that _ _
Oa = Qlzlbo+ ... + Qlz}on—1.

Any integral basis can easily be transformed into a basis in the form that is specified in step 5.
The algorithm in [8] produces an integral basis that is already in this form. Furthermore the
denominator of the last basis element b,_; is the least common multiple of all denominators in the
integral basis. So

Oa € 3023/ (5)

Our integral basis algorithm uses Puiseux expansions, cf. [2]. The Hurwitz theorem gives a
formula for the genus of C in terms of the ramification indices ep. This formula can be translated -
into a formula that is expressed in terms of Puiseux expansions, cf. section 3.1 in [10]. So, as a
byproduct of our the integral basis algorithm, the value of g(C) is obtained.

The genus can also be computed from the integral basis itself, as follows. One has

g (2mUE-2)

op.
5 P

PeC(P?)
Here the number §p for a point P is defined as the codimension of the local ring at P in the
intersection of the places at P, cf. page 298 in [6]. The points P at infinity are regular points,
which implies 6p = 0. The sum of the §p for the finite points P € A? on the curve equals the
codimension of @[z, y] (which is the intersection of the local rings for all finite points) in O 4 (which
is the intersection of the finite places). The integral basis explicitly gives O o and so this codimension
can be computed from the integral basis. Our integral basis algorithm produces a basis for which
the numerators are monic polynomials in y with degrees 0,1,...,7 — 1 and the denominators are
polynomials in z. Then this codimension is the sum of the degrees of the denominators in this
integral basis. The genus is (n — 1)(n — 2)/2 minus this sum.

Step 8 to 14. See section 3.2 for step 8 and 9, and section 3.3 for step 10 to 13. As was explained
in section 2, equation (3), the map (g1, 92,93) defines a bijective morphism to a conic in P2. In
step 14 we multiply by d to eliminate the denominators, cf. equation (5). So ¢1, 92,93 € @[z, y].

Step 15 to 20. About the notation: In step 17b the expression “coefficient(r,y,j)” stands
for the coefficient of ¥’ in 7 where 7 is viewed as a polynomial in y. Solving the system of linear
equations means to express as many as possible variables a;r as linear expressions in the other
variables ajx. So when substituting the solution into F> 2 maximal number of variables a;x is
eliminated from F5.

The monomials g;gj, 1 < ¢ < j < 3 span a vector space of dimension 5 and the number of
monomials is 6. So, up to a constant factor, there is precisely 1 linear relation between these
monomials. Hence F is unique up to a constant factor. The condition on Fj is that F2(g¢1,92,93)
is 0 in Q(z)[y)/(f)- So the necessary and sufficient condition on the variables ajx is that the
remainder of F,(g1,92,93) after a division by f is 0. Instead of computing this remainder, we
compute a smaller expression namely this remainder with a value substituted for z. This speeds
up the computation but it does not need to give sufficient linear conditions on the variables a;x. So
we need to substitute different values for z until F; is determined up to a constant factor, i.e. until
only 1 variable a;; remains. Then we can substitute an arbitrary non-zero value for this variable.
Now we substitute v = 1 in F3 and find the function field Q(g1/93,92/93) ~ Q(s)[t]/(f2) of the
curve Cs,.



Step 21 to 27. g,/g3s and g2/g3 generate the function field, cf. equation (4) in section 2, and
satisfy the equation f;. So V¥ is an isomorphism. At this point we only know the images of the
generators g; /g3 and g;/g3 under ¥ but not the images of z and y. These images are computed as
follows. We may assume that s does not generate the function field Q(s)[t]/(f2), because if it does
then deg;(f2) = 1 and we can apply step 22, see below. Furthermore we may assume that ¢ does
not generate Q(s)[t]/(f2) because this situation is reduced in step 19 to the case where s generates
the function field. So we can assume that Q(s) C Q(s)[t]/(f2) is a field extension of degree 2. The
characteristic polynomial P;(X) € ©(s)[X] of ¥(z) over this field extension is a monic polynomial
in X of degree 2 for which P,(¥(z)) = 0. Similarly P;(X) is a monic polynomial in X of degree 2
and P;(¥(z)) = 0. Then P = Py(X)— P,(X) has degree 1 in X and so X can be solved from P by
performing a division in Q(s)[t]/(f2). This way X(s,t) = ¥(z) € Q(s)[t]/(f2) is obtained.

The remaining question is how to compute Ps(X). ¥ is an isomorphism. Hence the characteri-
stic polynomial Ps(X) of ¥(z) over Q(¥(g1/93)) = Q(s) is the image under ¥ of the characteristic
polynomial of z over €(g1/93).

Computing P;(X) is the same problem as computing the characteristic polynomial of z over
6(zo) in section 4.1 in [10]. Ps(X) can be obtained by substituting X for z in

r = Resy(sg3 - g1, f)

and by making the result monic in X. To speed up the computation of this resultant r we first
substitute a generic value ¢ (preferably a small integer to keep the expressions small) for z. This
way Tz=; is obtained. Py(X) can be constructed by computing r,—; for 5 different generic , cf.-[10}:

Step 22. This is more or less the same as step 23, except this time we need to compute only 3
different r;—; (where 7 is the resultant of sg3 — ¢; and f) instead of 5. This is the same approach
as is used in [9].

Step 28. To be sure that the result is correct we should test if f(X(s,t),Y(s,t)) is 0 in
Q(s)[t)/(f2). However, this can be a lengthy computation. So instead of doing a complete check
we check the result for only 1 point on C,. This is still useful for debugging the implementation,
and by applying modular arithmetic this test will not take much time.

Step 29. If n is odd then we can choose a generic integer i, intersect the curve with the
line x = ¢ and find n regular points on the curve. Since the number of points is odd, one of
these points must be defined over an algebraic extension of odd degree over €. Take such a point
Py = (z0,90,1) € P? and compute P; = (g1(P1), g2(P1),93(P1)) on C.

Suppose n is even and we found the following Puiseux expansion during the integral basis
computation

z=a, a=a+tat and y=p5eQ((t)

where aj, a2 € @, r € N is the ramification index, ¢ is a local parameter. Suppose that a;,as is
algebraic of odd degree over @ and 3 is algebraic of odd degree (note that a Puiseux expansion
with this property need not exist) over @(a;, a2)((t)). A Puiseux expansion corresponds to a place
P; on C. We want to evaluate (¢, g2, ¢3) in this place to obtain a point P, on C,.

On a computer (¢i)z=a,y=5 € Q((1)), 1 <1 < 3 can be evaluated only up to a finite accuracy a,
i.e. these expressions are computed modulo ¢*. The algorithm must evaluate the (g;);=qa4=p with
an increasing accuracy a until at least one of the g; is non-zero modulo ¢*. Then divide the g; by a
suitable power of ¢ such that (g1, g2, ¢3)z=cy=g With t = 0 substituted is non-zero. Then the point
P, on C; is determined. Since V¥ is a rational (i.e. defined over @) bijection between C and C; the



conjugates of the point P, over ) correspond to the conjugates of the place P; over §). Hence the
number of conjugates of P, is odd, so P, is defined over an algebraic extension of  of odd degree.

The system of equations in step 29b5 can be solved over @ as follows. Suppose P, is defined over
Q(a) where a € @ is algebraic of odd degree m over . Write the equation G(P;) = 0 in the form

ega® 4+ .. .e,_10™ 1 = 0 where eo,...,en_1 are @-linear expressions the a;;. The system in step
29b5 is formed by this linear equation and all its conjugates over €. This system is equivalent with
e =€ =...= en_1 = 0. The reason is that the transition matrix (this is a Vandermonde matrix)

between these two systems of linear equations is invertible. So we have a system of equations over
@ hence we can find a rational basis Gy, G of solutions. Now G, G have pole orders < (m +1)/2
in the two points at infinity, and have m roots on C, in common, hence G1/G2 has only one pole
P on C,. Because G1/G> is rational the conjugates of P must be poles of G;/G, as well, hence
equal to P. So P is invariant under conjugation, in other words P is a rational point.

3.2 Step 8 and 9: The points at infinity

Oa =Qlalbo + .-+ Qlalbns  50lz,3]

Op is the set of functions g in Q(2)[y]/(Fr=1) that have no poles in B. It is the integral closure
of §[z](;) (this is the set of all rational functions with no pole at z = 0) in the function field

Q(2)[y]/(Fz=1). Like for Op we can compute an integral basis for Op. However, because of
our assumption that F,—¢ =1 is square-free it follows that z does not divide the discriminant of-
Fo=1. A necessary condition for having a non-trivial integral basis at z = 0 is that z? divides the
discriminant (a necessary and sufficient condition is that there are singularities on the line z = 0).
So the integral basis is trivial, which means

0B = Q2](;)3° + ... + Q2] ,yy" "

In z-y syntax this means that
7 € Op <= deg(g) < deg(h)

for elements g € Q[z,y] and h € @[z] with deg,(g) < n.
The divisor Dy, is the sum of the points

(1,e,0) € PX(Q)

for which a is a root of the polynomial Fi—o,=1 € @Q[y]. By the assumption that Fo—0,z=1 1s
square-free we have deg(Dy,) = deg(F,=0=1) = n. By the Riemann-Roch theorem and the fact
that the genus is 0 the dimension of £(Dy,) is deg(Deo) + 1 = n + 1. The set of functions with at
most a pole of order one at the infinite places is %OB $O

. 1

The inclusion map

1
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is injective. By taking the quotient of these vector spaces and the vector space Op we obtain an
injective map (note that £(Du)(Op = Q)

*mod Op” : £(Des)/@ ~ (203)/0p.

The right hand side has the following basis (as @ vector space)

yn-l

IR
z <

The left hand side has dimension n as well. Hence this map is bijective and so there must exist
elements Q; € £(Ds,) (which are determined modulo @) such that Q; is ¥*/z modulo Op. Now
1,Qo0, -.Qn-1 are linearly independent elements of £(D,) and hence this forms a basis. Then

17 QO7 "Qn—l7 zQOa sy xQn—l

is a basis for £(2- D).
Qi € Op C 3Q[z,y] so we can write
R;

Qi=7

where R; € @[z, y] with deg,(R;) < n. Now R; is determined up to constants times d hence R; is
uniquely determined if we add the condition that the coefficient of z9¢8(@)y? in R; is zero. Since
conjugates of R; € Q[z,y] over @ satisfy the same conditions and R; is uniquely determined by
these conditions it follows that R; is invariant under conjugation and hence

R; € Q[E, y]

Write R; as a polynomial in y with coefficients R;; in Q[z]
n—1 )
Ri=) Riy’.
crd

The fact that @Q; € %OB means in z-y syntax that
deg(R;) — deg(d) < 1

deg(R;;) < 1+ deg(d) — . (6)

The fact that Q; mod Op is y*/z means in z-y syntax that (assume d is monic now) the coefficient
of g1*des(d)=7 in R.. is 1if i = j and 0 otherwise. So the coefficients in € of the monomials zPy?
of R; are known for all p+ ¢ > deg(d) and for (p, q) = (deg(d),0) (this coefficient was chosen to be
0 to make @); uniquely determined).

We can compute the R; with the following “algorithm”. Because Q; € O there must exist
polynomials a;; in x such that @Q; = Zj a;;b; hence

-1
~—

n-1
Ri= )Y a;B; (
—~

11



where B; = db; € Q[z,y]. First consider the coefficient of y"~! in this expression. Note that on
the right hand side this coefficient only depends on a;,—1. Since we have a bound on deg(R;in-1)
we have a bound on deg(a;n,—1) as well. Then we can write @;,—1 as a polynomial in z with
undetermined constant coefficients. Then by taking the coefficient of y"~2 in equation (7) and
applying (6) a bound on the degree of @ n-2 can be obtained. Again write @;,—2 with undetermined
coefficients. Note that we know certain coefficients of R;, namely the coefficients of the monomials
with degree > deg(d) and the coefficient of z9°&(4)40. This implies a set S of linear conditions
on the coefficients of a;n—2 and a;n—1. Solving S decreases the number of indeterminates in
@;n-2 and a;,-1. Then we can proceed in the same way with a;,-3, compute a bound for the
degree, write it with undetermined coefficients, compute linear equations, solve, reduce the number
of indeterminates, etcetera. When finally we end with a;o the linear equations must uniquely
determine all the a;; because R; is uniquely determined by its properties and any solution of these
linear equations will give rise to a R; with the same properties.

In our implementation we use a small modification of this algorithm. Instead of computing
Rg, Ry,...,R,_1 we compute all R; at the same time by computing R where

n-1
R=>cR;

1=0
and where the ¢; are variables. Write

n—-1 d;

R = Z Z a,-jij,-.

i=0 j=0

Here the d; are not a priori known, these are computed during the algorithm. Only d,-; =
1+ deg(d) — (n — 1) is known a priori. Now we search for the coefficients

o;; € Qco+ ...+ Qcn1.

With this modification the following algorithm is obtained.

Algorithm £(D.)
Input: f € @[z, y] satisfying the conditions in section 2.
Output: A basis for £( Do)

n := deg,(f) (is assumed to be equal to deg(f))
R:=0
Let b; = B;/d,i=0,...,n — 1 be the integral basis from step 5 in section 3.
for  from n — 1 down to 0 do
dy:=1+ deg(d) — ¢
Introduce a new undetermined variable ¢;
Cr:=coefficient(R, y,1) — c;z%*
Cp:=coefficient(B;, y, 1)
di:=deg(CRr) — deg(Cg)
Introduce new variables a;g,...,a; 4.
ai::ai'oxo +...+ a,-,d,.xd"

12



S:={coeflicient(Cr — a;Cp,z,7) = 0}j > d;}
if i = 0 then S:=S5{aio = 0} end if
solve this set S in the variables a; ; where ¢/ > i and j > 0
if there is no solution then
exit with the message: “The genus is > 0, or f is reducible, or f
has singularities at infinity”
end if
R:=substitute solution of § in R — a; B;
Comment: Now the coefficient of z7y* in R is ¢; if j = d; and 0 if 7 > d,.
end do
Now R; is obtained by substituting ¢; = 1 and ¢; = 0 for j # 7 in R.
Output:

6_9_ Rn—l
Y T
Note that the equation agg = 0 that we add to S is not equivalent with the condition we posed that
the coefficient of z4¢8(4)y% in R is zero. However, this condition ago = 0 serves the same purpose,
which is to make R uniquely determined.

1

3.3 Step 10 to 13: The ramification points
For ay,...,aq € Q(C) define

Vay,nag = {9 € L(2Do)|ga; € Op for each 3.

Suppose that

vp(a;) > 1—ep (8)
for all 7 and all P € A. Assume furthermore that for each P € A with ep > 1 there is at least one
i € {1,...,d} such that

'Up(a,') =1- ep. (9)
For alist a1, ..., ag with these properties (8) and (9) we have g € V,,, . o, if and only if g € £(2D)
and vp(g) > ep —1forall P € A. So

.....

Valv“'vad = 'C(D)
where D is the divisor defined in section 2.
Lemma 1 The list a; = %, i=1,...,n—1 has properties (8) and (9).

Proof: Let P € A and let t be a local parameter at P such that = = a7 + opt” with ay,0a9 € @
and where r = ep € N is the ramification index. If g € O then g can be written as

0 .
g=>_ gt
1=0
with ¢; € @. Then

dg _ dg B dg
dz  d{ay + ast”)

1 oo

— E : g41—1

T aprttldt agrttTl ¢ gitt™
=1
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So ’Up(g‘i-) > vp(1/t™"1) = 1 — ep and we have equality if and only if g; # 0. Hence property (8)
holds.

Now let P € A with ep > 1. By the Riemann-Roch theorem it is easy to show that there exists
a g € Op with vp(g) = 1. Then ’t)p(g%) =1—ep. Since g € Op we have

n—1
g= > cib
=0

for some ¢; € Q[z]. Then gf_— = Ei(c;% %i—‘b,—) has valuation 1 — ep. Hence for at least one 7 we
have T)p(c,‘% + %—;‘—b;) < 1 — ep. The valuations of c;, %Czi and b; are > 0 hence vp(%-) <1-ep.

So property (9) follows as well.

O

In the algorithm in step 10 and 13b we take the list a; = % and a;4; = db;;‘ for 2 > 0. ;From

the lemma it follows that this list a1, az, ... has properties (8) and (9). The expression v in step 11
and 13c is a basis for V,,, in the next step V,, ,, etcetera. The reason for taking the a; in this order
is that this way often a sublist consisting of 1, sometimes 2 and very rarely more than 2 elements of
this list will be sufficient. Having a sufficiently long sublist a;, ..., a; of this list, i.e. a sublist that
has properties (8) and (9), can be detected because then the dimension of V;,, 4, is 3. So we need
not always treat the derivatives of all integral basis elements but we can stop when the number of
elements in the basis v for V. o, is 3. Then the list v is a basis for £(D).

The remaining question is how to do step 11 (and 13c which is the same). Given is an element
a € Q(z)[y]/(f) for which vp(a) > 1 — ep for all finite places P. Furthermore is given a basis v of
some vector space contained in £(2D,). The problem now is to compute the subspace of elements
g satisfying

ga€ Oy (10)

First we want to find the ramification points. Let disc be the discriminant of f, i.e. the resultant
of f and é‘%

disc = Res,(f, %) € Qlz).

bo,2,- - .,bn—1,2 € Q[z] are the denominators of our integral basis bg,...,bn—1. Let
disc
dy = ———.
(IT; bi,2)?

iFrom the following lemma it follows that d, is a polynomial and that the roots of d, are the z
coordinates of the ramification points.

Lemma 2 For a € § denote M, as the valuation of d. in Q((z — @), i.e. M, is the smallest
integer for which d,/(z — o)M= € Q[[z ~ a]]. Then

M, = Z(ep -1)
P

where the sum is taken over all places on the line r = «.
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Since ep — 1 > 0 it follows that M, > 0 for all @ € @ so d, is a polynomial. M, is the multiplicity
of the factor £ — a in d,. ;From the Hurwitz theorem it follows that sum of the ep — 1 for all finite
P is 2n — 2 because there are no ramification points at infinity and ¢ = 0. So the degree of d, is
2n — 2.

Proof: Let Py, be a point at infinity and let p be a non-constant element of £L( Py, ). So p has
only one pole with multiplicity 1, hence it is a parameter (a generator of the function field). So
Q(2)[wl/(f) = Q(p) = Q(z,p). Hence p is algebraic over Q(z) of degree n. Let g € Q(z)[Z]
be the minimum polynomial in the variable Z (then g is monic in Z) of p over Q(z). Since
p € Op it follows that g € @[z, Z]. Since z € Q(p) it follows that deg,(g) = 1 hence there are
no singularities on the curve given by g. Denote d, € @Q[z) as the discriminant of g with respect
to Z. Let 21,...,2, € Q((z — a)) be the roots of g in the algebraically closed field @((z — «)), so
g = JI(Z — z). These z; are Puiseux expansions. The discriminant dg is the product of z; — 2;
taken over all ¢ = 1,...,n and j # ¢. Using the fact that there are no singularities it follows that
the valuation (that is the smallest power of z — a with a non-zero coeflicient) of z; — z; is 0 if z
and z; correspond to different places, and the valuation is 1/ep if 2; and z; correspond to the same
place P. The sum of the valuations of the z; — z; is the valuation of the product dg of the z; — z;.
For each P there are ep(ep — 1) pairs ¢ # j of Puiseux expansions that correspond to P hence the
valuation of dg is 3_ep(ep — 1) - 1/ep = 3 _(ep — 1) where the sum is taken over all places on the
line z = a. Now the lemma follows if we can prove that dy/d, is a constant.

Suppose L is a field, a and b are algebraic over L of degree n and L(a) = L(b). Denote m, and
my as the minimum polynomials of a and b over L. We have two basis a°,...,a" ! and °,...,5""}
for the L vector space L(a) = L(b). Let M be the transformation matrix between these two basis.
Then the quotient of the discriminant of m, and the discriminant of my is (det(M))?, cf. any
introduction book on algebraic number theory. Apply this to L = @(z). Then to prove the lemma
we need to show that the determinant of the transformation matrix between the basis 4°,...,y"!
and p°...,p" ! is a constant times [[; b; .

Lemma 1 in [10] says

Qlelbo + - .-+ Qzlba1 = Op = Qlz]p° +... + Qlelp™ !

Hence the transformation matrix between p°,...,p" ! and by, .. .,b,—1 is invertible over Q[z], and
so the determinant of this matrix is a constant. The transformation matrix between bg,...,b,-1 and
y%,...,y"" 1 is on triangular form because deg,(b;) = i. Furthermore the numerators of the b; are
monic in y hence the determinant of the transformation matrix is the product of the denominators
of the ;.

O

Now we continue with step 11. vp(a) > 1 —ep > —Myep = —vp(d;) in a finite place P with
@ coordinate a. So vp(d,a) > 0 for finite places P in other words d,a € O 4. So we know a priori
that gd.a € Oa. Equation (10) is equivalent with

gd,a € d,Op (11)
in other words gd,ais zero in O p modulo d,0 5. We have a Q[z] basis

drbo') ) drbn—l
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for the @[z] module d.0p . Like our integral basis this basis is in “triangular form”, i.e. written as
polynomials in y the degrees are 0 to n — 1. This is convenient for computing in O 5 modulo d,04.
A basis for the elements g in the vector space spanned by

v = (Vg,...,0)

that satisfy equation (11) is obtained as follows. Write g = }; g;v; where the g; are variables. Then
compute the remainder of d,ga modulo d,O in the same way as in section 3.1 in [9]. Equating
the remainder to zero gives the necessary and sufficient linear conditions on the g;. Solving these
equations gives the basis for the elements g with the property (10).

If d, = d1d; with ged(di,d2) = 1 then equation (11) is equivalent with d,ga is zero modulo
d10p and zero modulo d;04. Doing two computations modulo small polynomials, one modulo
d; and one modulo dj, is usually faster than one computation modulo a larger polynomial d,.
So a factorization of d, can speed up the computation. We can take for example a square-free
factorization. Or we can take d; to be the largest factor of d, that has gcd 1 with the largest
denominator d in the integral basis. Then we can first treat the ramification points from the factor
d; as follows: Multiply ga by d;, take the numerator (which is a polynomial in z and y with deg,
smaller than n) and equate the remainder of this numerator after a division by d; to 0. This gives
the linear conditions on the variables g; coming from the ramification points on d;. Afterwards,
the ramification points on d; need not be considered anymore. So then we can replace a by dya.
This makes the denominator of @ smaller, which speeds up the computation.

4 Parametrization by a line

In some cases the algorithm in section 3 produces a parametrization by a line (in step 22), in the
remaining cases the curve is parameterized by a conic. In these remaining cases a parametrization
of C can be obtained in several ways. The approach in section 3 is to compute a point P on C,.
P is algebraic of degree 2 over ) if step 29 fails and P is rational otherwise. Then we can use
this point P to compute a parametrization of C,. Composition of this parametrization with the
morphism from C, to C gives a parametrization of C.

A different way to use the point P € C2(P?) is to construct a parameter p on C from it. Write
P € P? as (Py, P, P3). After applying a permutation on Py, P, P; and the basis g1, g2, g3 of £(D)
we may assume P3 # 0. Then (Pss — P,)/(Pst — P2) has only one pole on C; hence this is a
parameter. So p = (Psg1 — P193)/(Pag2 — Pag3) is a parameter on C. Then we can apply step 22,
with g3, g3 replaced by Psg1 — P1g3, P3g2 — P2 g3 to find a parametrization of C. So then steps 23 to
27 can be skipped. In the test examples that were done this approach is faster than the approach
in section 3 if P is a rational point (3 resultant computations instead of 5), but slower if P is not
rational.

5 Remaining problems

The algorithm in this paper uses the fact that the curve is in some generic position (deg,(f) =
deg(f) and no ramification points at infinity). This generic position can be achieved by a linear
transformation. Such a transformation looks theoretically innocent, however, in concrete examples
this can have a bad impact on the computation time. Indeed the implementation is often much
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slower on test examples which use a such a transformation than on examples which require no
transformation. Applying such a linear transformation usually increases the size of f. But what
is even worse is that useful properties that f may have could be erased in this way. An example
of a useful property is that deg,(f) is odd because then we can easily find a rational point on
C2. Another useful property would be that deg,(f) is small, i.e. smaller than deg(f), because this
means: fewer elements in the integral basis, fewer ramification points, smaller resultants etcetera.
It would be useful for these cases to modify (if possible) the method in such a way that these linear
transformations are no longer needed.

The second problem is that the coefficients in the output of our algorithm can be very large.
One step in the algorithm is to compute a conic f; from a basis for the vector space £L(D). Now
the question is: Can one find a linear transformation on f; (on the vector space £(D) this means
taking a different basis gy, g2, g3) such that the coefficients in f; get smaller? A second question is
the following: Given a point P on C,, find a different point which has “small” coefficients. These
questions appear to be quite difficult in general. An answer to these two questions would improve
the quality (i.e. reduce the size) of the output of the parametrization algorithm.

A different way to see this problem is the following: In section 3 a morphism (X(s,t),Y(s,t))
from a conic to the curve C is computed. This allows us to compute points on C. If we intersect C
with a line (this is what happens in [9]) we find a point with small coefficients in a large algebraic
extension. If we compute a point by substituting a value in (X(s,t),Y(s,t)) then we find a point
with large coefficients in a small (degree < 2) algebraic extension. So there are points with small
coefficients, and there are points in small algebraic extensions, but the problem is to find a point
having both advantages at the same time.

References

[1] D. Le Brigand, J.J. Risler, Algorithme de Brill-Noether et codes de Goppa, Bull. Soc. math.
France, 116 231-253 (1988).

(2] D. Duval, Rational Puiseuz expansions, Compos. Math. 70, No. 2, 119-154 (1989).

[3] D.J. Ford, On the Computation of the Mazimal Order in a Dedekind Domain, Ph.D. thesis,
Ohio State University, Dept. of Mathematics (1978).

[4] X.S. Gao, S.C. Chou On the parameterization of algebraic curves, J. of Appl. Alg. in Eng.
Comm. and Comp. 3, No. 1, 27-38 (1992).

[5] G. Haché, D. Le Brigand Effective Construction of Algebraic Geometry Codes Rapport de
recherche INRIA, No 2267 (1994).

[6] R. Hartshorne, Algebraic Geometry Springer-Verlag (1977).

[7] D. Hilbert, A. Hurwitz, Ueber die Diopantischen Gleichungen vom Geschlecht Null, Acta math
14, 217-224 (1890).

[8] M. van Hoeij, An algorithm for computing an integral basis in an algebraic function field, J.
Symbolic Computation, 18, 353-363 (1994).

17



[9] M. van Hoeij, Computing parametrizations of rational algebraic curves, ISSAC 94 Proceedings,
187-190 (1994).

[10] M. van Hoeij, An algorithm for computing the Weierstrass normal form, ISSAC ’95 Procee-
dings, 90-95 (1995).

[11] J.R. Sendra, F. Winkler, Determining Simple Points on Rational Algebraic’ Curves, RISC-Linz
Report Series No. 93-23 (1993).

[12] J.R. Sendra, F. Winkler, Optimal Parametrization of Algebraic Curves, RISC-Linz Report
Series No. 94-65 (1994).

[13] J.R. Sendra, F. Winkler, Symbolic parametrizations of curves, J. Symbolic Computation 12,
No. 6, 607-631 (1991).

[14] B.M. Trager, Integration of algebraic functions, Ph.D. thesis, Dept. of EECS, Massachusetts
Institute of Technology, (1984).

[15] R.J. Walker, Algebraic curves, Princeton University Press, (1950).

18



