ITERATED FIBER POLYTOPES 363

the pentagon Z(F;) is a Minkowski summand of the given 7-gon. Note that
the coordinate vectors in the previous two tables lie in 2-dimensional affine
subspaces of RS parallel to the kernel of 4 and (1,1,1,1,1,1).

Acknowledgement. The first author was partially supported by US NSF
grants and by the US Army Research Office through the Center of Excellence
for Symbolic Methods in Algorithmic Mathematics, Mathematical Sciences
Institute of Cornell University. The second author was partially supported by
US NSF grants and a David and Lucile Packard Fellowship. This work was

partially done while both authors were visiting the Institut Mittag-Leffler in
Djursholm, Sweden, whose hospitality and support is gratefully acknowledged.

References

1. H. J. Baues. Geometry of loop spaces and the cobar construction. Mem. Amer. Math. Soc.,
25 (1980), No. 230. i

2. L. J. Billera, P. Filliman and B. Sturmfels. Constructions and complexity of secondary poly-
topes. Advances in Mathematics, 83 (1990), 155-179.

3. L. J. Billera, M. M. Kapranov and B. Sturmfels. Cellular strings on polytopes. Proc. Amer.
Math. Soc., 122 (1994), to appear.

4. L. J. Billera and B. Sturmfels. Fiber polytopes. Annals of Math., 135 (1992), 527-549.

5. A.Bjorner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler. Oriented Matroids (Cambridge
University Press, 1993).

6. P. Filliman. Exterior algebra and projections of polytopes. Discrete Comput. Geometry, 5
(1990), 305-322.

7. I. M. Gel'fand, M. M. Kapranov and A. V. Zelevinsky. Newton polytopes of the classical
resultant and discriminant. Advances in Mathematics, 84 (1990), 237-254.

8. I. M. Gel'fand, A. V. Zelevinsky and M. M. Kapranov. Discriminants of polynomials in
several variables and triangulations of Newton polyhedra. Algebra i Analiz, 2 (1990), 1-
62. (English translation in Leningrad Math. J., 2 (1991), 449-505.)

9. M. M. Kapranov, B. Sturmfels and A. Zelevinsky. Quotients of toric varieties. Mathem.
Annalen, 290 (1991), 643-655.

10. W. S. Massey. Singular homology theory (Springer-Verlag, New York, 1980).

11. D. D. Sleator, R. E. Tarjan and W. P. Thurston. Rotation distance, triangulations, and
hyperbolic geometry. J. American Math. Soc., 1 (1988), 647-681.

12. V. A. Yemelichev, M. M. Kovalev and M. K. Kravtsov. Polytopes, Graphs and Optimisation
(Cambridge University Press, 1984).

13. 1. M. Gel’'fand, M. M. Kapranov and A. V. Zelevinsky. Discriminants, Resultants and Multi-
dimensional Determinants (Birkhaiiser, Boston, 1994).

Professor L. J. Billera, 52B0S: CONVEX AND DISCRETE GEOM-
Department of Mathematics, ETRY; Polytopes and polyhedra;
Cornell University, Combinatorial properties.

Ithaca, New York 14853,

U.S.A.

Professor B. Sturmfels,

Department of Mathematics,

Cornell University,

Ithaca, New York 14853,

US.A. Received on the 4th of May, 1993.

LA “



COXETER-ASSOCIAHEDRA

VICTOR REINER anp GUNTER M. ZIEGLER

Abstract. Recently M. M. Kapranov [Kap] defined a poset KPA,
called the permuto-associahedron, which is a hybrid between the face poset of the
permutohedron and the associahedron. lts faces are the partially parenthesized,
ordered, partitions of the set {1,2, ..., n}, with a natural partial order.

Kapranov showed that KPA,,_ is the face poset of a regular CW-ball, and
explored its connection with a category-theoretic result of MacLane, Drinfeld’s
work on the Knizhnik-Zamolodchikov equations, and a certain moduli space
of curves. He also asked the question of whether this CW-ball can be realized
as a convex polytope.

We show that indeed, the permuto-associahedron corresponds to the type
A, _: in a family of convex polytopes KPW associated to the classical Coxeter
groups, W=A,_;, B,, D,. The embedding of these polytopes relies on the
secondary polytope construction of the associahedron due to Gel’fand,
Kapranov, and Zelevinsky. Our proofs yield integral coordinates, with all
vertices on a sphere, and include a complete description of the facet-defining
inequalities.

Also we show that for each W, the dual polytope KPW* is a refinement
(as a CW-complex) of the Coxeter complex associated to W, and a coarsening
of the barycentric subdivision of the Coxeter complex. In the case W=A,_,,
this gives a combinatorial proof of Kapranov’s original sphericity result.

§0. Introduction. This paper is concerned with the construction of poly-
topes with prescribed combinatorial structure. In fact, there is a three-part
problem associated with combinatorial objects like permutohedra, associa-
hedra, .. .:

1. the first part is the combinatorial description of a finite poset (definition);

2. the second part asks for a proof that the poset under consideration is

the face poset of a regular CW-ball (sphericity); and

3. the third part is the construction of a convex polytope whose face lattice

is isomorphic to the poset (realization).

Note that realization gives a proof of sphericity, since every convex polytope
is a regular CW-ball (¢f. [Bj2], [BLSWZ, Sect. 4.7]).

For the permutohedron, the definition and realization are classical. For the
associahedron, the definition is due to Stasheff [Stas] (and later independently
to Perles [Per]). Sphericity was proved by StashefT, realization was achieved by
Milnor (unrecorded), Haiman [Hai] and Lee [Lee]. A “systematic” construc-
tion method for the associahedron was achieved by Gel’fand, Zelevinsky and
Kapranov [GZK 1, Remark 7c] with their construction of secondary polytopes,

[MATHEMATIKA, 41 (1994), 364-393]
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and then generalized and explained by the construction of fiber polytopes by
Billera and Sturmfels [BS1].

For the permuto-associahedron KPA,_,, we owe definition and sphericity to
Kapranov [Kap], who denotes the object by “KP,”. Here we contribute a
combinatorial proof for sphericity (Section 2) which gives some extra informa-
tion about the relation between the permutohedron and permuto-associa-
hedron, and a construction that solves the realization problem (Sections 3 and
4).

Furthermore, we also define and realize Coxeter-associahedra KPW for
Coxeter groups of types B and D.

The two main theorems of the paper are:

THeEOREM 1 (Sphericity). For W=A, _, B,, D, the dual KPW* of the
Coxeter-associahedron poset KPW is the face poset of a regular CW-ball whose
boundary refines the Coxeter complex OPW* and is refined by its barycentric
subdivision sd (0PW™), i.e.,

sd (JPW*)<OKPW* < JPW*.

THEOREM 2 (Realization). There exists a realization of the associahedron
K, - in R” inside the fundamental chambers of the Weyl groups W=A,_,, B,,
D, such that the polytope given by the convex hull of the orbit WK, _, of K,,_,
under the canonical action of W on R" has face lattice isomorphic to the Coxeter-
associahedron poset KPW.

We note that the two proofs can be followed independently: the proof of
Theorem 1 is completed in Section 2. The proof of Theorem 2 in Sections 3
and 4 does not rely on this, and proceeds directly from the definitions of
Section 1.

§1. Combinatorics. In this section, we review the combinatorial descrip-
tion of the face posets for the Coxeterhedra PA, _,, PB, and PD,,, and define
analogously the face posets for the Coxeter-associahedra KPA,_,, KPB, and
KPD,. Our convention is (as in [Zie]) that the subscript on the name of a
ranked poset indicates its length minus one, and thus the dimension of the
corresponding polytope.

The classical Coxeter groups A,_,, B,, D,. The Coxeter groups A, _; and
D, are both subgroups of the signed permutation group B,, which consists of
all permutations and sign changes of the coordinates in R". A,_, is the
subgroup of permutations with no sign changes (i.e., the symmetric group on
n letters), and D, is the subgroup of signed permutations with an even number
of sign changes. We use the following one-line notation for signed permutations
w:

W=WiWy. .. W,,
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where
_ {j if w(e;,) = +e;
T ifw(e)=—¢
and e; denotes the i-th standard basis vector in R". For example, w=24513 is
the element sending
e — +e,
€ — —€4
e3> +es
ey t+e
€5+> —€3
We will think of the three groups W=A,_,, B,, D, as Coxeter systems
(W, S), i.e., each may be given a distinguished set of generators S having
certain properties (see [Bro] or [Hum] for definitions). For the symmetric
group A, _, the set S consists of the adjacent transpositions {8;}1<i<n-1, Where
s; interchanges the i-th and the (i+ 1)-st coordinate. The set S for B, contains
an extra generator s, which changes the sign of the last coordinate, while the

set S for D, contains an extra generator s, which swaps and changes the signs
of the last two coordinates.

Face lattices of the Coxeterhedra.

Definition 3. For any Coxeter system (W, S), the subgroups W, generated
by subsets J= S are called parabolic subgroups of W. The Coxeterhedron PW
is the finite poset of all cosets

{WW.I}n*e wJsS
of all parabolic subgroups of W, ordered by inclusion.
Remark 4 (Realization). For any Coxeter system (W, ), there is a simple
polytope that has PW as its face lattice. See Fig. 1 for examples. This polytope
may be constructed in at least two ways,

(i) as the convex hull of the orbit of a generic point in R" under the action
of W as a reflection group on R”,

132

123 312

213 32

231
Figure 1. The Coxeterhedra PA,, PB;, PDs.
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(ii) as the zonotope generated by the root system for (W, S).

We will abuse notation and refer to both the poset and to its geometric realiza-
tion as the Coxeterhedron PW.

The polytopes PW are simple, so their polar duals are simplicial polytopes.
Thus the boundary complex of the dual polytope PW* is a simplicial complex,
called the Coxeter complex. We refer to [BLSWZ, Sect. 2.3], [Bro] or [Hum]
for further discussions.

For the classical groups W=A,, _,, B,, D, it will be useful to have a unified
terminology for the cosets of parabolic subgroups, which we now describe.
Given a coset wW,, we will

(1) place dots between certain of the letters of w, thereby breaking w=

wiws . . . w, into blocks,

(2) possibly introduce a single box that surrounds some of the blocks,

(3) alter w within the coset wW, to obtain a coset representative in a canon-

ical form (described below).

Step (1) proceeds by placing a dot between w; and w;,, if the adjacent
transposition s; is not in J. Step (2) proceeds by

(2a) circling no blocks, if W=A,_, or s, is not in J,

(2b) circling the entire last block, if W=B, and s, is in J,

(2¢) circling those blocks which contain the last two letters if W=D, and

" s, is in J. Thus the box, if present, encloses either the last block (if
that block has at least two elements), or the last two blocks (if the
last block is a singleton).

Step (3) proceeds by using the subgroup W, to alter the coset representative
w until it satisfies the following conditions.

(3a) Within each block and within the box (if present), the numbers are

in increasing order.

(3b) If W=B,,, there can be no bars inside the box.

(3¢) If W=D, and the last block is the only one boxed, then only the last

letter can have a bar.

It is easy to check that exactly one coset representative satisfies these condi-
tions in each case. We will call this dotted, boxed, canonical coset representa-
tive the string corresponding to wW,;. Here are some examples:

2.146.35 « 261453W,,,, ., inPA;,
2.146.35 « 264153W,,; inPBs,
2.136[35] & 264153Wy,, . in PBs,
2.146.35 « 264153W,, ., inPDs,
2.14.[356] « 241563W,,.,ssy in PDs,

2.14.135.6| < 241563W,,, .,y in PDs.

The inclusion relation on cosets wW, corresponds to the following order
relation on strings: a <, if, and only i, the string B is obtained from a by
any combination of the following two operations.



368 V. REINER AND G. M. ZIEGLER

(1) Combining a consecutive sequence of blocks into one block. For
example,

6.2.147.35.[8] < 6.123457.[8] in PB;,
6.2.147.35.[8] < 6.2.147.[358] in PB;,
6.2.147.[35.8] < 6.2.[13457.8] in PDs.

(2) Adding in the box.
6.2.147.35 < 6.2.147.[35] inPB,,

6.2.14.375 < 6.2.14[357] inPD;.

Face posets of the Coxeter-associahedra. We now define the face poset of
the Coxeter-associahedron KPW for W=A,_,, B,,, D,. In Sections 4 and 5
we will prove that KPW is the face lattice of a convex polytope, which (by
abuse of notation) we will also call KPW.

Definition 5. For W=A,_, B, or D,, the Coxeter-associahedron KPW is
a partially ordered set, defined as follows. The elements of KPW are the strings
(canonical coset representatives) in PW, partially parenthesized: this means that
the blocks are treated as if they were being multiplied together and some of
them are grouped together by parentheses to indicate order of multiplication.
In particular, every pair of parentheses encloses at least two blocks. In the
cases W=B,, D,, but not in case W=A,, ., there is always an extra virtual
parenthesis pair around the entire string, if, and only if, there is more than one
block and no box is present.

The order relation on these parenthesized strings is defined as follows:
A <B, if, and only if, B is obtained from A by any combination of the following
three operations:

(1) removing a parenthesis pair ( possibly the virtual one), and combining

all the blocks within it into one block;

(2) adding in the box (and hence removing the virtual parenthesis pair);

(3) removing a non-virtual parenthesis pair.
Finally, an extra minimum element 0 and an extra maximum element 1 are
included in the posets KPW.

For examples, Fig. 2 shows the posets KPA,, KPB,, KPD;: they are the
face lattices of a 12-gon, an octagon and a square, respectively.

Here are some larger examples of the order relation:

((9(4.2.6.8)(3.5))1) < (9.2468(3.5)1) in KPA,
(7(9.8)(2(6(15.34)))) < 7.9.8.2(6(15[34]))) in KPB,
((0.8)2(6(15.37)))4) < 89.2(6(15[34))7] in KPD,

Fig. 3 shows the polytopes KPA,, KPB;, KPD,. Note that KPA,_, is
embedded as the principal order ideal below the face 123...n—1n in both



COXETER-ASSOCIAHEDRA 369

123 123 132 132 - 12 12
KPAgI wx KPDQZ
(1.2)3 1(2.3) 1(3.2) (1.3)2 --- (1.2) (21) 21 (13

‘
‘

KPB, :

12) (21) @) T2 d2 @I @1) (13

0
Figure 2. The posets KPA,, KPB,, and KPD.

132) (32
12.3) anz

23 1.2

@13 321

2A1.3) a)
231 (2m

Figure 3. KPA,, KPB;, KPD;.
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KPB, and KPD,. For example, in Fig. 3, the 12-gon KPA,; is isomorphic to
the face labelled 123 in KPB; or KPD;.

The next two lemmas are needed for the proof of realization (Theorem 2)
in Sections 4 and 5.

LEMMA 6. The posets KPW are ranked lattices.

Proof. Since every covering relation x<y in KPW involves removing
exactly one parenthesis pair from x to obtain y, it follows that

rank (x) =n— # {parenthesis pairs in x}

defines a rank function on KPW for W=A,_,, B,, D,.

Since KPW is a finite poset with 0 and 1, to show it is a lattice it will suffice
to show that every two elements x, y have a greatest lower bound x A y in KPW
(see [Stan, Prop. 3.3.1]). Given x, y in KPB,, we describe x A y in stages, and
leave it to the reader to check that this actually defines their greatest lower
bound. This also defines x A y in KPA,,_., as a special case, and the description
of x Ay in KPD, requires only minor modifications which we omit.

Stage 1. For each ie{1,2,...,n} determine whether i appears without a
bar, with a bar, or boxed in x Ay, by taking the greatest lower bound in the
lattice shown below of i’s appearances in x and y:

i
/N

i i

NS

~

0

This means, for example, that if i appears without a bar in x and boxed in y,
then it will appear without a bar in x Ay. If it appears with a bar in x and
without a bar in y, then x A y will be 0 and the description process is done.

Stage 2. Determine the (unordered ) block structure of x A y by intersecting
the blocks of x and y (i.e., the usual greatest lower bound for set partitions.)

Stage 3. Determine the order on the blocks of x Ay by placing block B
before block B, if, and only if, all numbers in B appear in earlier blocks or in
the same block as all the numbers in B’ in both x and y. If two numbers i, j
lie in different blocks in both x and y, and appear in different order in x than
they do in y, then x A y=0, and the description process is done. Up to this
stage, we have determined the underlying (unparenthesized) string of x A y.
For example,

1(23) A 1(23)=0
1.23 A 2.13=0
while the underlying string of
1234.56.78 A 1.234.5678
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will be
1.234.56.78

Stage 4. ldentify parenthesis pairs in x, y with the subset of numbers they
enclose. For each parenthesis pair in x or in y, include the same parenthesis
pair in x Ay. Whenever a sequence B, . B, . - - . B, of consecutive blocks in
x Ay is combined into a single block of x or of y, include a parenthesis pair
around B, . B, .- - -. B, in x A y. If two parenthesis pairs in x A y conflict, i.e.,
they are not disjoint but neither one encloses the other, then x Ay=0. For
example,

(1.2.3)[45] A 12.34.5=((1.2)3)(4.5)
123 A 123=0

This completes the description of x A y in KPB,, and the proof that KPW
is a lattice.

LEMMA 7. The lattices KPW are atomic and coatomic.

Proof. The description of the rank function in the previous lemma implies
that atoms of KPW are the completely parenthesized (signed ) permutations in
W, while coatoms are the completely unparenthesized strings in PW.

The proofs are straightforward combinatorial arguments, and we include
here only the argument for atomicity.

Given x in KPW, and y an element of KPW which lies above all the atoms
below x, we must show that y>x. We will explain why y>x in stages, using
an example in KPBy;:

x=((7.9)8 10 11)2(8(15)).

First of all, if i appears boxed in x, then it must appear boxed in y, since y lies
above atoms containing i and atoms containing i. E.g., in our example, y must
have 3 boxed since y lies above atoms of the form

If i or i appears unboxed in y, then it must appear the same way in x: otherwise
x would lie above an atom that contains the same letter with the opposite sign,
itesp.i. E.g., if 7 appears in y but not in x, then we get a contradiction since
x lies above an atom that contains 7,

If i, j appear in the same block of x, they must appear in the same block of y,
since y lies above atoms having i, j in either order. E.g., y must have 8, 10, 11
in the same block since it lies above atoms of the form

c. (8(10.T]_))- -,
- (11(10.8)) - - -
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If i appears to the left of j in x, then i’s block must appear weakly to the left
of j’s block in y, since y lies above atoms having i to the left of j. E.g., y must
have 7’s block weakly left of 11’s block, since y lies above atoms of the form

(((7.9)8)10)11) - - -

So far, we have shown that the underlying (unparenthesized) string of y lies
above the string of x in PW. Now we discuss the parenthesization of these
strings. Identify a parenthesis pair with the set of numbers it encloses. We
claim that every parenthesis pair in y is also in x. If not, then without loss
of generality, y has the form --- A4, .A;) -+ while x has the form

. . A . Ay - - - and there would be atoms of the form - - - A, . Ay . A3+ -~
below x but not below y. We further claim that whenever A4, .- - - . Ak is a
consecutive sequence of blocks in x which is combined into a single block of
y, there must be a parenthesis pair (4,.- - - . A;) around them in x. If not,
then there would be atoms of the form (4, . 4)A4, . - - . A, below x, but not
below y.

Finally, the last two claims imply that y > x, completing the proof.

Remarks 8 (Vertices, edges and facets of the Coxeter-associahedra). The
vertices of the polytope KPA,_, correspond to complete parenthesizations of
permutations of the letters 1, 2, . .., n. The edges are of two types: they corre-
spond to either a single re-parenthesization, or to a transposition of two adja-
cent letters that are grouped together. The facets correspond to the ordered
partitions of {1,2, ..., n} into at least two blocks.

The vertices of the polytope KPB, correspond to complete parenthe31zat10ns
of signed permutations of the letters 1,2, ..., n. The edges are of three types:
they correspond to either a single re-parenthesization, to a transposition of two

Q'/W
\/.

X =
St 4

Figure 4. KPA;.

//

I~
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adjacent letters that are grouped together, or to inverting the sign of the last
letter in the permutation. The facets correspond to ordered partitions that
either have only one block, or have a box around the last block, but not both.

The vertices of the polytope KPD, correspond to complete parenthesiza-
tions of signed permutations of the letters 1,2, .. ., n, having an even number
of minus-signs. The edges are again of three types: they correspond to either
a single re-parenthesization, to a transposition of two adjacent letters that are
grouped together, or to exchanging the last two letters in the permutation and
inverting their signs. (The last operation is allowed even if the last two letters
are not grouped together.) There are three types of facets: partitions with
exactly one block (and an even number of minus signs), ordered partitions
with more than one block, where the last block is boxed (so this last block
contains more than one element) and partitions where the last two blocks are
boxed (and the last block is a singleton).

Observe that KPA, and KPD; are not equivalent, although the associated
Coxeter systems A; and Dj are isomorphic.

§2. Sphericity. 1In this section we prove Theorem 1: the dual poset KPW*
for W=A,_,, B,, D, describes the inclusion of faces in a regular CW-ball.
Our strategy is as follows: for any Coxeter system (W, S), the polar dual PW*
to the Coxeterhedron PW is a simplicial polytope, whose boundary complex
OPW* is called the Coxeter complex (see [Bro], [Hum]). For W=A,_,, B,,
D,, we will define a surjective set map

®: sd (PW*)->KPW\ {0}

from the barycentric subdivision of the Coxeter complex to the Coxeter-
associahedron poset with its bottom element 0 removed, (i.e., the dual of the
face poset of SKPW™). This map will have the following properties.

(®1) For all faces 4 in KPW\{0}, the pair

(BQA q)_l(B), BL>)A (D_I(B))

is a pair of subcomplexes of sd (JPW*), and homeomorphic as a pair to (B,
aB?) for some d. Here B denotes a topological d-ball and. 9B its boundary.

(®2) If we let a(A) denote the underlying string of a parenthesized string 4
in KPW*, then the usual barycentric subdivision homeomorphism (see [Mun])

h: ||sd (GPW*)|| - | OPW*||

maps | s>« ® ' (B) into the face of SPW* corresponding to a(4).
This will then complete the proof of Theorem I, namely that

U 0“(3))

AeKPW\{0} <B>A

is a regular CW-decomposition of a sphere which refines SPW*, and which is
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refined by sd (OPW™), i.e.,

sd (IPW*) < IKPW* < PW*.

Figure 5 shows these sequences of refinements for W=A;, B;, D;.

The map @ is easy to define once we have identified what faces in the
barycentric subdivisions look like. By the definition of barycentric subdivision,
a face in sd (PW™) is a chain C of strings

A <a<...<ag

where < is the order relation on strings previously defined. This means that
for each i, a;4 is obtained from a; by combining consecutive blocks and/or
adding in the box. To define ®(C)=A as a parenthesized string, let the
underlying string a(A4) be a,. Then at each step a;<a,+, if some consecutive
blocks of a; are combined together, put a parenthesis pair around the corre-
sponding blocks of @,. This defines ®(C)=A. For example, if C is the chain

<

Nk

NN
N>

sd(6(PD3))

Figure 5. sd (OPW*)<0KPW* <dPW* for W=A;, B;, Ds.
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in PD; given by

7.13.8.5.26 <147.8.5.[26]< 1478.[256),

then ®(C) is
((7.14)8)(5.26).

Property (®2) of the map @ will follow from the following lemma, whose
proof is straightforward.

LEMMA 9. If A<B in KPW then a(A)<a(B) in PW.

To show property (®2), assume Ce Usss @' (B) ice., ®(C)= B> A. Under
the homeomorphism # we know that the chain C of strings

a;<...<0oy

will be mapped inside the face @, of PW*. Since a;=a(B)>a(4) by the
lemma, we know that a, is a subface of a(A4), and so C is mapped inside of
a(A) by h as desired.

Property (d1) is not quite as obvious. The fact that Uszs4 @ '(B) and
(Up>4 ®'(B) are both subcomplexes of sd (PW*) follows immediately from
the next lemma, whose proof is again straightforward.

LEMMA 10. If C<D in sd (PW*) then ®(C)=®(D) in KPW.

To show that |z« ®'(B) is a ball with boundary |z~ , ®'(B), we need
to review a bit of the theory of signed posets and their associated B,,-distributive
lattices J(P) from [Rei]. A signed poset P on m elements is a subset P of the
root system B,,

B’”= {:*:el‘:t €; }l <i<jsmY {iei} 1<igm
satisfying two axioms related to irreflexivity and transitivity for posets.

(SP1) Ifuis in P, then —u is not in P.
(SP2) If u, v are in P, and w=cu+cyv is in B,, for some ¢, ¢,>0, then w
isin P,

An order ideal I of P is a vector Iin {0, +1, —1}" whose (usual) inner product
with any vector in P is non-negative, i.e.,

I,u)=0, YueP.

These order ideals are analogous to the usual notion of order ideals in a poset
on m elements, if we think of the order relations in the poset as a subset of the
root system A,,_,, and identify an order ideal with its characteristic vector in
{0, 1}". The order ideals of P are then ordered component-wise using the
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P; = {e;,e;,e3,e; — €,

Py = {e,e;,e; — e3,e; — e3,€; + €3} €1 +ez,€; + €3, € + €3}
) y

(+1,41,+1) (+1,+41,-1) (41,41, +1)
T N
(+1,41,0) (+1,0,-1) (0,+1,~1) (+1,+1,0) (+1,0,+1)
> > NUAN
(+1,0,0)  (0,+1,0)  (0,0,-1) (+1,0,0)  (0,0,+1)
\V \/
(0,0,0) (0,0,0)
J(P) J(P,)

Figure 6. Two examples of the B,,-distributive lattices J(P).

order 0<+1, —1 in each component to form a poset J(P). In [Rei], J(P) is
called a B,,-distributive lattice. Two examples are shown in Fig. 6.

Why are these J(P) relevant? Let AJ(P) denote the order complex of J(P),
that is the simplicial complex of chains in J(P). A theorem of [Rei] shows that
AJ(P) is EL-shellable in the sense of Bjorner [Bj1], and it then follows from a
theorem of Danaraj and Klee [DK] [Bj2] [BLSWZ, Sect. 4.7] that AJ(P) is
homeomorphic to a ball. Our next goal then is to show that Uss«®7'(B) is
isomorphic as a simplicial complex to AJ(P,) for a certain signed poset P,.

To do this, label the parenthesis pairs in 4 by p,, p2, . . ., p» in such a way
that the virtual pair (if present) is labelled p,,. Then define the signed poset
PA by

P.4={e;—e;: pair p, encloses p; } U {e;: p; is not the virtual pair}
U {e;+¢;: neither p; nor p; is virtual}.

It is easy to see that P, always satisfies axioms (SP1), (SP2) of signed posets.
For example, let

A,=((3.14)(26.578))  in KPB;
A= (12(6.3))(3. in KPDs

and number the parenthesis pairs p,, p,, ps in such a way that p; encloses p,,
pa in Ay and so that p, encloses p; in 4,. In this case, P,4,, P4, coincide with
the examples P,, P, from Fig. 6.

We must now produce a simplicial isomorphism

fa: U @7(B)=AJ(P).
B> A
First we define f, on vertices. A vertex of {Jz>4® '(B) is a single string a

satisfying ®(a)=a >A. Here the string a on the right-hand side of the
equality is thought of as a parenthesized string in KPW with the empty set of
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parentheses. Let f4(@) be the vector 7in {0, +1, —1}" specified by

+1, if the numbers enclosed by pair p;in 4
are all inside a single block of a,
I=<—1, if i=mand A contains the virtual pair p,,
and a has any boxed blocks,
0, otherwise.

It is easy to check that / is an ideal of P,, and furthermore that f, gives a
bijection
vertices of | s>+ ®'(B) « vertices of AJ(P,)
(=strings a = A) (=ideals of P,)

Having defined f, on the vertices, we need to know that vertices lying in a
common face of | Jzs . ® '(B) map into a face of AJ(P,) in order for f4 to
induce a simplicial map. This fact and the stronger fact that f, induces a
simplicial isomorphism are immediate from the following lemma (whose proof
is again straightforward).

LEmMMA 11. Let a, B be two strings, with a, B> A (again we are thinking
of a, B as elements of KPW with empty set of parentheses). Then a <p in PW,
if, and only if, f4(a) <f4«(B) as ideals in J(P ).

Figure 7 shows the chains C in sd (PW*) that lie in Usss @ '(B) for A=

Ay, A, as in the previous example. Compare this with Fig. 6.
It only remains to verify that

Ja (U 0“(8))= OAI(P.)-
This is a routine exercise in the definitions, which we will not go through in
detail. However, it does help to point out that the boundary 0AJ(P,) is

described completely once we know its maximal faces. These maximal faces
are the chains C of ideals in P that miss exactly one rank of J(P), and have a

12345678 13425678 1936.[4578]

134.25678 134.26[578] 3.14.[25678 1236.8[45.7] 12.36.[4578]

134.26.578 3.14.25678 3.14.26.578) 12.36.8.[45.7 12.6.3.8.457)
3.14.26.578 » 12.6.3.8[457
A, = ((3.14)(26.578)) in KPBg Az = (T2(6.3))(B{45)7]

Figure 7. Two examples of the chains in Uz, ® ' (B).
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unique extension to the missing rank. One may then classify such a chain C
according to whether the rank it misses is the top, bottom, or among the middle
ranks, and this classification helps to show that /3'(C) lies in (s~ ®7'(B),
ie., ®(f4'(C))>A.

This completes the proof of

TheoREM 1. For W=A,_,, B,, D,, the order dual KPW* is the face poset
of a regular CW-ball, and there is a sequence of subdivisions

sd (OPW*) < 0K PW* < SPW*.

CorOLLARY 12. For W=A,_,, B,, D,, the topological space
IACKPW\{D, 1})|| associated to the order complex of KPW is a sphere.

§3. Associahedra. In this section, we start with a brief review of the con-
struction of fiber polytopes due to Billera and Sturmfels [BS1] (see also [BS2],
[Stu]), which generalizes and re-interprets the construction of secondary poly-
topes of Gel’fand, Zelevinsky & Kapranov [GZK1, GZK2]. The intuition of
this construction motivates our construction of the Coxeter-associahedra, and
provides the principal “building blocks” for it. Our sketch is supposed to
provide geometric intuition for our construction of the permuto-associahedra,
and (especially nice) coordinates for the associahedra K,_,<R".

Let P R” and Q< R? be polytopes. Consider a projection

n: P->Q,

of these polytopes, i.e., an affine map n: R”—»R? such that Q= n(P). A section
of x is a continuous map y: Q— P which satisfies oy =idp, that is, Z(y(x))=
x for all xe Q.

Definition 13. The fiber polytope (P, Q)< R” of a polytope projection
z: P—Q is the set of all average values of the sections of x, that is,

I(Q) jy(x)dx: y is a section of n}.
Q

(P, Q) ={

vol

Without loss of generality, we need only consider sections that are piece-
wise linear over a finite polyhedral subdivision of Q. Thus we can integrate the
sections (component-wise) using classical Riemann integrals.

It is quite trivial to see that the fiber polytope is a convex set that is contained
in the fiber of the barycentre,

(P, Q) =7 (qo),
where the barycentre of Q is given by

1
=Sl () J xdx

o
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Here we use that for a linear function f on a polytope R, one has the formuia

Jf (x)dx =vol (R) f(xo),

where 1, is the barycentre of R. In the following we will mostly ignore the
scaling factor vol (Q), which is needed for the above inclusion but irrelevant
for our discussion. The following is the key result from Billera and Sturmfels
[BS1].

THEOREM 14. [BS1] Z(P, Q) is a polytope of dimension dim (P) —dim (Q),
whose faces correspond to the coherent subdivisions of Q by faces of P. Here
the vertices of (P, Q) correspond to the finest subdivisions, while the facets
correspond to the coarsest proper subdivisions.

For every polytope Q with p vertices, there is a canonical ®iap 7: A, —Q
from the simplex with p vertices to Q. In this case the vertices of Z(Q)=
Z(A,-1, Q) correspond to the regular triangulations of Q—this Z((Q) is the
secondary polytope of Gel’fand, Zelevinsky and Kapranov [GZK1, GZK2].

The following construction from [Zie] explains the construction of coherent
subdivisions, and thus of vertices and facets of £(P, Q). For any linear func-
tional x — ¢x on R”, we can consider the projection #:x = (m(x), —cx), which
maps P to Q:=#(P)<R‘*'. Thus the projection z factors into P5HQ—Q,
where the second map just forgets the last coordinate. Interpreting the last
coordinate as a “height function” on Q, we get a subdivision of Q from the
“pottom faces” of Q. Thus every linear functional cx on P defines a subdivision
of Q. Also, a generic linear function will induce a finest coherent subdivision
of Q, which describes a unique section y: Q—P; in the case where Q is a
simplex, the finest coherent subdivisions are triangulations.

Conversely, suppose we are given any coherent subdivision of Q and a
convex function f: Q—R which induces it, that is, such that with Q=
conv {(x, f(x)): xe @} we get the original subdivision as the projection of the
bottom faces of Q to Q. From this we can define a linear function ¢/ on P by
setting ¢/v:=f(m(v)) for the vertices of P=A,_,, and extending linearly over
A,_,. If the original subdivision was a coarsest non-trivial one, then the linear
functional ¢ obtained from it will induce the corresponding facet of
2(Ap-1, 0)-

Instead of a detailed discussion and proofs we refer to [GZK?2], [BS1] and
[Zie, Lect. 9]. Here we will only discuss the two main examples that are relevant
for the permuto-associahedra.

Example 15 (Permutohedron). [BSI1, Ex. 5.4] Let P=[0, 1]"=R" be the
unit cube in R”, and let 0=[0, n]=R', then the map 7: R">R, x> /L x;
defines a projection #: [0, 1]"—[0, n].

Here the “extreme sections” map [0, n] to paths in the 1-skeleton of [0, 17"
that are increasing with respect to the height function },_, x;. These corre-
spond to permutations: the permutation 6 = (1)c(2) . . . 6(n) corresponds to
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the path
'}’G: 0-—»ea(|,—>e,(|)+ea(2)—>. . ."’eo»(|)+e6(2)+. . .+ed(,,)=1,

where 0 and 1 denote the zero vector and the all-ones vector in R", and
{ei,...,e,} denotes the standard basis in R". The integral of y° is given by
the sum

JYS(X)dX= H(PO+7 N+ M+ Q)+, .+ (Y (=D +y°(n))

=3((2n— De,y+ (2n—3)esy+. . .+ (1)eswm)

3 ¥ (2n+1-2i)e,q
i=1

=2n+l

1-(c7'(1),67'(2), ..., 07 ().

Thus the fiber polytope of the projection 7 turns out to be an affine image of
the “usual” representation of the permutohedron, which represents the permu-

tation o by the vector whose entries are given by ¢ ':

([0, 1]", [0, n]) =PA, ;.

Remark 16. There seems to be no similarly straightforward way to obtain
the other Coxeterhedra as fiber polytopes, without admitting an extra group
action.

We now turn to the (n—2)-dimensional associahedron, which was con-
structed as the secondary polytope of an (n+ 1)-gon by Gel'fand, Zelevinsky
and Kapranov [GZK 1, GZK2]. Viewed in terms of the fibre polytope construc-
tion, for any projection of an n-simplex to an (n+ 1)-gon the resulting fiber
polytope is an associahedron.

For our purpose, however, we need a very special choice both of the n-
simplex and of the (n+ 1)-gon, as follows.

Example 17 (Associahedron). Define f;=e,+e,+...+e; for 0<i<n, with
fo=0. We use
A,=conv {0,f,,... f}={xeR":12x>...2x,20}

as our standard simplex.
Consider the (linear) projection map x: A,—R? that maps 0 to (0, 0) and

m.fi— (i, i2),

fi—fi_i1=e> (1,2i-D)=(, A —-0G—1, -1,
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[(BR)]

Q4

0.0), a.n

Figure 8. The projection n: A,—»Cao(n+1) for n=3.

for 1<i<n. The image n(A,) is the “cyclic” convex (n+1)-gon
Ca(n+1)=conv {(i, #): 0<i<n}.

One can calculate the volume and the barycentre qo of this (n+1)-gon as

2
vol(Cz(n+1))==(n:1>, qo(cz(n+1))=<g,6”1:l).

There is a well-known correspondence between the complete parenthesiza-
tions of a string of n letters and the triangulations 7 of the (n+ 1)-gon Cy(n+1),
as follows. For a word of length n, label with the numbers 0,1, 2, ..., n the
parenthesis positions before the word, between the letters and after the word.
Then a parenthesis pair placed at positions i and j corresponds to a diagonal
(i, /), and if the parenthesis pair groups two blocks together, one from positions
i to j, the second from positions j to k, then this corresponds to the triangle

T = {014,
123,

1((2.3)4) 138

Figure 9. The correspondence between parenthesizations and triangulations.
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[ijk] having vertices

G2, G, (kK.

Note that if a parenthesization is complete (with n—2 parenthesis pairs),
then every pair groups only two blocks together.

We denote by 7, the set of all these triangulations, viewed as sets of tri-
angles. So, for example, we get (omitting set brackets for the triples),

Z3={{013,123}, {012,023} },

o= ({014, 124,234}, {014, 123, 134}, {024, 012, 234},

{013,034, 123}, {012, 023, 034} }.
With this the fiber polytope [BS1] of the projection
n:A,—Cynt1)

is given by
+
3(" 3 l)Z(An, Cx(n+1))=conv {v': TeT, .1},

where

vi= Y 3(j—ik—iDk—j)EA+T+T)eZ”,

(hjkyeT

for all triangulations 7 of Cy(n+ 1) without new vertices. Here the sum is over
all triples i <j <k such that (n(f;), n(f;), #(fi)) is a triangle in the triangulation
T, of area 3(j—i)(k—i)(k—J).

This yields a specific embedding of the associahedron K,-,. We use the
scaled fiber polytope

K,_»=conv {v: TeZ,} =R"

as our standard associahedron. Tt is realized in an (n—2)-dimensional affine
subspace, which can be derived from the condition that r(Z(A,, C(n+1)))=
{qo(C2(n+1))}. Thus we derive the equations

ix _ 3(n+1>g=n2(n2—l)
= 3 /2 4
n n+1\6n*+1 6n°—5n"—n
2'_‘1 P = = .
L @imhx ( 3 ) 15 30

Now we derive defining inequalities for the facets of the standard associa-
hedron, using the method described above. The diagonals of Cy(n+1) (which
describe the coarsest possible subdivisions of Cy(n+ 1)) correspond to the pairs
(i,j) with 0<i<j<n and 2<j—i<n—1. With every such (i,j) we associate
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the convex function
f¥(x, y)=max {0, =y + (i+/)x—ij}

which defines the subdivision of Cy(n+ 1) by the diagonal (i, /), because it is
linear except for a break at the line through (i, i) and (j,j%). We calculate
c/e(RM* from

o =1 (fe)) =1k, k*)=max {0, —k* = (i+j)k—ij}
=max {0, (k—i)(j—k)},

and thus

n n
x=¢" Y xee=c" Y x(fi—f-1)
k=1 k=1

= 3 x(max {0, (k—i)(j—k)} —max {0, (k—1~)(j—k+1)})

= Y ((k=D(~k)—(k—1-D(—k+1)x

k=i+1

—s0 cli=(—2k+1)+i+j for i<k<j, and /=0 otherwise. Knowing c’, the
facets of K,,_, are given by
) i—i+1\3(j—i)’-2
c"x;(l ! )ﬁl)— for 0<i<jgn, 2<€j—isn—1.
3 10
Here the right-hand side of the inequalities is min {¢"v": Te Z,,}, where the
minimum is achieved exactly by those triangulations that use the diagonal (i, j).
The formula for the minimum was computed by integrating ' over Co(n+1).
The coordinates for this standard associahedron have further special prop-
erties. For example, the points xeK,_, of this associahedron satisfy

n+1
3( 3 >>x1>x2>. .. >x,>0.

In fact, this holds for the vertices by construction, and thus also for the convex
hull.

A more “miraculous”’ effect is that for this special coordinatization of K,, >
the vertices lie on a sphere around the origin: for all TeZ,, we have

" +1)30n* —33n% +2
A M EL )
,E, ) 3 70
We have an algebraic proof for this, by analyzing the situation along an edge,
corresponding to a single reparenthesization/change-of-diagonal, but no really
good explanation.
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§4. Realization. The Coxeter-associahedra will be constructed below,
using the special realization of the associahedra obtained in the last section.
The verification that the constructed objects have the desired face lattices KPW
is a problem of polyhedral combinatorics. We recommend Schrijver’s book
[Sch] as a reference for terminology, results and techniques of this field; see
also Grotschel and Padberg [GrP] for a valuable introduction.

In producing irredundant descriptions, it is of great advantage to deal with
full-dimensional polytopes, since for these the facet defining inequalities are
unique (up to a positive scalar). Therefore, we treat here the case of KPB,<R”
in detail (Theorem 20). From this we get the case of KPA,_; =R", which is a
facet of KPB, (Corollary 21). The case of KPD, is handled analogously, where
we omit some details (Theorem 22).

For the construction of polytopes with specified combinatorics (and this is
the principal object of this paper) it suffices to establish that the constructed
polytope has the correct vertex-facet incidences. Here is the precise criterion
we use to establish the combinatorial structure of the Coxeter-associahedra.

LEMMA 18. Let L be a finite lattice that is atomic and coatomic. Let there
be a map that associates a point v* eR" with every atom aeatom (L), and let

P=conv {v*: a¢eatom (L)} =R"

be the convex hull of these points. Now assume that the following two conditions
hold.
(i) There is a linear functional ¢®e(R")* for every coatom ¢ in L, such that
the atoms below @ maximize ¢® among the points ¥°, that is,

¢®?=max {¢*: Beatom (L)}, if, and only if, a<e.

(ii) Every ce(R")* can be written as a non-negative sum of the functionals
in a set S of the form S°={c®: pecoatom (L), p=a}, for some
acatom (L).

Then L is the face lattice of P, and we have an equality

P={xeR": ¢?x <max {c¢*v*: aeatom (L)}, for all pecoatom (L)}

Proof. Let Q denote the subset of R” defined by the right-hand side of
the last equation. We have P=Q by construction. Now by condition (ii),
every linear function ce(R")* be written as a positive sum of functions ¢? that
are compatible with some aecatom (L). From condition (i) we derive that
v* € P maximizes ¢ over Q. Thus every linear function on Q is maximized by
some vertex in P, and this proves P=Q.

With this, condition (i) shows that the inequalities associated with
pecoatom (L) exactly define the facets of P. This is enough to determine the
complete combinatorics, since vertex sets of faces of a polytope are all the
intersections of vertex sets of facets. (Abstractly, this follows since for a finite
lattice that is atomic and coatomic, the subposet of atoms and coatoms com-
pletely determines the lattice [Stan, Ex. 3.12].)
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Let us recall (and rephrase) Theorem 2 from the introduction:

THEOREM 2. The polytopes KPA,_,, KPB, and KPD, can be realized as
the convex hulls

|KPA,_ | =conv {wv": TeZ,, weA, .} =conv (A, K,),
|KPB,| =conv {wv": TeJ,, weB,} =conv (B, K,),
|KPD,| =conv {wv": TeJ,, weD,} =conv (D, K,),

where A, _,, B, and D, act on R" by permutation and sign change of the coordi-
nates (as usual).

Here we have an inclusion |KPD,| <|KPB,|, and |KPA,_ | is the common
facet of |KPB,| and of |KPD,| given by

|KPA,_i| €|KPB,| m{xeR”: v x,~=%(n4—n2)}.

i=1

Proof. The statements for KPA,_, follow from those for KPB,. Those
in turn we derive below, in Theorem 20, after we have constructed an explicit
description of the vertices and the facet-defining inequalities for KPB,.
Similarly, the proof for KPD, is given in Theorem 22.

Remark 19. Let us indicate some of the geometric motivation for the
construction in Theorem 2. The realization of the associahedron that we
obtained in the last section already has many special properties. It can be
viewed as the scaled fiber polytope of the projection A,—[0,n], where
A,<[0, 11" is a simplex whose images under the action of A, - (resp. B,) cover
the cubes [0, 1]" (resp. [—1, 1]7). Each of these simplices has a canonical map
to Cy(n+1). Those maps fit together to give a non-linear “folding map” from
[0, 1]” resp. [—1, 1]" to C(n+1). Thus our construction can be viewed as a
generalized fiber polytope associated with this non-linear projection map, or
as an “equivariant fiber polytope”, where we have a combination of compatible
projection and group action.

We start now with the explicit description of the vertices and the facet-
defining inequalities for our realization of KPB,. Consider @, a completely
parenthesized, signed permutation of length n, corresponding to an atom of
the lattice KPB,. Let 6°=0,0,... 0, be the permutation given by the letters
of a, let k*e{+1,—1}" be the vector of signs, where k¥=-—1 if the letter ‘i’
has a bar in @, and k7 =+1 otherwise, and let T=T" be the triangulation
associated with the parenthesization of a@. Here w”=[c", k"] represents an
element of B,. The string a will be represented by the point v=w'v"eR",
whose important property is that

a a a
Ko Vo, > Ko,¥e, > . . > Ko, Vo, -

For example, for a=2((15)((46)3)) we get the permutation o”=215463,
the sign vector x“=(+1,—1,+1,+1,—1,+1), and the triangulation
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T°={016, 136, 123, 356, 345},
with areas
vol [016] =15, vol [136] =15, vol[123]=1,
vol [356] =3, vol [345]=1.
Thus we compute
v =15{2(—e;) + 1(+e)) + 1(—es5) + 1(+e;) + 1(+es) + 1(+e3)}
+15{3(—e;) +2(+e;) +2(—es) + 1(+es) + 1(+eg) + 1(+e3)}
1{3(—e;) +2(+e;) + 1(—es)}
3{3(—e,) +3(+e)) + 3(—es5) + 2(+es) +2(+e5) + 1(+e3)}
1{3(—ey) +3(+e)) +3(—es) +2(+ey) + 1(+es)}
—90e, +59¢; —58es +38¢ 4+37es +33e;
=(59, —90, 33, 38, —58, 37) e vert (KPB).

+ + +

It

which satisfies —v5 > vf > —v5 > v > vg > 0§ >0.

The facets of KPB, correspond to strings without parentheses that either
have only one block, or have a box, but not both. With each such string ¢ we
associate a vector ¢?, as follows.

Assume that the string ¢ has p>1 blocks, where the first letter of the r-th
block is the i-th letter of the string, and the last letter of the r-th block is the
J~th letter of the string. Thus the string ¢ has a ‘block structure’ given by

l'l...jl.iz...jz. ...... lll.]p
with
1=i|<j1, j|+1=i2<j2,...,j,,_|+1=i,,<jp=n.

Again, we get a sign vector A’e{—1, +1} " to indicate which letters in ¢ have
a bar:

A'=—1if the letter ‘i’ has a bar in ¢, and
A'=+1 if the letter ‘i’ has no bar.

Also, we read off a permutation t°=1,7,... 7, from ¢. With these conven-
tions, we define ¢®e (R")* as

=A%, if p=1, and
cf= l?(ip +jp—i; —Jr)
if p>1, and the letter ‘&’ lies in the r-th block of ¢.

The first important property we need of this construction is that (in both cases)
we have

Al 2 At 2. 24,8 20,

with strict inequality A,.c?, > 4., c¥,,, if, and only if, the k-th and the (k+1)-st
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letter of 7° lie in different blocks, that is, if k=i, and k+ 1=}, ,, for some r<p,

and with strict inequality A, c? >0, if, and only if, p=1.

Again, here are examples, for o= 123456 we get p=1, i,=1, j=n=6, %=
12...6, and thus

AP=cP=(+1,—-1, +1, -1, -1, +1).
For (p=§.1§. we have p=3, 1=i=ji, 2=0,<j,=3, 4=i3<j;=6. We
derive 77=215346, A°=(+1, —1, +1, +1, —1, +1), and thus we compute
= (+(4+6-2—3), ~(4+6—1-1),0,0, —(4+6—2-3),0)
=(+5,-8,0,0, —5,0),
with —c§>cP=cf>cf=ci=cf=0.
Tueorem 20. With v eR" and ¢®e(R")* as just constructed, the polytope

|KPB,| =conv {v*: acatom (KPB,)} =R" has face lattice KPB,. A complete
linear description is given by

|KPB,| = {xeR": ¢?x <b” for all pecoatom (KPB,)},

where the right-hand sides are given by b®= i(n*—n?) if p=1 (i.e., ¢ consists of
one single block), and
n'—n’ 6n’—5n’—n

4 30

b= (i, +j,— 1)

B i (j,—i,+2) 3(j,—i+1)*—2
! 3 10 )

otherwise.

Proof. We apply the criterion of Lemma 18. Here v* and c® have already
been constructed. Now every permutation and sign change of a vector v* is
again a vector of this form. Thus from

o a a
Ko Vo, KoVg, =+« . > Ko, Vo,

we see that for fixed ¢, the sum

v =Y cfo;
k
can be maximized over {v*: acatom (KPB,)} only if all the summands cfv{
are positive, i.e., ;= A, and the components are ordered compatibly in size,
with

Ko € 2 K052, . . 2Kq 8 20.

With this we may assume that 7= 0. In fact, using the symmetry of the situ-
ation we may as well assume 1=0=123...n and x,=A,=+1 for all k. This
reduces our situation to considering the linear function c®, optimizing over the
vertices of the associahedron in the coordinatization of Section 3,
conv {v': Ted,}.
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Now we decompose c’x, as follows:
n
=Y (i+tj—lh—jp)xk

k=1
i<k <

= Y (“2k+i+j)xt Yy Ck—i,—j)x
WSk, !

Jr n n

S (~2k+ D)+ (=D +ixe+ ¥ k= Dxe—(i+j,—1) T x.

r=1 k=i, k=1 k=1

I M~ Ax

This last expression shows the following. The last two sums are constant over
the associahedron K,_,<R". For the first sum, if i.=j,, then the coefficient
of x, is zero for k=i,=j,. If p=1 and i;=1, j,=n, then the whole sum is
constant over the associahedron. In all other cases we get that the sum

y_. (=2, +1)+(i,— 1) +),) is maximized by v, if, and only if, T% has a
diagonal from i,—1=j,_, to j,, that is, if @ has a parenthesis pair at the
positions i, — 1 and j,.

In other words, v* minimizes —¢®x, if, and only if, the string ¢ has a
parenthesis pair around every non-trivial block of ¢ (of length between 2
and n—1). The explicit minimal value can now be derived from the data in
Section 3.

This completes the argument that v* minimizes —¢®x, if, and only if, a < ¢.
It only remains to show hypothesis (ii) of Lemma 9, i.e., that every ce(R")*
can be written as a positive linear combination of linear functionals that define
the facets meeting at a particular vertex. The proof of this gives an algorithm
for maximizing the functional ex over the polytope, which we now describe.

Let ce(R™)* be arbitrary. Maximizing ex over Q, we may use the symmetry
of P and Q, to assume ¢;=c,>...=c,=0. Now we algorithmically expand ¢
into a positive combination of vectors ¢®, where ¢ is a partition of @o=12...n
into blocks, where the last one is boxed if there is more than one block. Here
we have ¢®=(1,1,...,1). First write ¢=¢,c™+ ¢, where the vector ¢'=¢—
c.c™ satisfies ¢} =c3=...=2c,=0. For¢'=(0,0,...,0) we are done. Otherwise
¢’ has p>0 different components, and we can determine i, j, such that

ch=...=c,>ch=...=c,>. .. >0 =...=¢,=0.

Now set @ =iy~ ji.la***ja.- .0, - - j, and subtract a suitable multiple
of ¢” from ¢'. In fact, we can rewrite ¢’ =f,¢® +¢” for

¢ —c!
tl= min e Tiprt

1<r<p cﬁ' — cg'+ .

This ¢, is the largest ¢, such that ¢” turns out to be decreasing. Then ¢” is again
decreasing, with the last component 0, and the blocks of components where ¢”
is constant are unions of such blocks for ¢’. Furthermore, ¢” has fewer different
components than ¢’. Thus if we iterate this procedure, after k <n steps we have

written ¢ in the form
c=cc?+1,c”+. .+

with ;> 0, and such that the blocks of ¢, are unions of blocks of ¢;. Thus
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there exist complete parenthesizations @ of 12 ... n such that a <¢; for all i.
In other words, the ordered partitions ¢; determine a certain set of diagonals
in Cy(n+ 1), one for every block of size 2 <|B| <n occurring in some ¢;. Thus
v’ maximizes e¢x over @, if, and only if, the triangulation T contains this set
of diagonals.

We illustrate this algorithm for optimization over Q by an example. Let
n=6, and ¢o=(—2, 5,7, —4, —5,9). We first optimize ¢=(9, 7, 5, 5, 4, 2) over
Q. This c is rewritten as follows.

9,7,5,542)=2(1,1,1,1,1,)+(7,5,3,3,2,0)
(7,5,3,3,2,00=%10,8,5,5,2,00+(5,5,3,3,3,0)
$.54540=100,8,44,40+G 3,3,3,3,0)
( 3,3,%,3,0)=75(10,5,5,5,5,0)+(z,0,0,0,0,0)
(2,0,0,0,0,0)=176,0,0,0,0, 0)
and thus we rewrite
¢ =2c' 23456 4 %cl.2.34.5.@+ %c"2'345‘@+,L_;cl'2345@+,'—2c'.
From this we read off that ¢x is maximized (over Q) by
v (@GOMO = 15(f) +f, +fg) + 10(F, + 5+ 1)
+6(f, +,+15) + 3(L+ 1+ £5) + 1(f, +1;,+ 1)
=(90, 59, 49, 48, 44, 25),
so ¢ is maximized by VIO@IM (25 49 59 —44, —48, 90) and by
V@@ = (2548, 59, —44, —49, 90).

As a corollary, we get a complete description of the polytope KPA, _,. The
facets of KPA,_; correspond to the ordered partitions v of {1,2, ..., n} into
at least 2 blocks. Let (y) denote the string w surrounded by a pair of parenth-
eses, then () corresponds to a face of codimension 2 in KPB,. This face lies
below two facets of KPB,: namely the facet corresponding to ¢"=12...n,
which we identify with KPA, _,, and the facet corresponding to ¢(y), where
@(y) is obtained from y by boxing the last block. (See Fig. 2 for the case n=
2.)

COROLLARY 21. With v*eR", ¢?e(R™*, and b® as used in Theorem 20,
the polytope |KPA,_,| =conv {v*: aeatom (KPA,_\)} =R" has face lattice
KPA, _,. A complete linear description is given by

|KPB,| ={xe R™: Y x;= 1(n*—n?),

cWx<b®Y  for all yecoatom (KPA,_ ,)},

where @(y) is obtained from y by boxing the last block.
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Analogously, we have a theorem for the case of KPD,. Here the vertex
set is given as

vert |[KPD,| = {v*: aeatom (KPD,)} < {v*: aeatom (KPB,)} = vert |KPB,|.

The lattices KPD, have three types of coatoms ¢: strings with exactly one
block (and an even number of minus signs), strings with more than one block
such that the last block is boxed (so this last block contains more than one
element) and strings where the last two blocks are boxed (and the last block
is a singleton). In first.two cases, we have already constructed c® and b® for
the linear description of the polytopes KPB, in Theorem 19. Reusing this, we
get a complete description of the polyhedral realization of KPD,, as follows.

THEOREM 22. With v eR", ¢?c(R™)™* and b®cR as constructed before, the
polytope |KPD,| =conv {v*: acatom (KPD,)} =R" has face lattice KPD,.. 4
complete linear description is given by

|KPD,| = {xeR": ¢®x <b® for all pecoatom (KPD,)},

where b® has the same values as in Theorem 19 if at most one block is boxed. If
the last two blocks of @ are boxed, i,=j,=n, then we define A% {+1, —1}" as
before, and

cf=A0Bn—1+i,_,—2i.—2j,)
if p>1, and the letter 'k’ lies in the r-th block of ¢, and

—-nt 6n’—5n*—n

4 15

B i (j,—i,+2> 3(j,—i+1)*=2
r=1 3 5 )

n4
b"’=(3n—3+ip_,)

Proof. We apply the criterion of Lemma 18. The proof is analogous to
that of Theorem 20, so we only remark about two new points.

First, we need a lemma for maximizing a linear function over an orbit of
D, (the same is quite trivial for B,). For this, let ve R" with v, >0v,>...>01,>0
and ce(R")* with ¢, 2¢,>...>¢;, ,=...=¢,— 1 =—¢,>0. Then

max {c(wv): weD,}=cv,

and the maximum is achieved by w=id, and by those signed permutations with
exactly two minus signs such that we is weakly decreasing, except that one
component (wc); with i,_;<i<n has a minus sign.

Secondly, it helps to observe that both in KPB, and in KPD,, every facet
is either isomorphic to KPA, -, or adjacent to such a facet. This implies a
strong relationship between the facet defining inequalities of KPB, and of
KPD,. In fact, assume that the last block of ¢ is a singleton, and the last two
blocks of ¢ are boxed, so ¢ defines a facet of KPD,. Let y be the string
obtained by boxing only the last singleton block (instead of the box in ¢), so
v defines a facet of KPB,. Also, let v’ be the string with only one block, and
bars over the same letters as in ¢. Then one can see from the combinatorics
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that the inequality ¢¥ <b" has to be a positive combination of the inequalities
c*<b? and ¢¥' <b". Indeed, we have

¢’ =2¢"—(i,+j,—ip- 1 —jp-1)e",
and
BY =2bY — (i, +j,— ip—1 —Jp-1)b",

as is easily checked.

§5. Remarks.

1. The three families of Coxeter-associahedra are realized, by construction,
with the symmetry of the associated Coxeter group. Additionally, the vertices
in our description are integral, and they lie on a sphere around the origin. This
last fact follows by construction from the same phenomenon that we observed
for the associahedron at the end of Section 3. As stated there, we have a proof,
but lack a good explanation, for this phenomenon.

2. It is extremely desirable to have a more conceptual description of the
Coxeter-associahedra in terms of fiber polytopes. This suggests an extension
of the fiber polytope construction either for piecewise-linear maps, or to an
equivariant setting (compare Remark 16).

3. The geometric intuition in Kapranov’s paper {Kap] was that one should
construct the permuto-associahedron by placing a “small” associahedron at
every vertex of a permutohedron, in a suitable way. This suitable way was
found and described in Section 3, except that the associahedra were not small
(¢f. Figure 4). However, there is a construction that matches Kapranov’s
intuition, producing arbitrarily small associahedra at the vertices of a Coxeter-
hedron. For this we observe that the normal fan for our realizations of KPW
refines that of the Coxeterhedron PW, realized as usual as the convex hull of
an orbit of W. Thus we get

=0
KPW = (KPW+ (1 —)PW — PW

from the fact that if the normal fan of P refines that of Q, then the Minkowski
sum P+ Q is combinatorially isomorphic (and normally equivalent) to P (see
[GrZ] [Zie, Prop. 7.12]).

4, The face poset of the associahedron K, was shown to be EL-shellable
by Bjérner (personal communication), and it follows from the realization of
KPW as a polytope that its face poset KPW is CL-shellable (see [BW]). Are
there nice EL- or CL-shellings of KPW?

5. With the proof of Theorem 20, we have a combinatorial, polynomial
algorithm for optimization over the Coxeter-associahedra. Is there a similarly
simple routine for separation, i.e., to decide whether a given point lies in
KPA,_?

6. Comments on tools: We have used the program “PORTA” [Chr, CJR]
for Fourier-Motzkin computations, yielding complete and irredundant sets of
defining equations and inequalities from lists of vertices (and vice versa). This
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program is powerful enough to do complete computations for all the
4.dimensional Coxeter-associahedra. The figures 1, 3 and 4, displaying the
Coxeterhedra and Coxeter-associahedra for n=3 as spatial polytopes, were
generated from PORTA output by Jiirgen Richter-Gebert (using Mathe-
matica graphics in Fig. 4).
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REPRESENTATION EXTENSIONS AND
AMALGAMATION BASES IN RINGS

KUNITAKA SHOIJI

Abstract. The main purposes of this paper are to investigate Z-injective
rings with the representation extension property and its dual, to give a necessary
and sufficient condition for a Z-injective ring to be an amalgamation base in
the class of all rings and to determine structure of Z-injective Noetherian rings
which are amalgamation bases. Further, in the class of all commutative rings,
it is shown that a commutative ring has the representation extension property,
if, and only if, it is an amalgamation base.

§81. Introduction and preliminaries. 1n[2], P. M. Cohn investigated initially
free products of rings amalgamated with a ring fixed. Consequently, he showed
that a regular ring R is embedded in any free product of rings with R amalgam-
ated, thus R is an amalgamation base in the class of all rings. Recently, Ren-
shaw [9] gave a criterion for amalgamation bases for rings. The main purposes
of this paper are to improve the Renshaw’s criterion and to determine the
structure of Z-injective Noetherian rings which are amalgamation bases in the
class of all rings.

Throughout all the paper all rings are associative rings with an identity,
and all modules are unital. Let R be a ring with identity 1. Then the subring
of R generated by 1 can be identified with the ring of all integers Z or its
residue ring Z/mZ, where m is a positive integer >1. If R is Z-injective, that
is, injective as an additive group, then either R contains @, so it is free as Q-
module or it is a free Z/mZ-module, respectively. In the latter R is a direct
product of rings whose characteristics are power of primes. For any subset X
of R, define /—ann (X)={reR|rX=0}. It is called a left annihilator of X in
R. Similarly a right annihilator of R is defined.

LEMMA 1. Let R be a Z-injective ring of characteristic p°, where p is a
prime number, s is a positive integer.' Then _

(1) I—ann ({p'}) (=r—ann ({p'}))=Rp* ", .

(2) Rp’x<Rp'y (x, yeR, 0<i<s) implies Rxc Ry+ Rp*~".

Proof. (1) This is easy. (For example, see [S, 111, 1.7, Exercise 7].)
~ (2) Let x, yeR with Rp'’x< Rp'y. Then p'x=p'ty for some reR. Thus
p(x—ty)=0. By (1), x—tyeRp*~". Hence xeRy+ Rp*~".

LEMMA 2. Let R be the same as above, and I a left ideal of R with I> Rp.
Then there exist submodules A,, A, of the Z-module R such that I=A 1+ Rp,
R=A4 1 @Az .
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