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ABSTRACT. This paper studies higher dimensional analogues of the Tamari lattice
on triangulations of a convex n-gon, by placing a partial order on the triangulations
of a cyclic d-polytope. Our principal results are that in dimension d < 3, these
posets are lattices whose intervals have the homotopy type of a sphere or ball, and in
dimension d < 5, all triangulations of a cyclic d-polytope are connected by bistellar
operations.

I. Introduction.

Let C,, be a convex n-gon with vertices labelled {1,2,...,n} counter-clockwise.
Let T, be the set of triangulations of C, partially ordered by “swapping diagonals,”
i.e., if ¢ is a triangulation that has ¢j as an edge and the removal of i j results in
a quadrangle ¢ < k < j < [ then the triangulation ¢' obtained from ¢ by replacing
the triangles ijk,i51 with ikl, jkl covers t. This poset has been of interest to com-
binatorists, computer scientists, and geometers since it was first defined over thirty
years ago [Ta].

In a series of papers in the 60’s and 70’s Tamari et.al., proved many of the struc-
tural properties of this poset, including the fact that it is a lattice [Ta][HT]. More
recently in a series of papers Pallo [Pall]-[Pal4] has continued these investigations
computing, among other things, the Mobius function on the intervals of T,. In
his research the poset was defined in terms of the rotation distance of binary trees.
This interpretation was considered also by Sleator, Tarjan, and Thurston [STT] (al-
though they were only interested in the graph whose edges form the Hasse diagram
of T;,.) This poset has continued to appear as an object of study in its own right
[Ge] as well as an example to which one can apply new combinatorial techniques of
study [BW][Sa).

Combinatorial geometers became interested in this poset because of a a con-
jecture of Perles that the Hasse diagram of T,,, when viewed as a graph, is the
1-skeleton of a convex (n — 3)-polytope. Previously Stasheff [St] had considered
this graph as the 1-skeleton of a cell complex triangulating a (n — 4)-sphere. Per-
les’ conjecture was proven independently by Lee [Le] and Haiman [Ha]. The work
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of Gel’fand, Kapranov, and Zelevinsky [GKZ1, GKZ2] later showed that given any
polytope the graph of the coherent triangulations of that polytope, where adjacency
is defined by bistellar operations is the 1-skeleton of a polytope which they called
the secondary polytope. Note that a corollary to this fact is that the set of coherent
triangulations of a convex polytope is connected by bistellar operations. In the
case of a convex n-gon, all triangulations are coherent, and the bistellar operations
are exactly the operation of swapping diagonals mentioned above. The work of
Gel’fand et.al. was further generalized by Billera and Sturmfels in their study of
fiber polytopes [BS].

In this paper we will consider the poset T, as the 2-dimensional case in an in-
finite family of posets which are based on the triangulations of cyclic d-polytopes.
Our motivation for this study is that the cyclic polytopes are well-behaved poly-
topes with well understood combinatorial structure. Kapranov and Voevodsky have
previously considered this same family from a category-theoretic perspective [KV],
and derived a relationship between these posets and the higher Bruhat orders of
Manin and Schechtman [MS]. We will show that in the case of dimension d = 3
these partial orders are lattices and compute the homotopy-type of the intervals.
In addition we show that the graph of all triangulations of a cyclic polytope of
dimension less than or equal to 5 is bistellarly connected.

This paper is structured as follows: In section 2 we define the higher Stasheff-
Tamari posets and prove some basic lemmas. We also state a series of conjectures
that motivate our work. Section 3 is devoted to reproving most of the known
results in the case of d = 2. We do this to illustrate our techniques in anticipation
of Section 4 where we prove these conjectures for d = 3. The last section is devoted
to remarks and open problems.

II. Background, set-up and conjectures.

In this section, we set the scene by defining triangulations, bistellar operations,
cyclic polytopes, and two natural partial orders on the set of their triangulations.
For more background on these notions, see [GKZ2, Chapter 7]. We then present a
number of conjectures about these partial orders, some of which will be proven in
the sequel.

We begin by defining triangulations and bistellar operations. A will always de-
note a finite set of points in R%. A (d+1)-subset ¢ of A which is affinely independent
will be identified with the d-simplex which is its convex hull conv(s). A triangu-
lation T of A is a collection T = {o} of d-simplices whose union is all of conv(A),
whose interiors are all disjoint, and which intersect pairwise in a lower-dimensional
boundary face (possibly empty) of each. It will sometimes be convenient, in order
to refer to links of faces, to think of T as an abstract simplicial complex on vertex
set A whose faces are the subsets of the maximal faces o. If P is a polytope in R¢,
we will sometimes abuse terminology by speaking of a triangulation of P when we
mean a triangulation of the set A4 = vertices(P).

A bistellar operation on a triangulation T of 4 is described as follows. Assume
for some e < d there is an (e + 2)-subset S C A4 with the following properties:

(1) conv(S) is an e-dimensional polytope inside conv(A)
(2) T restricts to a triangulation T'|s of S, i.e., the faces of the simplicial com-
plex T which only involve vertices in S form a triangulation of S.



THE HIGHER STASHEFF-TAMARI POSETS 3

(3) All (maximal) e-simplices 7 in T'|s have the same link L in T, where the
link of a face 7 in a simplicial complex is the subcomplex defined by

Linkp(t)={a€T:anNr=0,aUr e T}.

In this case, it follows easily from (1),(2) and the fact that S has cardinality e + 2
that T'|s is of the form 7 .
Star(eil)(R):={.7-'§S:#.7—':e+1,72§.7:} R:Z+ oy 5
for some subset R C S (see [GKZ2, Proposition 1.2]). Then define the triangulation
T' by
l - — —

T =T (Star(dil)(R) L) U (Star(dil)(é’ R)+L)
where * is the simplicial join. In this case, we say T' and T" are related by a bistellar
operation on the set S. One can check that this is the same notion as the perestroika
in [GKZ1] and the stellar ezchange in [Pac]. Some examples are shown in Figure 1.

FIGURE 1. Examples of bistellar operations

We now introduce the cyclic d-polytope C(n,d) as the convex hull of the points
A= {(ti’t?, v 7t?)}i=1,2,...,n
where t; <t < -+ <1, are n values in R. Some examples of C(n,d) are shown in

Figure 2. Note that the projection map m : R4+! — R¢ which forgets the (d + 1)**
coordinate maps C(n,d + 1) onto C(n,d) (cf. [KV], Theorem 2.5).

FIGURE 2. Examples of cyclic polytopes C(n,d).

We will often abuse notation and refer to the point (¢;,t2,...,t%) by its index
2, so that the entire point set .4 may be referred to as [n] := {1,2,... ,n}. The
polytope C(n, d) and the actual coordinates of the points : depend, of course, on the
choice of t;’s. However, it is well-known that its combinatorial structure does not
depend on this choice (see {Gr], Chapter 4.7). For example, one can characterize
which subsets S C [n] span a boundary face of C(n,d}. For notation, given S C [n],
we define a component of S to be a maximal interval [a,b] C S. A proper component
is one that contains neither 1 nor n.
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Theorem 2.1 (Gale’s Evenness Criterion). An (e + 1)-subset S C [n] spans
a boundary e-face of C(n,d) if and only S contains at most d — (e + 1) proper
components of odd cardinality.

We leave it as an exercise for the reader to check that the question of whether a
collection T' = {c} of d-simplices forms a triangulation of C(n,d) is also independent
of the choice of ¢;’s. For this reason we will often say that T is a triangulation
of C(n,d), without referrmg to this choice, and denote by S(n,d) the set of all
tmangulations of C(n, d). {% '\'“Q(;

Gale’s Evenness Criterion has the following strong consequence for bistellar op-
erations on triangulations of C(n,d):

Proposition 2.2. Let T and T' be triangulations of C(n,d) which are related by
a bistellar operation on the set S = {11 <13 < -+ < iey2}, and R and L as in the

definition of a bisteiiar operation. Then e = d so that the link L 1s empty, and R a
and S — R are of the form - \ / ™
- + Gt N
{i1,93,05 ...}, {i2,%4,06...} 7 ? \
: R ‘
or vice-versa. ‘g V,MJ

Proof. Since C(n,d) is a simplicial polytope, i.e., all oi s boundary faces are

simplices (see [Gr,§4.7)), it follows that any triangulation of C(n,d) must restrict

\'s‘ to the same triangulation of the boundary complez 8C(n,d). In particular, T and T'

)(( 3 must agree on the boundary, so we cannot have either R or S—TR entirely contained

M in boundary faces. But C(n,d) is also (|d/2]-1)-neighborly, i.e., every [d/2]- subset
& of [n] forms a boundary face by the Evenness Criterion (see [Gr]) Thus

#R, #(S —R) > d/2]

\q

and

/p— HR+#S-R)=#S=e+2<d+2
-
(\i)y% = d so L = &, and without loss of generality

= |d/2] +1, #(S - R)=[d/2] +1

We can now restrict attention to the cyclic d-polytope C(d + 2,d) spanned by S,
and again we must have that neither #R nor #(S — R) is contained in a boundary
face. But one can check that this implies by the Evenness Criterion that R and
S — R have the form asserted in the Proposition. B

Figure 3 shows the prototypical bistellar operations on triangulations of C(n,d)
described in the propositionfor d < 3.

> QA

FIGURE 3. Prototypical bistellar operations on triangulations of C(n, d).
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The previous proposition suggests a natural partial order on the set S(n,d) of
triangulations of C(n,d). Namely, take the transitive closure of the relation T' <; T"
in which T and T are related by a bistellar operation on the set S = {1; < 12 <
-++t442}, and T contains the d-simplex 7122 ---244+1. To check that the transitive
closure of this relation does not create any cycles, note that the quantity given by
summing over all simplices in T the sum of the indices of its vertices is smaller than
the same quantity for 7' when d is even, and bigger for T' when d is odd.

On the other hand, the projection map 7 : C(n,d + 1) — C(n,d) suggests a
second natural partial order on S(n,d). To define it, note that if T' is a triangulation
of C(n,d), then T defines a unique section st of the projection = : R4+! - R% which
lifts ¢ = (t;,17,... ,t%) to i = (t,83,...,t4,t$%1) and is extended piecewise-linearly
over the simplices of T. Therefore given two triangulations T and 1" of C(n,d), we

define T <, T' if
sT(x)a+1 < s (T)a+1

for all points z € C(n,d), i.e. if st lifts all points of C(n,d) weakly lower than sy
with respect to the (d + 1)-coordinate.

Note that this partial order <, has an obvious top element 1 and bottom element
0. Specifically 1, 4 is the triangulation of C(n,d) consisting of all 7(6) as & runs
over the top boundary d-faces of C(n,d + 1), where “top” means “visible from a
point on the z4.1-axis with very large (d + 1)-coordinate”. Similarly ﬁn,d is defined
by replacing top with bottom. For the sequel we will need a more explicit description
of these two triangulations. For integers a < b and a positive integer k say that
A C [a,b] is of k-domino type if A can be written as the disjoint union of k pairs
{2, + 1} where a <1 < b—1. We will let D(k, [a,b]) be the set

D(k,[a,b]) = {A Ca,b] : Ais of k-domino type }.

Lemma 2.3. The triangulations 1, 4 and 0, 4 are given explicitly as

{n}*D(é,[l,n—l]) d even
in,d -
d-1
{1,n}* D (T,[2,n—1]) d odd,
d
{1}« D (5,[2,71]) d even
e = d+1
D (%,[1,71]) d odd.

Proof. As mentioned previously, the triangulation in,d consists of the top boundary
d-faces of C(n,d + 1), where “top” means “visible from a point on the z44;-axis
with very large (d+1)-coordinate”. This set of faces is equivalent to the set of faces
visible from a point n+ 1 on the (d+ 1)-dimensional moment curve, and hence 1na
is the set of facets of C(n,d + 1) which are not facets of C(n +1,d + 1). It then
follows from Theorem 2.1 that in,d has the description above.

defining
Orde
rolak 0nS o
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The triangulation 0., 4 is equivalent to the bottom facets of C(n,d 4+ 1). It is
clear that this set of facets is just the complement of 1, 4. Applying Theorem 2.1
again results in the description above. B

Corollary 2.%. The link of {n} n (A)n’d 15 the triangulation in—l,d—l- The trian-
gulation ﬁn,d restricts to the triangulation 6n—1,d

Proof. Both of these assertions follow easily from the explicit descriptions given in
Lemma 2.3. B

Proposition 2.5. <; s a weaker partial order than <, t.e.

TSlT’:>T§ng.

Proof. Tt suffices to show that if T' <; T" is a covering relation defining <; then
T <, T'. Since T and T" differ by a bistellar operation on the (d + 2)-set S, the
sections s7 and s+ will agree on all points except for those inside the cyclic d-
polytope C(d + 2,d) spanned by S. Therefore, it suffices to assume n = d + 2, and
T and T' are the two possible triangulations of C'(d + 2,d). However in this case,
it rasy to check by Lemma 2.3 that T = 0 and T" = 1 in the partial order <5, so
T<,T'.1

We are now in a position to discuss a sequence of successively weaker conjec-
tures, all implying that the set S(n,d) of triangulations of C(n,d) are connected
by bistellar operations.

Conjecture 2.6 (True for d < 3). The partial orders <; and <, coincide.

Because the partial order <; is well-known as the Tamar: lattice for d = 2,
and is equivalent to what Kapranov and Voevodsky call the higher Stasheff order
S(n,d) [KV, Definition 3.3], we have opted to call the posets <; and <, the higher
Stasheff- Tamari orders on S(n,d).

Remark.

This situation of two related partial orders is reminiscent of the higher Bruhat
orders B(n,d) introduced by Manin and Schechtman [MS] and further studied

by Kapranov and Voevodsky [KV] and Ziegler [Zi]. In particular, [MS] defines
the higher Bruhat order B(n,d) by single-step inclusion on inversion sets as the
transitive closure of a certain covering relation, analogous to the order <; on S(n,d).
Ziegler also considers a related partial order Bc(n, d) based on inclusion of inversion
sets, analogous to the order <,. It is well-known that these two orders coincide for
d = 1, and proven for d = 2 in [ER], but Ziegler shows that they do not coincide
already for d = 3 ([Zi], Theorem 4.5). Thus this situation contrasts with Conjecture
2.6.

The next two conjectures are a symmetric pair of weakenings of Conjecture 2.6.

Conjecture 2.7a (True for d < 5). Let T be a triangulation of C(n,d). If T #0
then there exists a covering relation T' <, T.

Conjecture 2.7b (True for d < 4). Let T be a triangulation of C(n,d). If T # 1
then there exists a covering relation T' >, T.

Lastly, we have
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Conjecture 2.8 (True for d < 5). Any two triangulations T and T' of C(n,d)
are connected by a sequence of bistellar operations

This last conjecture is a drastic weakening of a special case of the generalized
Baues conjecture (see [BKS]). The truth of the Baues conjecture in this case would
imply that the graph structure on S(n,d) with edges given by bistellar operations
is not just connected, but is furthermore the 1-skeleton of a simplicial complex
homotopy equivalent to an (n — d — 1)-sphere.

Proposition 2.9. Conjecture 2.6 = Congecture 2.7a or 2.7b = Conjecture 2.8.

Proof. Conjecture 2.6 = Conjecture 2.7a: Assuming T # 0, then since 0 <, T
there must be some covering relation T’ <, T. But by Conjecture 2.6, this is also a
covering relation 7' <; T. The proof that Conjecture 2.6 implies Conjecture 2.7b
is symmetric.

Conjecture 2.7a = Conjecture 2.8: Using induction, one sees that every triangu-
lation T is connected by a chain of covering relations in <; to 0. But a covering
relation in <; is always a bistellar operation, so every triangulation is connected
to 0 by bistellar operations, and hence any two triangulations are connected. The
proof that Conjecture 2.7b implies Conjecture 2.8 is symmetric. Bl

Proposition 2.10. Conjecture 2.7b for d = Conjecture 2.7a for d + 1

Proof. We sketch a proof using induction on n. Assume Conjecture 2.7b for d,
and let T be a triangulation of C(n,d + 1) with T' # 0, d+1 (here the subscripts
(n,d + 1) indicate we are referring to the bottom element of <» on S(n,d + 1).)
Consider the link L of the vertex n in the simplicial complex T, which triangulates

:Dfa(me‘liz/ ,

f

the vertez-figure (see [Gr, page 49 _of n in the polytope C(n,d}! Tt Tollows from —
g rom-

Gale’s Evenness Criterion (or see { BP) that © W isomorphic to the
cyclic polytope C(n—1,d), and henve£ triangulates C(n—1,d). From Corollary 2.4
we know that the link of the vertex n in the trlangulatlon 0., d+1 1s the triangulation
1n_1,d of C(n—1,d), and that this triangulation On,d+1 restricts to the triangulation
én—l,d—\‘-l of C’(n - 1,d + 1)

CASE 1: L = in—l,d- In this case, T and 6n,d+1 both restrict to triangulations of
C(n — 1,d), where they must disagree, since T # 0,, 411. But then by induction on
n there is a covering relation T" <; Tl[n—1] since T|[n_1] # (A)n_1,d+1, and this gives
a covering relation 7" <; T as desired.

CASE 2: L # in—l,d- In this case, by Conjecture 2.7b for d, there is a covering
relation L <y L' in S(n—1,d). One can check that this always “lifts” to a covering
relation T’ <y T in S(n,d + 1), in the sense that there is a covering relation
T' <; T whose restriction to the values [1,n —1] is the relation L <; L'. (We thank
B. Sturmfels for pointing out the subtlety that the symmetric statement to this is
not true, i.e., there are covering relations L >; L' in S(n —1,d) which do not have
a lift to a covering relation T’ »; T in S(n,d +1).) B

At this point it is useful to point out a symmetry in S(n,d) which we have
neglected so far. If we embed C(n,d) symmetrically with respect to the z;-axis by
choosing ¢t; = —t,,+1_;, then the map

i — n4+l-—3

MIS‘SIhs
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on vertices induces an involutive symmetry of the polytope C(n,d) and its set of
triangulations S(n,d). Note that this combinatori i symmetry is present regardless

of the embedding of C(n,d).

Proposition 2.11. The map o induces an order-preserving (resp. order-reversing)
map on <; and <, for d odd (resp. d even). Hence both higher Stasheff- Tamar:
orders on S(n,d) are self-dual for d even.

Proof. The assertion for <; follows immediately by checking that the map a re-
verses all the covering relations which define the order. The assertion for <, follows
by not. g that the map ¢; < —t; either inverts or preserves the (d+1)** coordinate
t2*1 of 7 depending on the parity of d, and hence does the same for the (d + 1)**-
coordinate of sp(z) for any z € C(n,d). W

Figures 4a and b depict the posets 5(6,2) and S(7,3). Figure 4a s self-explanatory.
In Figure 4b we have identified a triangulation with a list of 4-sets which are its
tetrahedra, and the covering relations in <; are labelled by the 5-set on which the
bistellar operation is based.

\//

Corollary 2.12. Assuming Conjecture 2.6 for a fired odd value d implies Conjec-
ture 2.7b is true for d + 1 and Conjectures 2.7a and 2.8 are true for d + 2.

FIGURE 4. The higher Stasheff-Tamari posets S(6,2) and S(7,3).

Proof. Assume that Conjecture 2.6 is true for an odd value d. By Proposition
2.9 this implies Conjectures 2.7a and 7b for d. Then Proposition 2.10 implies
Conjecture 2.7a for d + 1. By the symmetry «, Proposition 2.11 then implies
Conjecture 2.7b for d + 1. Applying Proposition 2.10 once more implies Conjecture
2.7a for d + 2, and then Proposition 2.9 implies Conjecture 2.8 for d + 2. B

Conjecture 2.6 for d < 1 is nearly trivial, and for d = 2 was (essentially) proven
by Huang and Tamari [HT], who gave a very useful encoding of the Tamari lattice
S(n,2). We will re-prove their result using our language in the next section. We will
also prove Conjecture 2.6 for d = 3 in Section 4 by giving a very similar encoding
for the higher Stasheff-Tamari poset S(n,3). There are a few other corollaries to
this encoding, which we state here as conjectures for all d.

Conjecture 2.13 (True for d < 3). The higher Stasheff- Tamari posets S(n,d) €

are lattices.

Conjecture 2.14 (True for d < 3). In any interval [z,y] of S(n,d), distinct
subsets of the coatoms have distinct meets.

The last conjecture was proven for d = 2 by Pallo [Pal4]. A consequence of this
conjecture is that the homotopy type of the simplicial complex of chains in any
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open interval (z,y) in S(n,d) is either contractible or spherical, and the Mdbius
function pu(z,y) is either 0,+1, or —1 [Bj, Theorem 2.1].

Before closing this section, we introduce a combinatorial way of encoding the
partial order <, on S(n,d) for general d, which leads to the simpler encodings for
d = 2 and 3. Given an i-simplex o spanned by some (i 4+ 1)-subset (which is also
denoted o) of the vertices of C(n,d), say that ¢ is submerged by the triangulation
T of C(n,d) if the restriction of the(pieceywise Jinear section sz to the simplex o
has the property that

so(2)a+1 < sr()dt1

for all points 2 € o, where s, is the unique section of the map 7 defined only
over ¢ by setting s,(i) = ¢ and then extending piecewise-linearly over the rest of
o. For a triangulation T of C(n,d) define the i-submersion set, sub;(T), to be the
set of i-simplices ¢ which are submerged by 7'. It turns out that for appropriate
values of 7, the partial order <, is characterized by inclusion of i-submersion sets.
Specifically, we have

Proposition 2.15.

Th<: T & subrgy(T1) C subray (T2)

Proof. The forward implication is trivial from the definitions of <, and submersion
in terms of the sections st,,s7, and s,.

For the reverse implication, assume subr%](Tl) C subr%1(Tz), and choose any
point z € C(n,d). We must show that st,(z)¢+1 < s1,(€)d+1-

For j = 1,2, let o; be a d-simplex of the triangulation T; which contains the
point z. Then z € o3 N o, = P, which is a convex polytope lying inside C(n,d).
Hence it is possible to express z as

T = E CyV

vEvertices(P)

with 0 < ¢, <1 for all v and Zv ¢y = 1. Since both s7, and s, are linear functions
when restricted to P = o1 N 09, it suffices to show that s, (v)at1 < s7,(v)g41 for
all vertices v of P.

Now each vertex v of P is an intersection F; N F; where Fj is some d;-face of o;
for j = 1,2, and because v is 0-dimensional, we must have d; + ds < d.
CASE 1: One of the d;’s, say di, is less than |{£]. Then F} is a boundary (4] -1)-
face of C(n,d) by the Evenness Criterion. Since the triangulations 77 and T must
agree on the simplicial boundary 8C(n,d), it follows that s7, and s, agree on the
boundary, so they will agree on the point v € Fy, which implies what we wanted.
CASE 2: Both d; are at least |£]. Then since their sum is at most d, they are both
at most [£]. In this case, we have that v € F; which is a d;-simplex of T}, so v lies
in some [£]-simplex o of T;. But any [47-simplex of Ty clearly lies in subray(T1),
and hence also in sub| a1 (T») by the original hypothesis of the proof. Therefore, we
have

87y (V)d+1 = 80(v)d41 < 87, (V)as1
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as we wanted. W

Remark.
We will not need it in what follows, but one can easily deduce from Proposition
2.15 the following: For any i > [$] we have

1 o Ty & subi(Ty) C subi(Ty).

In fact, it appears to be true that the same holds for any : > LgJ, although we have
not proven this.

III. The case d = 2.

In this section, we prove the main encoding result (Theorem 3.6) for the higher
Stasheff-Tamari poset S(n,2), showing that it is the lattice of closed sets for a
ceri. . closure relation. From this we will deduce all of the conjectures of the
previous section in the case . = 2. This encc g turns out to be equivalent to
that of Huang and Tamari [HT' for the Tama:. posets, but is phrased in different
language in their paper. For this reason, we ha - chosen to re-pr«ve their results in
this section using our language, and also beca.se exactly analogous methods will
be used in the next section for d = 3.

We will need to describe the submersion set sub(%](T) combinatorially in the
case d = 2. To do this we begin with a lemma.

Lemma 3.1. Let e = 1j and € = kl be 1-simplices inside C(n,2) with k < 1 <
l<j. Ife=ence then se(x)s < se(z)s.

Proof. By choosing coordirates for i, j,k and ! one can solve explicitly for s./(z);
and s.(z); and see that th. inequality holds. The details are left to the reader. B

Proposition 3.2. Let T be a triangulation of C(n,2) and e = ij a 1l-simplez (or
edge) inside C(n,2). Then tj s in subi(T) if and only if there does not exist an
edge e’ =kl of T withk<:<l<j M

Sketch of proof. Using a case analysis and techniques similar to those used to prove
Proposition 2.15 one can show the following: checking whether ¢j € sub;(T) is
equivalent to checking whether any edge ¢’ in T has z = e( e’ with se/(z); < se()s.
Applying Lemma 3.1 finishes the proof. B

Given this proposition, there are a number of necessary combinatorial conditions
on the set sub (T'):

Proposition 3.3. If I is a collection of 2-subsets th I = suby(T') for some
triangulation T' of C(2,n), then I satisfies the fgllowig&dit ns:

D1: I contains all the edges of the boundary n,2).
D2: Ifijisin I and i < j' < j, then i is in I.
D3: Ifik,jl are in I with1 < j < k <, then il 1s 1n I.

Proof. Assume I = subi(T) for some triangulation T' of C(n,2). Property D1
follows either from the definition of submersion, which implies that all boundary
faces of C(n,d) are submerged for any triangulation, or from Proposition 3.2 once
it is observed that the boundary edges of C(n,2) are exactly 12,23,34,... ,n—1n
and 1n.
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We now prove the contrapositive of D2. If 4,7, ' satisfy 1 < j' < j, and 25’ is
not in I = sub;(T'), then by Proposition 3.2, there must be some edge k! of T' with
k <i <1< j'. Butthen this implies ¥k <7 <[ < j, so 1j is also not in I.

To prove property D3, again work with the contrapositive. If ¢,j,k,! satisfy
t < j<k<landilisnotin I = sub;(T), then by Proposition 3.2, there must be
some ab of T with ¢ < ¢ < b < [. We either have b < k, in which case a <t < b < k
so that ¢k is not in I, or we have b > k, in which case a < 7 < b < [ so that jl is
notin/. &

We will call a collection of I of 2-subsets of [n] diagonally closed ¥ it satisfies *
conditions D1,D2, and D3: Our goal now is to show the converse of Proposition 3.3,
i.e., if I is diagonally closed then I = sub,(T') for some triangulation T of C(n,2).
Therefore beginning with a diagonally closed I we must first exhibit a candidate
triangulation T, and then check that it satisfies sub,(T") = I. We first describe our
candidate for the triangulation 7'.

Let M be the set of “maximal edges” in the following sense: M is the subset of
edges ¢ in I for which there does not exist kl in I satisfying ¢ < k < j < [. The set
M is our candidate for the edges of triangles in the triangulation T', and therefore
define T to be the set of triangles :jk for which i7,:k, jk are all in M.

Theorem 3.4. With I, M, and T as above, T is a triangulation of C(n,2), having
edge set M.

Proof. Note first that M contains every edge of the boundary 8C(n,2), since I
contains them by D1, and they are all maximal. Also note that T' cannot contain
two triangles with intersecting interiors, since in all cases this would force two edges
e,e’ in M with intersecting interiors, and then one would not be maximal.

Given these two observations, we claim that it suffices to show that for every
edge e in M, either e is contained in at least two triangles ¢,#' of T if e is not in
the boundary -9C(n,2), or e is contained in at least one triangle if e is in 8C(n, 2).
To prove this claim, we first argue that the triangles in T' must cover C(n,2).
For if they missed some point z of C(n,d), one could “walk” from z in a generic
direction toward the boundary 0C(n,2), and then the first edge e of a triangle of
T encountered along the way would contradict one of the observations in the first
paragraph. Since the triangles of T were already observed to have disjoint interiors,
they must form a triangulation of C(n,2).

So choose an edge e = 17 in M which is not in 8C(n,2), and we will show that
it lies in at least two triangles ¢,t' of T' (the argument for why e lies in at least one
triangle ¢ of T if e is in 8C(n,2) is very similar but easier, and will be omitted).

To obtain the first triangle ¢, let a be the smallest value in the open interval
(4,7) with aj in I (there exist such values since j — 1 is one of them by D1), and let
t = 1aj. We now start to reason using D2, D3 and the maximal property of edges
in M. We must have aj € M, since any edge bc with a < ¢ < 7 < b would have
t < ¢ < j < b, contradicting :j in M. Also ¢a is in I by D2 since ¢5 is in I. We
further claim that ia is in M, because if bc in I satisfies 1 < b < a < ¢ then there
are three cases for ¢ which all lead to contradictions: (1) if ¢ < j then be,aj in I
imply using D3 that bj is in I, which contradicts the choice of a, (2) if ¢ = j then
again bc = bj is in I contradicting the choice of a, or (3)if ¢ > j,theni <b< j < ¢
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contradicts :j being in M. Hence we conclude that ta,j,aj are all in M, so t = taj
is a triangle of T' containing e = 3.

To obtain the second triangle ', we consider two cases:
CASE 1. There exists b > j such that ¢b is in I. If so, let b be the largest value
with b > j such that ¢b, b are both in I. Such a value b exists, since j + 1 is an
example because the hypothesis that ¢b is in I for some b > j implies by D2 that
tj+1isin I, and jj +1isin I by D1. Let ¢ = ijb. We claim that jb must be
in M, since otherwise there is some c¢d in I with j < ¢ < b < d, which would imply
using D3 on b, cd and on jb, cd that id, 7d were both in I, contradicting the choice
of b. We further claim that 76 is in M, because if cd in [ satisfies 1 < ¢ < b < d
then there are three cases for ¢ which all lead to contradictions: (1) if ¢ > j then
we’ve already seen the contradiction, (2) if ¢ = 5 then applying D3 to c¢d = jd and
1b gives that ¢d is in I, and then ¢d, jd being in I again contradicts the choice of b,
or (3)if ¢ < 7 then ¢ < ¢ < j < d contradicts ¢j being in M. Hence in this case,
t' =1ijb has 17,7b,1b all in M, so t' is a second triangle in T' containing e = 7j.
CASE 2. Thereis no b > j with ¢bin I. If so, then let b the largest value less than ¢
such that bt,bj are both in I. Such a value b exists, since 1 is an example (using D1
and D2), unless 7 = 1 in which case 1n is in I so we must actually be in CASE 1!
Let t' = bij. We claim that b must be in M, since otherwise there is some cd in I
with b < ¢ < 7 < d, which implies either by using D2 if d > 7 or by applying D3 to
cd,ij if d < j, that ¢j is in I and hence by D2 that ci is I contradicting the choice
of b. We further claim that bj is in M, because if ¢d in [ satisfies b < c < j < d
then there are three cases for ¢ which all lead to contradictions: (1) if ¢ < 7 then
we arrive at the same contradiction with b < ¢ < ¢ < d as before, (2) if ¢ = ¢
then id being in I would contradict the assumption of Case 2, (3) if ¢ > ¢, then
t < ¢ < j < d contradicts ¢j being in M. Hence in this case, t' = bij has bz, b7,
all in M, so t' is a second triangle in T containing ¢ = 5. W

It now remains to show
Proposition 3.5. With I, M, and T as above, I = subi(T).

Proof. We first show the forward inclusion I C sub;(T"). Note that for any fixed
t, if j is the largest value such that 5 is in I, then ¢ is in M, since otherwise
there is some kl in I with ¢ < £k < j < | and then by D3 one would have il in
I, contradicting the choice of j. Therefore the closure of M under property D2
generates all of I. But since every edge in M is also an edge of the triangulation
T, it follows that M C sub;(T) (any edge of a triangulation T is always submerged
by that triangulation). Since sub;(T') is closed under property D2 by Proposition
3.3, we conclude that I C sub;(T).

To show the reverse inclusion sub; (T') C I, assume e is an edge not contained in
I, and we will show that it is not contained in sub;(T'). Since all edges of T' are in
M C I, it must be that e is not an edge of T'. Let e = ¢j with ¢ < j. Since T is a
triangulation which covers C(n,2), there must be a triangle ¢ of T' which intersects
the interior of e non-trivially and also contains one the endpoints 7 or 5. If ¢ is in
t, then ¢ must either have the form ¢ = 1kl with some: < k < j <l or t = kil with
k <1 <l <j. In the first case, il being in M C I implies by D2 that ij is in I, a
contradiction. The second case implies that ¢j is not in sub, (7). W
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The last three results together prove the main encoding theorem for d = 2:

Theorem 3.6 (cf. [HT, Proposition 2]). The map T + subi(T) is an isomor-
phism between the higher Stasheff-Tamar: order <, on S(n,2) and the lattice of

diagonal-closed families I in <[Z]> ordered by inclusion.

Proof. The only thing which remains to be proven is that the poset of diagonally
closed families [ really us a lattice. Clearly the intersection of any two diagonally
closed sets I; and I; will also be diagonally closed, so the lattice meet I); A I, is the
intersection I; N I». Since the poset has the top element 1, it follows that the join
is also defined, and hence it is a lattice. W

The last result also proves Conjecture 2.13 for d = 2. For future use, we record
here the connection of Theorem 3.6 to Huang and Tamari’s bracketing functions.
Given a triangulation T' of C(n,2), define a function fr :[2,n — 2] — [3,n] by

fr(1) = maz{j : ij is an edge of T'}
= maz{j :ij € subi(T)}

This function fr is (up to a slight translation) the bracketing function of [HT).

Proposition 3.7. The bracketing function fr satisfies these axtoms

B1: fr(i) > i for alls.
B2: Ifi < j < fr(i) then fr(5) < fr(i).

and these aztoms characterize the functions f : [2,n — 2] — [3,n]| which are brack-
eting functions fr for some triangulation. Furthermore, the map T — fr is an
isomorphism from the higher Stasheff- Tamari order S(n,2) to the set of bracketing
functions ordered pointwise.

Proof. Property D2 for submersion sets shows that sub;(T') is completely charac-
terized by knowing the values of the bracketing function fr, and furthermore that
inclusion of submersion sets corresponds to the pointwise partial order on bracket-
ing functions. Axiom D3 then translates into axiom B2 for bracketing functions.

|
The next Theorem proves Conjecture 2.6 for d = 2.

Theorem 3.8 (cf. [HT, Corollaries 2 and 3]). The higher Stasheff- Tamari orders
<y and <5 coincide for d = 2.

Proof. We already know that 7' <; T' implies T' < T' from Proposition 2.5. So
assume that T <, T" and we will show T <; T".

By induction on the length of the longest chain between T and T", it suffices to
show there exists T with T <z T <y T', where <; denotes a covering relation in
the order <;. To construct T, note tha.t by Proposition 3.7 we have fr < fr, so
there must be some largest value ¢ for which fr(i) < fr (7). Let k = fr/(3), and
note that ¢k must be an edge of T' (see the proof of Proposition 3.4). Since ik is
not an edge of sub;(T') it cannot lie on the boundary 8C(n,2), and so there must
be a triangle ¢jk of T’ with ¢ < 7 < k containing ik. Since ¢z > 1, the edge ¢k must
lie in exactly one other triangle hik of T with b < i < k. Let T' be obtained from 71"
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by a bistellar operation on the set . jk. One can check that this does not affect the
value of the bracketing function evcept at ¢, i.e. fs(m) = fr/(m) for all m except
i, and f5(7) > j. So we would be vone if we could show j > fr(7), since this would
imply fr < f7 as we want.

So assume not, i.e. 7 < fr(i). Then i < j < fr(7) implies by B2 that fr(j) <
fr(3). But then we have

fr(7) < fr(d) < fr(3) = k < fr(J)
which contradicts the choice of .. H

Lastly we prove Pallo’s result (Conjecture 2.14 for d=2).

Theorem 3.9 (cf. [Pal4, Lemma 4.1)). In any interval [z,y] of S(n,2), distinct
subsets of the coatoms have distinct meets.

Proof. Let T < T'"in S(n,2), and let T},T3,... ,T,. be the coatoms of the interval
[T, T']. Then since each Ty, is covered by 1", there is some bistellar operation by
which it differs from T’. Since the bistellar operations for d = 2 are diagonal flips
in which a quadrangle 7kl exchanges one of its diagonal edges jl for the other
diagonal ¢k, there must exist for each m an edge ¢,,7.,» which is present in the
triangulation 7" but absent in T. Notice also that 7,,7.,, will be an edge in all the
other T, with p # m since they differ from 7" by a different diagonal flip. This
implies that for each m, the edge ¢/ jm is an element of sub;(T},) for all p # m, but
not an element of suby(7,,). Since the meet operation in S(n,2) corresponds to
intersection of 1-submersion sets, this implies that distinct subsets of Ty, T5,... , T,
will have distinct meets. H

The significance of the previous result for the homotopy type and Mébius func-
tion of intervals in S(n,2) was discussed in the previous section.

IV. The case d = 3.

The development of this section will exactly parallel the previous one. We
prove the main encoding result (Theorem 4.9) for the higher Stasheff-Tamari poset
S(n,3), showing that it is the lattice of closed sets for a certain closure relation.
From this we will deduce all of the conjectures of Section 2 in the case d = 3.

As before, we begin with a simple proposition (whose proof is similar to that
of Proposition 3.2 and is left to the reader) which describes the submersion set
subra (T') combinatorially in the case d = 3:

Proposition 4.1. Let T be a triangulation of C(n,3) and t = ijk a 2-ssmplez (or
triangle) inside C(n,3). Then ijk is in subs(T) if and only if there does not exist
an edge e = ab of T which “intertwines” ijk in the sense thati <a < j<b< k.M

One may interpret the condition in the proposition geometrically as saying that
there does not exist an edge e of T which pierces the interior of the triangle ¢,
i.e. which intersects ¢ transversally in one interior point. In fact this geometric
condition is equivalent to the combinatorial one, a fact which will be of use in the
sequel.

Given this proposition, there are a number of necessary combinatorial conditions
on the set suby(T):
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Proposition 4.2. If I is a collection of 3-subsets of [n] with I = suby(T) for some
triangulation T of C(3,n), then I satisfies the follow conditions:

T1: I contains all the edges of the boundary 6C(n,3).

T2: Ifijk is in [ and 7 < k' < k, then 1jk' is in I. Similarly, if i < i' < j then
t'7k 15 in 1.

T3: Ifijk and abc are in I witha <1 < b < j <c <k, then abk and ajk are in
I

Proof. Assume I = suby(T) for some triangulation T of C(n,2). Property T1
follows either from the definition of submersion sets, which implies that all boundary
faces of C(n,d) are submerged for any triangulation, or from Proposition 4.1 once it
is observed (e.g. via the Evenness Criterion) that the boundary triangles of C(n,3)
are exactly

123,134,145,... ,1n—1n

and 12n,23n,34n,... ,n - 2n —1n.

To show property T2, we prove the contrapositive. If 7,7,k and k' satisfy 1 < 7 <
k' < k,and ijk' is not in I = sub,(T'), then by Proposition 4.1, there must be some
edge ab of T with i < a < j < b < k'. But then this impliesi < a < j < b < k, so
17k 1s also not in I. The argument for the other case is symmetric.

To prove property T3, we need the following lemma

Lemma 4.3. If ik s an edge of a triangulation T of C(n,3) and k > i + 1, then
there erists some j with ¢ < j < k such that ij and jk are also both edges of T.

Proof. Assume ik is an edge of T and k > i+ 1. Let C be the strictly smaller cyclic
polytope C(d,n') obtained by taking the convex hull of the points [1,:] U [k,n].
Starting at the midpoint of the edge ¢k, move in any direction out of C by a small
distance €. If € is chosen small enough, then one will stay inside of C(n,d), and
hence one can choose ¢ even smaller so that during the entire process one never
leaves a certain 3-simplex (tetrahedron) o of the triangulation 7. But then this
tetrahedron o must have the edge ¢k in its boundary, and it must also contain some
vertex j with ¢ < j < k or else it would be a tetrahedron contained in C. Hence, o
contains the edges ij, jk, and therefore they are edges of T, as we wanted. B

Given this lemma, to prove T3 we again work with the contrapositive. Assume
a<1<b<j<c<kand abkis not in I (the argument will be symmetric if ajk
is not in I). This implies by Proposition 4.1 that there is some edge de of T' which
intertwines abk i.e. a < d < b < e < k. If d > 1 then de intertwines 15k or abc
depending up the location of e, so either ijk or abc is not in I. If e < ¢ then de
intertwines abc so abc is not in I. If neither of these hold, so that d < i and e > ¢,
one can repeatedly apply Lemma 4.3 to produce another edge d'e’ in T which is
one of the previous cases and hence intertwines abc or i5k, so that one of these two
triangles is not in /. W

Call a collection I of 3-subsets of [n] triangle closed if it satisfies conditions
T1,T2, and T3. Our goal is then to show the converse of Proposition 4.2, i.e., if T
is triangle closed then I = suby(T) for some triangulation T' of C(n,3). Beginning
with a triangle closed set I we must first exhibit a candidate triangulation T', and



16 PAUL H. EDEL’ . VICTOR REINER

then check that it satisfies suby(T) = . We first describe our candidate for the
triangulation T'.

Let M be the set of “maximal triangles” in the following sense: M is the subset of
triangles ijk in I for which none of the three edges 15,1k, jk intertwine any trinngle
in I. The set M is our candidate for the boundary triangles of tetrahedra in the
triangulation T, and th: ‘ore define T to be the set of tetrahedra ijkl for which
ijk,1jl,1kl, 7kl are all ir

Theorem 4.4. With I, A, = 7 as above, T is a triangulation of C(n,3).

Proof. Note first that M contau. every triangle of the boundary 9C(n,3), since I
contains them by T1, and they are all maximal. Also note that T' cannot contain
two tetrahedra with intersecting interiors, since one can check that in all cases this
would force one of them to have an edge which intertwined a triangle of the other.

Given these two observations, we claim that it suffices to show that for every
triangle ¢ in M, either ¢ is contained in at least two tetrahedra o,0' of T if ¢ is
not in the boundary 8C(n,3), or ¢ is contained in at least one tetrahedron if £ is in
8C(n,3). The proof of this claim is essentially identical to the analogous statment
in the proof of Theorem 3.4.

So choose a triangle ¢t = 15k in M which is not in 8C(n,3), and we will show
that it lies in at least two tetrahedra ¢ and o’ of T' (the argument for why ¢ lies in
at least one tetrahedra o of T if ¢ is in 8C(n, 3) is very similar but easier, and will
be omitted).

The proof will follow from two lemmas regarding the location of candidates for
the fourth vertex in a tetrahedron which contains ijk:

Lemma 4.5. If there ezists a value a > k with ija in I, then there is such a value
for which the tetrahedron ijka s in T.

Lemma 4.6. “If there does not exist a value b < ¢ with bjk in I, then there is a
value ¢ with j < ¢ < k such that the tetrahedron ijck 1s in T'.

Before proving these lemmas, let us see how they imply the theorem. If there
exists a > k with ija in I, then Lemma 4.5 pre-uces the first tetrahedron o = ijka
containing ijk that we want. If there also exi: b < 4 with %7k in I, then applying
the symmetry o : ¢ « n + 1 — ¢ of Proposi. on 2.11 to Lemma 4.5 produces a
second tetrahedron o' = bijk containing :jk, and we’re done. If such a b does not
exist, then Lemma 4.6 produces a second tetrahedron ¢’ = ijck containing ¢jk, and
we're done. On the other hand, if there does not exist a > k with ija in I, then
applying the symmetry o to Lemma 4.6 produces the first tetrahedron o = icjk
containing ijk. If there also does not exist b < ¢ with bjk in I, applying Lemma 4.6
produces the second tetrahedron ¢ = ijc’'k containing ijk, and we’re done. If such
a b does exist, then applying the symmetry o to Lemma 4.5 produces the second
tetrahedron o' = bijk containing ijk, and we’re done. This completes the proof,
granting Lemmas 4.5 and 4.6.

Proof of Lemma 4.5. Assume that there exists a value a > k with ija in I. Let
a be the-largest value such that ija,ika,jka are all in I. Such values exists since
k+1is one of them: ikk+1 and jkk +1 arein I by T1, and ija being in I implies
by T2 that i5k+ 1 is in I. We proceed to show that ijka is a tetrahedron of T', i.e.
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the other three triangles ija,ika,jka are all in M, or equivalently that the other
three edges 7a, ja, ka do not intertwine any triangles of I.

We first show ta does not intertwine any triangles of I. Suppose it did, i.e.
r <1<y <a< zfor some triangle zyz of I. This implies £k < y < a or else 75 or
tk or 7k would intertwine zyz, contradicting ¢jk being in M. Now applying T2 to
zyz, we can produce z'yz and z"'yz in I with ¢ < 2’ < j and 7 < " < k. In the
generic case where k£ < y < a, applying T3 three times as follows

t'yzijac I =45z €1
z'yz,ika € I = tkz el
t'yz,jkac I = jkz eI

yields a contradiction to the choice of a. In the special case where y = k, the first
implication of the three still holds, and one can deduce the other two elements iyz
and jyz are in I from T2 and the fact that zyz is in I. This again contradicts the
choice of a.

Next we show that ka does not intertwine any triangles of I. Suppose it did, i.e.
z < k <y < a< z for some triangle zyz of I. We may use T2 to assume without
loss of generality that j < z < k. Applying T3 twice gives

zyz,tka € I = tkz eI
zyz,jka € I = jkz e I

We also can apply T2 to the fact that tka is in I to produce an i'ka in I with
i <t < j, and then apply T3 twice to give

zyz,ikac€l = i'kzel
t'kzyijac I = ijzel

But then the implications that ikz,jkz and i{jz are all in I again contradict the
choice of a.

Lastly we show that ja does not intertwine any triangles of I. Suppose it did,
ie. ¢ < j <y < a < zfor some triangle zyz of I. Using T2, we may assume
without loss of generality that : < z. This implies ¥ < y < a or else 75 or il or jk
would intertwine zyz. Also if k£ < y < a then ka also intertwines zyz, so we're in
a previous case. Thus we may assume y = k. Then T3 applied to ija and zkz in I
implies 17z and ikz are in I, and T2 applied to zkz in I implies jkz is in I. This
again contradicts the choice of a. This finishes the proof of Lemma 4.5. B

Proof of Lemma 4.6. Assume that there does not exist a value b < ¢ with bjk in
I. Let c be the smallest value with j < ¢ < k such that ick is in I. Such values
exist since k£ — 1 is one of them. Note that ick and ijk being in I imply by T2 that
jck and ijc are in I. We proceed to show that ijck is a tetrahedron of T, i.e., the
other three triangles ¢jc,ick, jck are all in M, or equivalently that the three edges
ic, jc, ck do not intertwine any triangles of I.

We first show ic does not intertwine any triangles of I. Suppose it did, i.e.
r <1<y <c< z for some triangle zyz of I. We can use T2 to assume without
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loss of generality that ¢ < z < k. There are three cases for the location of y. If
1 < y < j then 7 would also intertwine zyz, contradicting ¢7k being in M. If y = j
then either z = k and then zyz = zjk being in I contradicts the assumption of the
lemma, or ¢ < z < k and then applying T3 to zjz,ick in I gives zjk in I, which
again contradicts the assumption of the lemma. If j < y < ¢, one can use T2 to
assume without loss of generality that : < z < j, and then applying T3 three times
as follows

zyz,jck € I = xck €1

zyz,ijc €l =>wyz el

zck,iyz € I = iyk € 1.

The last implication is a contradiction to the choice of c.
Next we show that jc does not intertwine any triangles of I. Suppose it did, i.e.
r < j <y <c<zfor some triangle zyz of I. We may use T2 to assume without
loss of generality that
1< <y<y<c<z<k.

I z = k, then zyz = zyk and ijc being in I implies by T3 that iyk is in I,
contradicting the choice of c. If 2 < k, then applying T3 three times gives

zyz,ijc €l =15z €1

zyz,jckel = zyk eI

zyk,ijz €l = wyk el

and the last implication again contradicts the choice of c.

Lastly we show that ck does not intertwine any triangles of I. Suppose it did,
ie. ¢ < c <y < k < z for some triangle zyz of I. We may use T2 to assume
without loss of generality that

1<j<z<c<y<k<z<k.

Then zyz,ick being in I imply by T3 that iyz is in I. However 1yz is intertwined
by jk, contradicting the fact that ¢jk is in M. This finishes the proof of Lemma
4.6. 1

The proof of Theorem 4.4 is now complete B

It now remains to show

Theorem 4.7. With I, M and T as above, I = sub,(T"

Proof. To show the forward inclusion C, note that suby(7') is closed under T2 by
Proposition 4.2, and M is contained in sub,(T') since M is the set of triangles which
are 2-faces in the triangulation 7', and hence are all submerged by T'. Therefore it
would suffice to show that the closure of M under T2 is all of I. This is equivalent
to the following lemma:

Lemma 4.8. Ifijk in I 1s mazimal with respect to T2 in the sense that there does
not ezist i'jk' in I having [t, k| g [¢,k'], then ik is in M.

Proof. Assume1jk is not in M, and we will get a contradiction to ¢jk being maximal
with respect to T2. Since ijk is not in M, either ¢ or ¢k or jk intertwines some
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triple zyz in I. Assuming for the moment that it is 77, then using T2 we may
assume without loss of generality that either ¢ < i < y < 7 < z < k or that
T <1<y<j<j+1l=2z=k. Inthe first instance, applying T3 to zyz,ijk
in I we get zjk in I, contradicting the maximality of :jk. In the second case,
zjj+ 1= zjykis in I, which contradicts the maximality of ijk. By a symmetric
argument, it cannot be jk which intertwines some triple zyz in I. This only leaves
the possibility that ¢k intertwines some zyz in I, and then z < 7 < j < k < z
with ¢+ < y < k. There are three cases for the location of y. If # < y < j then
1j also intertwines zyz, contrary to what we have already proved, and similarly if
J <y < k then jk also intertwines zyz. In the third case, y = j and then zyz = zjz
being in [ contradicts the maximality of ijk. B

Continuing the proof of Theorem 4.7, we must show the reverse inclusion sub,(T') C
I. So assume 15k is a triangle not in I, and we will show that it is not in sub2(T).
First of all, we claim that none of the three edges ij,1k, 7k can transversally inter-
sect any triangle zyz of the triangulation T, i.e., they can neither intersect zyz in
a single interior point nor in a single point interior to an edge of zyz. To prove this
claim, note that if one the edges, say i7, intersected one of the edges of zyz, say zy,
in a single interior point, then ¢,j,z,y would all be coplanar which is impossible
since the points lie on the moment curve. And if ij,ik, or jk intersected zyz in an
interior point of the whole triangle, this would imply that it intertwined zyz, so
that ¢jk is not in M. Then the contrapositive of Lemma 4.8 shows that there is
some other triangle ¢ in I which would imply by T2 that :5k is in I.

Therefore, since ¢j,tk, jk all lie in C(n,3) and T is a triangulation of C(n,3),
it must be that all three lie inside the 2-skeleton of T, i.e. they each lie in some
triangle of T'. But an edge like 5 cannot lie inside a triangle zyz unless it is one of
edges of this triangle, since otherwise one would find at least four coplanar points
among 1, J, Z, Y, z, which is impossible. Hence each of the edges ¢j,:k, jk is actually
an edge of the triangulation T'. But the triangle ijk is not in T, otherwise it would
bein M C I, so since T triangulates C(n,3) there must be some edge ab of T' which
transversally intersects ijk in an interior point. This implies : < a < 7 < b < k
(see the comment after Proposition 4.1), so ijk is not in suby(T), as we wanted. M

Proposition 4.2, Theorem 4.4 and Theorem 4.7 together prove the main encoding
theorem for d = 3:

Theorem 4.9. The map T — suby(T) is an isomorphism between the higher
Stasheff-Tamar: order <, on S(n,3) and the lattice of triangle-closed families I

in ([z]> ordered by inclusion.

Proof. The only thing remaining to prove is that the poset of triangle closed families
I is a lattice, but this follows exactly as in the proof of Theorem 3.6. W

Our next goal is to prove Conjecture 2.6 for d = 3, but to do this we need a
little bit of terminology. Say a collection of edges E is supported if whenever ik is
in E with k > ¢ + 1, there is some 5 with ¢ < j < k such that ¢j, jk are also in E.
Note that Lemma 4.3 may be rephrased to say that sub,(T) is supported for any
triangulation T of C(n,3). Also we shall say ik is mazimal in the set E if there
does not exist ¢’k in E with [z, k] C [¢''].
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Theorem 4.10. The higher Stasheff-Tamar:i orders <; and <, coincide for d = 3.

Proof. As in the proof of Theorem 3.8, given T' and T" with T' <, T", it suffices to
show there exists T' with T <, T < T', where <; denotes a covering relation in
the order <;.

So assume T <, T'. To construct T, we must produce an appropriate set
S ={i <z <j <y < z} which supports the bistellar operation between T’ and T.
To this end, note that by the previous theorem we have suby(T) & suby(T'), and
hence by Proposition 4.1 we have edges(T") G edges(T'). Now since both edges(T")
and edges(T') are supported, we can choose a maximal edge zy in the non-empty

set F defined by
E = {zy € edges(T) — edges(T") : {zy} U edges(T") is supported}.

Since zy is not an edge of 7", it must in fact intersect some triangle ijk of T"
transversally in an interior point of :7k. This follows since all of the vertices lie on
the moment curve and so no pair of edges are coplanar. This transverse intersection
implies zy intertwines ¢jk, i.e., 2 < ¢ < j < y < z since those two conditions are
equivalent (see the comment after Proposition 4.1.) Without loss of generality,
we may choose ¢jk so that ¢k is maximal among the set of ik for which ijk is in
suby(T"), so ijk is in M and is hence a triangle in T by Lemma 4.8.

Our goal is to show that this choice of zy and ijk lead to the correct set S
for our bistellar operation, and we claim that it only remains to show that the
link linkz(ijk) is the two-vertex set {z,y}. Assuming this is true for the moment,
define T by doing the bistellar operation on S to T' which removes the tetrahe-
dra izjk,ijyk and replaces them by izjy,izyk,zjyk. This means that T <, T".
Furthermore

edges(T) = {zy} U edges(T") C edges(T)

and hence by Proposition 4.1 that suby(T") C subg(f’) so T <, T as desired.

The rest of the proof consists of showing that linkr(ijk) = {z,y}. So assume
linkr(ijk) = {z',y'}. We know that z'y' intertwines ijk since otherwise we would
contradict ¢k’s maximality among the set of ¢k for which ijk is in sub,(T").

We can say more about the location of z' and y' by noting the following. Since
{zy} U edges(T") is supported, there must be some j' with z < j' < y and zj',yj'
both edges of T'. But if j' < j then we’d get the contradiction that the edge zj' of
T' intertwines the triangle 75k in T', and similarly if j' > 7. Hence j' = 7, so zJ, jy
are edges of T'. Now this implies z' < z, since otherwise z'ik would be a triangle
of T' intertwined by the edge zj in T", and similarly we must have y' > y. Thus

i<z <z<ji<y<y <k.

Since we are trying to show z'y’ = zy, assume not, i.e., either 2’ < z or ¥y > y.
If 'y’ were an edge of T, we would have a contradiction to the choice of zy,
since {z',y'} U edges(T") is supported (by the existence of z'7,jy’ as edges of T").
Therefore z'y' is not an edge of T, so there must be some triangle abc of T' which
it intertwines. But this means abc is in suby(T"), so abc cannot be intertwined by
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zy, implying either z’ < b < z or y < b < y'. Assume without loss of generality
(by symmetry) that 2’ < b < z so we have

a<z <b<r<j<y<y <ec

At this point, we try to contradict the fact that ' must be the largest value
in (4, 7) for which z'ik is in suby(T") (this fact comes from the symmetric version
of Lemma 4.6, since z'ijk is a tetrahedron of T'). There are four cases depending
upon the locations of a and ¢. If a <7 and ¢ > k, then abc in suby(T") implies by
T2 that bk is in subs(T"), giving the contradiction. If i < a < z' and ¢ > k, then
abc,iz'j in suby(T') imply by T3 that ibc is in suby(T"), which then implies by T2
that bk is in sub,(T"), giving the contradiction. If @ < ¢ and y' < ¢ < k, then
abe,zjk in suby(T') imply by T3 that abk is in subs(T"), which then implies by T2
that bk is in suby(T"), giving the contradiction. If i < @ < 2’ and ¥’ < ¢ < k, then
abe,iz'j in suby(T") imply by T3 that ibc is in suby(T"), and ibc,z'jk in suby(T")
imply by T3 that bk is in suby(T"), giving the contradiction. This completes the
proof of the theorem. M

Lastly we prove Conjecture 2.14 for d=3.

Theorem 4.11. In any interval [z,y] of S(n,3), distinct subsets of the coatoms
have distinct meets.

Proof. As in the proof of Theorem 3.9, it suffices to show that if T' < T' in S(n, 3),
and T1,T3,...,T; are the coatoms of the interval [T, T'], then for each m there is
a triangle ¢mjmkm which is not in subs(Tr,) but which is in suby(T}) for all p # m.

Since each T, is covered by T', there is some bistellar operation by which it
differs 7'. Since the bistellar operations for d = 3 are of the form

{217,27,325, 7.1131415} > {21122314, 11121415, ’1.27,31,41,5}

with 4; < 42 < 43 < 44 < 15, note that the top triangulation loses exactly one
triangle 4,435 (while gaining some others) and gains exactly one edge 75i4. It
therefore follows that for each m, there must exist a triangle 4,,jmkm which is
present in the triangulation 7" but absent in T'. Notice also that i, jmkm wil be
present in all the other T}, with p # m since they can only miss one triangle present
in T’ and are already missing their own i,5,k,. This implies that for each m, the
triangle iy, jmkm is an element of suby(T},) for all p # m, but not an element of

suby(T,,) B

Again, the consequences of this theorem for homotopy type and Mébius functions
of intervals of S(n,d) were discussed in Section 2.

V. Remarks and open questions.

Remark 1

It would be natural to attempt to prove the conjectures of Section 2 for d > 3 by
proving an encoding of S(n,d) using a closure operator similar to those used for
d = 2,3. However, one can check (e.g. for d = 4,5 and n = d + 3) that the [41-

submersion sets are not the closed sets for any closure relation on the [ %]-subsets

of [n].
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Remark 2
One can easily obtain some asymptotic bounds on the cardinality #5(n,3), namely
for some constants ¢, c, we have

2c1nlogn < #S(n,3) < 2c2n2'

The lower bound follows from an explicit construction which shows the recursive
bound
#8(n,3) > (n— 3) #S(n — 2,3).

The upper bound follows easily from two alternative methods. On the one hand,
one can show that

#S(n3d) < #S(n_ l,d_ 1)#S(n_ 17d)

since a triangulation 7 1 C(n,d) is completely determined by two pieces of infor-
mation: the link lk7(n) of the vertex n which triangulates C(n —1,d — 1), and the
triangulation T' of C(n — 1, d) obtained from T by coalescing the vertices n — 1 and
n into a single vertex. Using the above recursive bound, and the fact that #S5(n,2)

is the Catalan number ﬁ (2(:__22)) , one gets the asserted asymptotic upper bound.
On the other hand, Kapranov and Voevodsky [KV, Theorem 4.10] prove that there
is a surjection

B(n,d) — S(n+2,d +1)

where B(n,d) is the higher Bruhat order [MS,Zi]. For d = 2, this shows that
§(n,3) < #B(n — 2,2), and the elements of the higher Bruhat order B(n,2)
e bijective with commuting equivalence classes of reduced words for the longest
permutation in the symmetric group S, (see [El]). Knuth [Kn, Equation 9.5] gives
n asymptotic upper bound for the number of such classes s 2% 7.
We note that the above surjection in the case d =1

B(n,1) » S(n +2,2)

is a surjection of the weak order on the symmetric group S, onto the Tamari poset
Tn42, and is closely related to the work of Bjorner and Wachs (see [BW1,Corollary
8.3][BW2,89]).

Remark 3

Rather than the poset S(n,3) of all triangulations, one might examine more closely
the subposet $°°*(n,3) of coherent triangulations of C(n,d) [GKZ, Chapter 7).
Already for n = 9,d = 3 there will exist at least one incoherent triangulation of
C(n,d), although the set of incoherent triangulations can depend upon the choice of
points on the moment curve generating C(n,d) even for d = 3. Sturmfels (personal
communication) has shown that the number of incoherent triangulations of C(12, 8)
can depend on the choice of points on the moment curve. Is there a simple test for
the coherence of a triangulation 7', given this choice? Can one show that

. #Swh(n,l’»)
lim —————= =07
"'—I'I‘; #S(n,B) 0
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We also note that the subposet $°°*(n,3) is not a sublattice of S(n,3) already for
n = 9.

Remark 4

Ignoring the poset structures on S(n,d), one can ask questions about the under-
lying graph of its Hasse diagram. In the case of d = 2, this was studied in [STT)
who showed that this graph has diameter 2 — 10. What is the diameter in gen-
eral? What is its edge- and vertex-connectivity? It follows from the theory of
secondary polytopes [GKZ1, Chapter 7] that the subgraph of coherent triangula-
tions has vertex-connectivity n —d — 1. However, there are no known lower bounds
on the degree of an incoherent triangulation. It may or may not be relevant that de
Loera and Santos (personal communication) have constructed a point configuration
in R?® with n = 13 points in which there is an incoherent triangulation with 6 bis-
tellar neighbors which is smaller than the lower bound n — d — 1 = 9 for neighbors
of coherent triangulations.

A more detailed understanding of this graph might lead to good algorithms for
constructing random triangulations of C(n,d) using random walks in the graph.
Remark 5
One might ask what was known previously about the connectivity of the set of tri-
angulations of a point configuration A by bistellar operations. Lawson [La] showed
that for A4 in R?, the set of triangulations is connected by bistellar operations.

Conjecture 2.6 suggests the following construction. Given A in R? and generic
heights hi,... ,h, used to lift the points of A to a configuration A in R4+, one
can define two partial orders <;, <, on the set of triangulations of 4, as in Section
2. One might ask whether these two partial orders always coincide (as they do
for C(n,3)). However, one can construct examples which show that they do not
coincide even for 4 in R2.
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