AN INTERPRETATION FOR THE TUTTE POLYNOMIAL

VICTOR REINER

ABSTRACT. For any matroid M realizable over (, we give a combinatorial
interpretation of the Tutte polynomial Ths(x,y) which generalizes many of its
known interpretations and specializations, including

Tutte’s coloring and flow interpretations of Ths(1 — t,0), Tar (0,1 — ¢t),

Crapo and Rota’s finite field interpretation of Thr(1 — ¢%,0),

the interpretation in terms of the Whitney corank-nullity polynomial,

higher weight enumerators by Barg,

e Brylawksi and Oxley’s two-variable coloring formula.

1. INTRODUCTION

In his 1947 paper [11] Tutte defined a polynomial in two variables z,y associated
to every finite graph G which turns out to be a powerful invariant of the graph up
to isomorphism. In fact, this polynomial depends only on the matroid associate to
the graph, and Crapo [5] observed that one can just as easily define the Tutte poly-
nomial Th(x.y) for an arbitrary matroid. In subsequent years, many interesting
interpretations for specializations of T (z,y) were found; see [4].

The main result of this paper is a new interpretation for Ths(z,y) when M is a
matroid representable over (Q, that is when A is the matroid represented by the n
column vectors of some d x n matrix with Z entries. We will often abuse notion
and refer to this d x n matrix also as M. Note that since M has integer entries, it
makes sense to think of it as a matrix over any field F. For a field F, let Matr(M)
denote the matroid on the ground set E := {1,2,... ,n} defined by interpreting the
columns of M as vectors in F¢. We say that M reduces correctly over the field F if
Matg(M) = Matg(M), i.e. asubset of columns of M are linearly independent over
Q if and only if they are linearly independent over F. Note that for a fixed integer
matrix M, there is a lower bound depending upon A/ such that any field whose
characteristic is greater than this bound has the property that M reduces correctly
over F. For example, one can take this bound to be the maximum absolute value
of all square subdeterminants of M. Given a vector in ¢ € F”, its support sel is
defined to be

supp(x) := {i: z; # 0}.

For a matroid ). let r(M) denote the rank, that is the cardinality of all bases of
M, and let A/~ denote its dual or orthogonal matroid.
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Greene’s interpretation as the weight enumerator of a linear code and its recent generalization to

Jaeger’s interpretation in terms of linear code words and dual code words with disjoint support,
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Theorem 1. Let M be a integer matriz and assume that p,q are prime powers
such that M reduces correctly over F, and F,;. Letting a,b be indeterminates with
a+b=1, we have
<1+(p— a 1+ (¢ - 1)b>
Ty ,
b a
1
- {supp(x)|plsupp(y)|
- ar(M‘)br(M) Z a b
(x,y) € row(M) x ker M C F} x Fy

supp(x) Nsupp(y) = @

where here row(M) is the row-space of M considered as a subspace of I}, and ker M
is the kernel of the matriz M considered as a subspace of Fy;.

A word or two is in order about the motivation for this result. Conversations with
J. Goldman about the result in [9] had led the author to suspect that there might
be an interpretation of Ths(1 — p, 1 — q) for graphic matroids M which generalized
Tutte’s interpretations of Tas(1 — p,0) and T»/(0,1—q) in terms of proper colorings
and nowhere-zero flows, respectively. This led to Equation (2) in Section 3, which
we state here as a separate corollary in the special case of graphic matroids, for the
sake of readers interested primarily in graphs:

Corollary 2. Let G be a graph with v(G) vertices and ¢(G) connected components.
Then for any positive integers p,q, its Tutte polynomial Tg(x,y) satisfies

To (1= p.1- ) = (=p) (O (=1)*@) T (~plsorr)
(x,y)
where the sum runs over pairs (X,y) in which

e x is a vertex coloring of G with p colors,

o y is flow on the edges of G with values in any abelian group of cardinality q,
and

e each edge contains non-zero flow if and ony if it is colored improperly.

Here |supp(y)| is the number of edges containing non-zero flow in'y, or equivalently,
the number of improperly colored edges in x.

Subsequently, a literature search uncovered Jaeger’s paper containing a result [8,
Proposition 4] essentially equivalent to the p = ¢ case of Theorem 1, which then
begged the question of a generalization in common with Corollary 2. This gener-
alization is Theorem 1. What makes this result more flexible than Jaeger’s is the
“decoupling” of p and ¢, which allows them to be specialized independently. As a
consequence, we recover {(among other things) almost every known interpretation
of the Tutte polynomial in terms of colorings, flows, finite fields, and codes.

The paper is structured as follows. Section 2 deduces the proof of Theorem 1
from a Tutte polynomial identity (Theorem 3) valid for all matroids. Section 3
explains how Theorem 1 implies other interpretations of the Tutte polynomial.
Section 4 is devoted to remarks and open problems.

2. THE MAIN RESULT

In this section we prove Theorem 1. It is possible to deduce it by a deletion-
contraction argument exactly as in Jaeger’s proof of the p = ¢ case [8, Proposition
4]. However, since Theorem 1 seems at first glance to be a statement only about
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matroids representable over , we prefer to generalize it and deduce it from the
following Tutte polynomial identity valid for all matroids. For a matroid M, let
r(M) denote the rank of M and let |M| denote the cardinality of its ground set.

Theorem 3. Let a,b,u,v be indeterminates with a +b = 1. Then for any matroid
M with ground set E we have

1—-ua 1—vb
TM( b ' a

1 e .
= SR an ST (=1 MIEBEIT, (0,0) - (=1)" M DM Ty o (u, 0)
@CBCCCE

Proof. The Tutte polynomial is the unique polynomial in z,y which is an isomor-
phism invariant of matroids satisfying the following three conditions (see [4]):

(i) T(l)(il"y) = l',T(o)(l',y) =Y,
(11) T/\’h@/\/lg ("I“s y) = Tl\’h (m7 y) : Ti\’[? (1:7 U)'
(iii) If e € E is is neither a loop nor an isthmus. then

Tr(z,y) = Tar—e(z,y) + Tarse(z,y)-

Letting f(M) denote the right-hand side of the equation in the statement of the
theorem, it therefore suffices to check that it satisfies properties (i),(ii),(iii) with
z =154 y = 1= For properties (i) and (i) this follows in a completely straight-
forward fashion from the same properties for Tas(u,0), Tar(0,v). We leave the de-
tails to the reader.

To check property (iii), let € € E be neither a loop nor an isthmus, and let F(AD)

be the summation appearing in the right-hand side of the theorem, that is

(1) FMy= > (=)MBEIT (0,0 - (1) M DM Ty 0 (u, 0)
@CBCCCE

Since e is neither a loop nor an isthmus. we have
r(M)=r(M —e)=r(M/e)+1
and therefore (iii) is equivalent to the following:
F(M)=a-F(M—e)+b- f(M]e).

To check this, we start with the summation (1) defining (M) and decompose it
into three sums according to whether e € E — C,e € B,e € C — E. One can
re-write the first sum using property (iii) applied to Tar;c(u,0), and re-write the
second sum using (iii) applied to Ty, (0. v). However, we must first observe that if
e € E—C then it is not an isthmus of A//C (else it would be an isthmus in M) and
we can also assume that it is not a loop of M/C (else Thy/c(u,0) would vanish).
Similarly e is not a loop of M|g (else it would be a loop in M) and we can also
assume that it is not an isthmus of M|p (else Tas|, (0,v) would vanish). Therefore
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we get
FAD
= Z (—1)T(M|;3)b‘B|TM|B(O,v) . (_1)r((N/C)—e)al(M/C)—e|+1T(M/C)_e(u’0)
CBCCCE
ec E-C
+ Z (_1)T(M!B)bIBITM|B (0,v) - (—l)r((M/C)/e)“a|(M/C)/e|+1T(M/C)/e(u,0)
2CBCCCE
ecE-C
+ Z (—1)’((M|B/e)‘)blMi"/eHleB/e(O,1') . (—I)T(M/C)aW/CITM/C(u,0)
CBCCCE
e€ B
+ Z (—1)7‘((]\/[“3_6)‘)+1b‘B_P|+1TA4|B_e(O, U) i (—1)T(A/[/C)GIA/[/C|T/\/[/C(U,O)
@CBCCCE
ec B
+ > (=1 MBI (0,0) - (~1) M DMy 6 (u, 0)
CBCCCE
eeC~B

Using the facts that
(M/C)-e= (M —e)/C and M|p = (M —¢€)|p
when e € E — C, the first sum above is exactly a - f() — e). Using the facts that
M|p/e = (M/e)lp and M/C = (M/e)/C

when e € B. the third sum above is exactly b- f(A/e). We can rewrite the second,
fourth and fifth sums as

(ca-b+l) Y (T MIBEIT, (0,0) (1) O MT, (0, 0),
gCBCCCE
ec(C—-B

However —a — b+ 1 = 0, so we have verified Equation (1).
O

Before using the previous result to prove Theorem 1. we remark that it general-
izes the main result of [9]:

Corollary 4 ([9], Theorem 1).

Tar(u,v) = Z Tag),,(0,0)Tays4(u,0)
ACE

Proof. In Theorem 3, take the limit as a — o0, so that b -+ —oco and § — -1. O
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Proof of Theorem 1. Making the substitution u = 1 —-p,v =1—-¢in Theorem 3
gives

T, (1 +(p—1a 1+ (qg- 1)b)

b ’ a
1 .
= CLT(M‘)bT(_M) Z ("1)T(NI|B)b|BITM|B(O, 1-— q) «
@CBCCCE
(—1)r M/ IMICITy (1~ p, 0)
1 .
= SNy n Z alAiblB‘(—l)r(M'B)TMm(0, 1—q) x

A,BCE,ANB=2
(=1)rMIE=2ADTy g 4y(1 = p,0)

where the last equation comes from the substitution C = E — A.
When M is an integer matrix that reduces correctly over ¥y, the quantities

(~1)"®DTy (1= p,0) and (=1)""*MTy(0,1-9q)

have well-known combinatorial interpretations (see e.g. [3, Theorem 12.4]). The
first quantity is the number of vectors x € row(A/) C Fy havingno zero coordinates,
that is, having supp(x) = E. The second quantity is the number of vectors y €
ker(M) C F} with supp(y) = E. Furthermore, if M reduces correctly over Fp,Fy,
then for any subset B C E the matrix M|p obtained by restricting M to the
columns indexed by B reduces correctly over F,. Likewise, for any subset ACE,
one can perform row operations on M to obtain the following block triangular
form (where here we have assumed for convenience that C' is an initial segment of
columns):

IT(C) * *
0 0 *
0 0 M/C
Here I,(c) is an identity matrix of size r(C), and M/C is an integer matrix which

represents the quotient matroid Matg(M)/C and reduces correctly over F,.
We conclude that

<1+(p— la 1+ (q— 1)b>
Ty ,
b a
1 .
= gn—r(M)pri M) Z a‘lAlb{Bl(_l)T(A”B)TMW(Ov 1- (I) X
A,BCE,ANB=2
(=1)"M/E=ANTy g ay(1 = p.0)

{(x,y) € row(M/(E — 4)) x ker()M|p) }l
supp(x) = 4, supp(y) = B

il

T QMiEl

A,BCE,ANB=2
Z a B {(x,y) € row(M) x ker(M) : supp(x) = A,supp(y) = B}|
A,BCE,ANB=9
= Z alsuPP(x)|plsupp(y)|
(x,y) € row(M) x ker{M)
supp(x) O supp(y) = &
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where the only tricky equality is the third. This uses the fact that if we suppress
the zero coordinates from x,y we obtain a bijection between

{(x,y) € row(M) x ker(M) : supp(x) = 4,supp(y) = B}. O
and
{(x,y) € row(M/(E — A)) x ker(M|p) : supp(x) = A, supp(y) = B}

We conclude this section with a series of remarks about Theorem 1.

Matroids representable over other fields.

If p, g are both powers of the same prime, let F denote the common prime field
inside F,,F,., We can then replace our assumption in Theorem 1 that A is an
integer matrix which reduces correctly in F,,F,, by the assumption that M is a
matrix with entries in F.

If furthermore p = ¢, we can replace this assumption by the assumption that Af
is a matrix with entries in F, (= F;). This allows the useful interpretation (as in
the references (7, 8]) of row(M) as an F,-linear code C and ker(M) as its dual code
ct.

Graphic matroids.

Let G be a finite graph G, with some fixed but arbitrarily chosen orientation
of its edges. Then the node-edge incidence matriz M which represents the graphic
matroid corresponding to G is well-known to reduce correctly over any finite field
Fp. In this case, Tutte’s original interpretations for Tas(1 — p,0), T (0,1 — q) in
terms of proper vertex p-colorings and nowhere zero q-flows (see next section) show
that it is not important that F,,F, are fields. One only needs abelian groups of
cardinality p,q such as Z/pZ,Z/qZ. One may also omit the assumption that p,q
are prime powers, and all the results still hold for graphic matroids.

The Crapo-Rota finite field trick.

In their seminal work on matroids, Crapo and Rota proved a result [6, Theorem
1, §16.4] which interprets the specialization Thr(1 — p*,0) of the Tutte polynomial
when p is a prime power, and M is a matroid representable over F, (see Equation 4
below). It turns out that the full generality of their result can actually be deduced
from the special case with k = 1, using the fact that F,« is a k-dimensional vector
space over I, whenever p is a prime power. This is not how they proved their
result, but we will nevertheless call this process of deducing a result for p* from the
k =1 case the Crapo-Rota finite field trick. We now use this same trick to deduce
a generalization of Theorem 1 which is in some sense no stronger, but is useful for
some of the applications (see e.g. Corollary 11 below).
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Theorem 5. Let A, p,q be as in Theorem 1, and k, k' two positive integers. Then

<1+(pk—-1)a 1+(q’~"—1)b> 1
Tt - -

b ’ ar(M=)pr(M)
Z ol Uty supp(xi)| I USZ, supp(y; )l

(%15 %), (Y15 yw)) € (row(M))* x (kerM)k
Ui, supp Xl)ﬁU, L supp(y;) =
Proof. There is a field embedding F, — F,. which makes the field Fyx a k-

dimensional vector space over F,. In other words, F,x 2 (F,)* as F,-vector spaces.
If M is a matrix with entries in F,, one can check that this identifies row(M) C FJ,

with row(M)* C (F)*. Under this identification, an n-vector x in F}, is identified
with a k-tuple of vectors (xy,...,xg) in (]F'”)'" having the property that

ES

Sllpp U @upp X,

A similar discussion applies to F, < F,x and ker(M), so the result follows from
Theorem 1. O

Duality.
Note that both Theorems 1 and 3 agree with the well-known fact that

Ty (z,y) = Tar(y, x).

In Theorem 1 this follows from the fact that any matrix M* having row(M*) =
ker(M) represents the matroid dual to the matroid represented by M.
In Theorem 3 this follows from the fact that

M/A= M*|(g_a) and M|q = M*/(E — A)
forany A C E. v

3. COROLLARIES
In this section we give some of the special cases and corollaries of Theorems 1

and 5 which motivated our study.

Finite fields, colorings, and flows.

Taking the limit as a — oo (so b — —o0) in Theorem 5 gives the following result.
Corollary 6. Let M,p,q be as in Theorem 1, and k, k' two positive integers. Then
T (1-p51-¢") =
(—1)7AD E (_1)IU?’=1 supp(y;)|

(X1, %K), (Y1, - yw)) € (row(M))* x (ker M)¥
(Uf | supp(x; ) U (U] . supp(yj)) =E
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When k = k' = 1 this gives

(2) Tr (1= p,1—q) = (=1)"M Z (=1)lsurr O
(x,y) € row(M) x ker M
supp(x) l¢) supp(y) = E

Setting ¢ = 1 in Corollary 6 gives the following result

3)

Ty (1-p%,0) = (—1)nM)

k

{(xl,... ,X1) € (row(M))* : U supp(x;) = E}
i=1

{ (Vi,--.,vE) € (F)E }

for all e € E there exists i with v; & e+

(4) — (_l)r(M)pk(r(M)-d)

where here M is a d x n integer matrix which reduces correctly over F,, and e € E
denotes a column of the matrix Af. Equation (4) follows from equation (3) using
the exact sequence

(5) 0 — ker(M)T — F% ™ row(M) = 0

and the observation that |[ker(M)T| = pd—"(3M),

Equation (4) is equivalent to the earlier mentioned theorem of Crapo and Rota
(6, Theorem 1. §16.4], via the relation between the Tutte polynomial and the char-
acteristic polynomial par(A) of its associated geometric lattice (see [4, (6.20)]):

Tar (1= X,0) = (=1)"Mppr(X)

Specializing further to k£ = 1 in the equation (4) gives the well-known “finite field”
interpretation of pas(A).

Corollary 7. Let M.p be as in Theorem 1, and let A be the arrangement of hy-
perplanes in F; perpendicular to the columns of M. Then

pu(p) =p"M4 R — 4]. O

Athanasiadis {1] used this result very effectively to compute characteristic polyno-
mials for various classes of hyperplane arrangements.

We mention also that for the matroid M coming from a graph G, specializing
k = 1in equation (4) gives Tutte’s original interpretation (see [4, Proposition 6.3.1])
of par(A) in terms of the chromatic polynomial

xa(\) = AT Dpy (3).

counting the proper vertex-colorings of the graph G. This is because we can inter-
pret F? as the set of vertex p-colorings, and ker(M)T as the space of colorings which
are constant on each connected component of GG. In this interpretation, the space
row(M) is sometimes designated the space of F,-coboundaries of G or F,-voltage
drops in G. With this point of view in mind, Corollary 2 is the special case of
Equation (2) for graphic matroids.

We lastly mention the dual version to Corollary 7 which is the specialization
p=k==Fk =1 in Corollary 6:

Tar(0,1—¢q) = (—1)"_F(M) [{y € ker M : supp(y) = E}|
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This is a well-known generalization of the case when M comes from a graph G,
where Tutte [11] originally phrased this interpretation of (=) M) T (0,1 - q)
as the number of nowhere zero F,-flows on G.

Jaeger’s specializations.

In {8, Proposition 4], Jaeger essentially proves the special case of Theorem 1
in which p = q. There he adopts the coding point of view, where A{ is a matrix
with F, entries whose rows are a spanning set for an F,-linear code C = row(M).
He then also takes a limit as @ — oo to deduce a specialization [8, Proposition 6]
equivalent to the p = ¢ case of equation (2). He then further specializes to ¢ = 2
to obtain the following result of Rosenstiehl and Read {10, Theorem 9.1]:

Corollary 8. Let M represent a matroid over Fy, and let C := row(M) and C* :=
ker(M). Then we have

Tar(=1.—1) = (=1)"4D > (—1)lsurp()]
(x,y) €C xC*+
supp(x) | supp(y) = E

— (—l)n_dimCﬂCJ_|CﬂC'L|. |

The space C NC* is called the space of bicycles of M, and we explain here how
the second equality in the corollary follows from the first. First, note that the
condition supp(x) | supp(y) = E implies that x = (1,1,... ,1) —y. It is then easy
to check that the set ¥ consisting of those y which occur in the above sum forms
an a coset inside F} for the bicycle space C N C*. Since every vector in C N Ctis
perpendicular to itself. all such vectors have even support, and therefore all vectors
y € Y contribute the same sign (—=1)PP¥) to the sum. To prove the sign is
correct in the second equality, one needs to know that for any y € Y,

(_1)|SUPp(y)| - (_1)n~r(1\[)4(limCOCJ' .

This is not obvious. however it is a result of De Fraysseix (see [8, p. 253]).

Jaeger also makes the interesting specialization @ = b = 1/2 in his main result
[8, Proposition 8], in order to interpret Tas(1+ ¢, 1+ ¢) and in particular to recover
a conjecture of Las Vergnas about Ty(3,3). If we similarly set a = b = 1/2 in
Theorem 1, we obtain the following interpretation for Thr(1 + p,1 + ¢).

Corollary 9. Let A be as in Theorem 1. Then we have

Tu(l+pl+q)= Z gn—(isupp(x)|+lsupp(y)l) [
(x.y) € row(M) x ker M C Fy x Fp
supp(x) Nsupp(y) = &

We claim that this result is actually a disguised form of the well-known formula
[4, (6.13)] for Tar(zx.y) involving the Whitney corank-nullity polynomial of M:

(6) Ta(l+p,1+q) =Yy p/M/AgrMo),
: ACE
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To see this, we start with (6) and re-interpret:

Tu(l+p,1+q)
— Z pr(M/A)qr(l\ﬂ:‘)

ACE
=) [row(M/A)| - ker(M)| 4|
ACE
= Y |{x € row(M) : supp(x) C E — A)| - |{y € ker(M) : supp(y) C 4|
ACE

= > {4 € E :supp(x) C E — 4,supp(y) C A}}|
(x,y) € row(M) x ker M
supp(x) Nsupp(y) = &
— Z gn—Csupp(x)|+isupp(y)|)
(x,y) € row(M) x ker M
supp(x) Nsupp(y) = @

Weight enumerators of codes and two-variable coloring.

The specialization ¢ = 1 in Theorem 3 says the following.

Corollary 10. Let M.p,k,a,b be as in Theorem 5. Then

1+ (pk — 1)& 1 1 (U~ supp(x:)]
(7) TM <——b_7 a = W Z a i=1
(X1.enn,Xg ) E(row (M))*

If K =1 this gives

I1+(p—-1)a 1\ 1 | (x)]
(8) Tar (_b '3 ) = arar e Z q!supPP
xerow (M)

Equation (8) is essentially equivalent to two results in the literature. The first
is the result of Greene [7] that the Tutte polynomial Ty (z,y) can be specialized
to give the weight enumerator of the F,-linear code C := row(Af). In fact, Barg {2]
recently generalized this to higher weight enumerators, giving a result equivalent to
equation (7), which we now discuss.

Given a subspace W C C, define its support

supp(W) := | J supp(w) = | supp(w;)
weW i=1

where wy, ... ,wy, is any spanning subset of W". Following Barg [2], we define the
mth higher weight enumerator for the code C to be

D™(a) = Z alsupptW)l [m]dimw

subspaces W CC
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where
d—1
mla = [[ @™ - p)
1=0

= [{(v1,...,vq) € (F;,")d : {v;} are linearly independent in I }|

= H{(wy,...,wn) € (]1*";,)”’ : {w;} are a spanning subset of]Fg}[.

The last equality above comes from identifving the {v;} as the rows of a full rank
d x m matrix over [, and then letting {w;} be the columns of the same matrix.

Corollary 11 ([2]). Let C be an F,-linear code with C = row(M). Then

. m_ 1
D(a) = a" M (1 — @) DTy, (1_*‘_(1’__)" l) ,

i

l—-a a
Proof. _
D™(a) = Z s PP W) [m)
subspaces WCC
= Z alP PPy, wy,) € (FE)™ : {w;} span W}
subspaces WCC
= Z ql Uiz supp(us )|
(wi,... , Wm )EC™
. 1 m_1)a 1
:ar(M )(I_G)MTJW < +(p )a’_>
l1—a a
where the last equality is equation (7). O

The second known result which comes from equation (8) is a two-variable coloring
formaula for graphs (equivalent to [4, Proposition 6.3.26]). Let G be a graph with d
vertices, n edges, and for any vertex-coloring ¢ of G. let mono(c) be the number of
monochromatic edges, that is edges whose endpoints receive the same color.

Corollary 12. Let M be the graphic matroid associated to G. Then
Z Vmono(c) - /\d—r(;\[)(y N 1)r(M)TM (V +A-1 I/)
v—1 "~

colorings ¢ of G with A colors

Proof. Because of the coloring interpretation of the exact sequence (3) (see the
discussion following Corollary 7), we have

Z ymono(c)

colorings ¢ of G with A colors

— )\d—r(l\l) Z Un—{supp(x)l
xerow(M)C(Z /AZ)"
— /\d—r(Al)Un Z Vlsupp(x)|
xerow(AM)C(Z /A" -1
- 1+A-1)v 1
— /\d—-r(hf)yn liVT(M )(1 _ V)r(J\I)TJ” (_(___), _):l
1-v V/3ipsp-t

= AT, _pyrAD T, (V +A— 1’U>

v—1
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where the third equality above is equation (8). a

We should also mention that in a recent work, Wagner [13] considers a rescaled

version of the Tutte polynomial specialization TM(W, 13, which is very similar
to the specializations in Corollaries 9,10,11. He furthermore gives a combinatorial

interpretation for the coefficients in this rescaled polynomial.

4. QUESTIONS AND OPEN PROBLEMS

1. Theorem 1 recovers many of the interpretations of Tas(x,y) involving finite
fields, codes, colorings and flows. However, there are some evaluations which
it misses. such as Stanley’s interpretation of Ty (1 + n,0) in terms of acyclic
orientations, or the dual interpretation of Tp;(0,2) in terms of totally cyclic
orientations (see [4, Examples 6.3.29 and 6.3.32]). Is there any way to relate
Theorem 1 to these results?

Recently Wagner [12] gave an interpretation of Thy(t~!, 1+ t) for matroids
M coming from a graph G in terms of certain kinds of flows on G. Does
Theorem 1 relate to this?

2. Athanasiadis proved a result [1, Theorem 2.2] which is somewhat stronger
than Corollary 7. His result counts points in the complements of arrangements
of linear subspaces in IF;’, rather than just arrangements of hyperplanes. Is
there some generalization of the Tutte polynomial to subspace arrangements
and an accompanying generalization of Theorem 1 which specializes to his
result?

Athanasiadis also gave numerous examples of families of hyperplane ar-
rangements where one can write down T/ (1 — p,0) explicitly using the finite
field interpretation (Theorem 7) in a strong way. Can one similarly use Corol-
lary 2 to compute Tp(1 — p,1 — q) for any non-trivial families of matroids?

3. The condition that supp(z) € row(M) and supp(y) € ker(M) have disjoint
support in Theorem 1 is very reminiscent of the notion of complementary
slackness for optimal solutions of the primal and dual programs in the theory
of linear programming. Is there any deeper connection here?
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