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TWO SIGNED ASSOCIAHEDRA

H. BURGIEL AND V. REINER

ABSTRACT. The associahedron is a convex polytope whose vertices correspond
to triangulations of a convex polygon. We define two signed or hyperoctahedral
analogues of the associahedron, one of which is shown to be a simple convex
polytope, and the other a regular CW-sphere.

1. INTRODUCTION

The d-dimensional associahedron is simple d-polytope whose facial structure re-
lates to triangulations of a polygon (see [8]). This paper is about two signed or hy-
peroctahedral analogues of the associahedron, which we shall call the simple signed
associahedron and the non-simple signed associahedron, respectively.

To give a flavor of these signed associahedra, we will describe the graphs which
form their 1-skeleta. Both signed associahedra have vertices indexed by completely
signed triangulations of a convex (n + 2)-gon P,, which we now define. Number
the vertices of P, as 0,1,2,...,n,n + 1 proceeding counter-clockwise around its
perimeter, as in Figure 1.

A completely signed triangulation is a triangulation along with an assignment of
+ or — to each of the vertices 1,2,...,n.

In the simple signed associahedron, there will be an edge between two completely
signed triangulations if either

o the assignments of + are the same, but the triangulations differ by flipping
the diagonal in a single quadrilateral, or
¢ the triangulations are the same, but the signs + differ exactly on the third
vertex of the triangle which contains the vertices 0,n + 1.
Figure 2(a) depicts a small part of the graph of the 3-dimensional simple signed
associahedron.

In the non-simple signed associahedron, there will be an edge between two com-
pletely signed triangulations if either

o the assignements of + are the same, but the triangulations differ by flipping
the diagonal in a single quadrilateral, or

e the triangulations are the same, but the signs & differ exactly on some vertex
i which lies in a triangle of the triangulation having vertices ¢ — 1,4,7 + 1.
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FiGurRE 1. The labelling of vertices in the (n + 2)-gon P,.
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FIGURE 2. A part of the graph for (a) the simple signed associa-

hedron, (b) the non-simple signed associahedron
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FIGURE 3. The two trees associated to a dissection

Figure 2(b) depicts a small part of the graph of the 3-dimensional non-simple signed
associahedron.

Our main results are as follows. Corollary 3 shows that the graph described
above for the simple signed associahedron is actually the l-skeleton of a simple
polytope, whose entire facial structure is described in the next section. Theorem 6
shows that the graph described above for the non-simple signed associahedron is
actually the 1-skeleton of a regular CW-sphere whose facial structure is described
in Section 3. We do not know whether this CW-sphere is polytopal.

2. THE SIMPLE SIGNED ASSOCIAHEDRON

In this section we define a poset Kw which we will eventually interpret as the
face poset of our first signed associahedron. Our goals are to show that it is the
face poset of a simple n-dimensional polytope, and compute its f-vector.

Let P, denote a convex (n + 2)-gon with vertices labelled 0,1,2,...,n,n +
1 proceeding counter-clockwise. A dissection of P, is a subset of non-crossing
diagonals in the polygon. We think of the diagonals chosen as decomposing P, into
smaller polygons. The smaller polygon containing the edge {0, n+1} will be denoted
the root polygon. This terminology derives ;from the following picture which we
will use frequently (see Figure 3 (a}): we think of the the polytopal decomposition
as defining a rooted plane tree having a vertex for each of the smaller polygons, the
root vertex corresponding to the root polygon, and an edge connecting two vertices
if their corresponding polygons share a boundary edge.

A signed dissection is a dissection of P, along with an assignment of a sign from
{0, +, -} to each of the vertices labelled, 1,2,... ,n (so nothing is assigned to the
vertices labelled 0,n + 1) with the following property: vertices assigned 0 may only
occur in the root polygon, and if any of the vertices in the root polygon are assigned
0, then they must ell be assigned 0. We call the improper signed dissection the one
which uses no diagonals in the decomposition, and assigns every vertex 0.
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Define a partial order on the signed dissections of P, as follows: § < §' if

e as a dissection, & refines §", i.e. the diagonals used in § contain all the diagonals
used in &', and

e for each vertex i = 1,2,...,n, the sign assigned to vertex ¢ by & is less than
or equal to the one assigned by &' in the partial order +, — < 0.

Finally, let Ww denote the poset of all proper signed polytopal decompositions
under the above partial order, and let (KZ)* denote the order dual to K with an
extra minimum element 0 adjoined (corresponding to the improper signed polytopal
decomposition).

PROPOSITION 1. (KZ)* is the face poset of an (n — 1)-dimensional simplicial com-
plex.

By abuse of notation we also denote this simplicial complex by (KZ)*.

Proof. We must show that
e for every maximal element z, the interval [0,z] in (KZ)* is isomorphic to a
Boolean algebra of rank n, and
. QAW )* is a meet-semi-lattice, i.e. any two elements z,y have a greatest lower
bound z A y.

To show the first assertion, assume x is some maximal element in (KZ)*, so that
z corresponds to a completely signed triangulation. This means that z decomposes
the polygon P, into triangles using n — 1 diagonals d;,... ,d,, and it assigns a
non-zero sign + or — to all vertices, including the root vertex v. Create a Boolean
algebra on the ground set X = {d,,...,d,} U {v}, where {v} is just a singleton
set. Given y € [0,z], it must use some subset of the diagonals dy,... ,dn, and it
either assigns the same sign + or — as z did to v, or it assigns 0 to v. Let f(y)
be the subset of X consisting of the diagonals y uses, unioned with either {v} or
the empty set depending on whether y assigns % or 0 to v, respectively. It is easy
to check that y is completely determined by the set f(y) once we know it is in
{0,z]. Furthermore, it is easy to check that the order relation on [0, z} corresponds
to inclusion of the sets f(y). Thus f gives the desired isomorphism between B, z]
and the Boolean algebra 2X.

To show the second assertion, given z,y in (KZ)*, we will construct z Ay. First,
we produce a precursor candidate w by taking the dissection whose set of diagonals
is the intersection of the sets of diagonals from z and from y, and assigning {+, —, 0}
to the vertices 1,2,... ,n by taking the componentwise meet of the assignment by
z and y in the partial order 0 < +,—. The problem is that w may fail to be a
signed dissection in that it may have 0 assigned to a vertex which is not in the
root polygon, or it may have 0 assigned to some but not all of the root polygon’s
vertices. To fix this problem, we start with w and let T be the tree associated to its
dissection. Form a new dissection by removing all diagonals corresponding to edges
in T that lie on a path to the root from some polygon in w containing a vertex
assigned 0. In this new dissection, if there are any 0 assignments to vertices in the
root polygon, then change the assignment to O for all vertices in the root polygon.
This clearly gives a signed dissection, which we claim is z A y.

To see that = A y really is the greatest lower bound of z,y, let z be any other
lower bound for z,y, so that z < z,y. Certainly the dissection in z must be coarser
than that of the precursor w, and it must have 0 assigned to a vertex whenever w
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FIGURE 4. The simplicial complexes (K¥)* and (KZ)*

did. But this then implies that all these 0 vertices must lie in the root polygon of
z, and hence all the diagonals of w lying on a path from one of these vertices to the
root in T must not be present in 2. This implies z has a coarser dissection than
x Ay, and it is easy to check that it must also have sign assignment componentwise
bounded by that of z Ay. 1

Figure 4 depicts the geometric realizations of the simplicial complexes QAN )* for
n = 2,3. Note that in both cases the simplicial complexes triangulate a sphere
S™-1, Furthermore, the sphere appears to be polytopal, i.e. the boundary complex
of a simplicial polytope, in anticipation of the next theorem.

THEOREM 2. The simplicial complex (KZ)* is isomorphic to the boundary complex
of an n-dimensional simplicial polytope.

Proof. We emulate the proof in §3 of [8].

Let A be the boundary complex of an n-dimensional hyperoctahedron or cross-
polytope, with vertices labelled {£1, ... ,%n} in such a way that the vertices i are
antipodal for all i. Faces of Ag are then isotropic subsets of {1,...,%n}, that is
subsets which do not contain any pair {+i, —¢}. Say that a face F' = {iy,...,%,}
is contiguous if the set of absolute values {|i1],... ,]ir|} form an interval in Z.

We next perform stellar subdivisions (see {8], §2) of each of the contiguous faces
of Ag to obtain a simplicial complex A*, and the subdivisions are to be performed
in any order which subdivides the higher dimensional faces before the lower di-
mensional faces (actually any order which extends the partial ordering by reverse
inclusion will do). These stellar subdivisions are well-defined since at the stage
where one is about to subdivide the face corresponding to some contiguous subset,
that subset really does still form a face in the subdivided complex so far. See Fig-
ure 5 for a picture of Ag, A* when n = 3, which also contains a picture of the first
barycentric subdivision of Ag.

The complex A* is clearly the boundary complex of an n-dimensional simpli-
cial polytope, since it comes from Ag by a sequence of stellar subdivisions, which
preserve polytopality. We claim that A* is isomorphic to the simplicial complex
(KB)*, and our proof exactly follows the plan in [8], §3.

One first notes that the vertices of A* correspond to contiguous isotropic subsets
of {*1,...,%n}. Contiguous isotropic subsets in turn correspond to diagonals in
P,. along with a partial assignment of signs to the vertices strictly enclosed by that
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FIGURE 5. Ag,A* =~ (KB)* and 8 whenn =3

diagonal (except if the isotropic subset has cardinality n, in which case there is no
diagonal, just a complete assignment of signs).

One then checks that if two contiguous isotropic subsets form an edge in A~,
then

o they must agree on any signs which both assign, i.e. their union cannot

contain any pair +i, and

o they cannot correspond to crossing diagonals (checking this uses Lemma 1 of

(8))-

One concludes that every maximal face of A* corresponds to a completely signed
triangulation of P, i.e. to some maximal face of (KZ)*. It is easy to check that
A* is a simplicial pseudomanifold, i.e. every codimension 1 face lies in exactly 2
maximal faces, and any two maximal faces are connected by a path of maximal
faces with adjacent ones sharing a codimension 1 face. Since both (KZ)* and A*
are obviously pseudomanifolds, the two complexes must be isomorphic. 8

COROLLARY 3. The poset Nw is the face poset of the boundary of an n-dimensional
simple polytope.

From now on, the simple polytope in the corollary will be referred to as the
simple signed associahedron, and we will abuse notation by also referring to the
polytope as xw .

Remark

1t follows immediately from the construction in the previous proof that as a sim-
plicial complex, we may view (KZ)* as a refinement (subdivision) of the boundary
complex of the n-dimensional cross-polytope Ag. Omne can also show using this
construction that (KZ)* can be further subdivided into a complex isomorphic to
the first barycentric subdivision of Ag, which is sometimes known as the Cozeter
complez £2 for B, (see [7)). Figure 5 illustrates this relationship.

Our next goal is to compute the f-vector of K2 or equivalently of its dual (KB
Recall that the f-vector of a polytope P is simply the sequence
(F=1(P), fo(P), - .-, fa—1(P)),

where f;(P) is the number of i-dimensional boundary faces of P. It is not difficult
to show that

1) fKEY) =2 ans+ D 2" ankm

m=2
where a, & is the number of dissections of the {(n + 2)-gon P, using k diagonals, and
@n k,m is the number of dissections of P, using k£ + 1 diagonals in which the root

“ Fl@,g2)=z+yy "Flz,y )" =+
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polygon has m + 1 vertices. A formula for a, ¢ was given by Kirkman (see {8]):

1 [n=1\[n+k+1
@ a=_»|=+HA k vm k+1 v

To obtain a formula for anx,m, we first revise the the correspondence between
dissections and rooted trees that was illustrated in Figure 1. Given a dissection of
P,, add on to the tree that was associated to it an extra leaf outside each of the
edges (4,i + 1) with 1 <7 < n — 1 as shown in Figure 3 (b). This correspondence
shows that an xm = bnyiks2,m Where b, i - is the number of plane rooted trees
with

e n leaves,

e every internal vertex (including the root) having at least two children,

o k non-leaf vertices (including the root),

e root vertex of degree m.

We next define the generating function
®3)

Flz,y,2)=2+ Y.  buxma g™
n>2,k>1,m>2

T+ 17y2 + 23222 + 92®) + 2 (5% + 222+ 3P ) + .

in which the extra term z on the right-hand side accounts for the degenerate case
of a tree with only one vertex which counts as a leaf, but neither a root nor an
internal vertex. Then we will use generating function manipulations to prove the

following lemma.
b _mf{n-m-1 n+k-2
mhm Ty k-2 k-1 /)

Proof. The standard recursive construction for rooted plane trees removes the root
vertex, leaving a sequence of rooted plane subtrees. This yields the following func-
tional equation for F:

LEMMA 4.

y2*F(z,y,1)
= 1~ zF(z,y,1)

We next attempt to determine the coefficients of powers of F(z,y, 1), from which
we can determine the b,k m. Let p(z,y) = F(z,y,1), so that setting z = 1 above
gives

ﬁﬂ&.*wewﬁnﬁ

(8)
rep- Y
1-p

Equation (4) says that for m > 2 the coefficient of 2™ in F(z,y,2) is p(z,y)™.

Lagrange Inversion applied to equation (5) allows us to find the coefficient of z" in
the power series p™. Letting

glz) =z - =p z),
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yields
m z \"
" B1_. = DBypn-m Alllv
o™ = 2o (-

where here [z"]h(z,y) denotes the coefficient of 2 in A(z,y). ;From this, it is not
difficult to calculate that

m ifn n+j—1 i
e =2 ¥ o (1) (T ) asar
n._ : J
t+j=n—-m
Applying this to equation (4), we see
bapom = [z

z er(1)()04)

i+j=n—

3|8

This simplifies to:

b _m({m-m-1 n—-m P k+m—-n-1

mhm TR n-m k-1 )2 l4m=-2n |1 /"
where we are using standard hypergeometric series notation (see e.g. [10]). Apply-

ing the Chu-Vandermonde summation formula to the »F) then gives the desired
result. 8

If we now observe that an & = bnt1 k42,1, then equation (1) yields the following:

THEOREM 5.
Bysy _ - (n—m+1)_T n—-m n+k+1
Fl(KT)) :.Mlm :th k VA k+1
_ n+2 1—-k m-n
- umm 2 -n Hv

It is somewhat disappointing that the summation in the preceding theorem does
not appear to simplify in any nice way, making the f-vector for ANW )* somewhat
more complicated than its unsigned counterpart from [8]. Even more unfortunately,
the h-vector (see [8] for a definition) of (KZ)* can be computed by summing the
above formula for the f-vector, but it also does not have a simplification that we
are aware of.

3. THE NON-SIMPLE SIGNED ASSOCIAHEDRON

In this section we briefly discuss another signed analogue of the associahedron.
It will be a poset NZ which is again the face poset of a regular CW-sphere, but we
do not know whether this sphere is polytopal.

Given a dissection of the (n + 2)-gon P, the leaf polygons are the polygons
which contain at most one edge not of the form {i,i +1} with 1 <¢,i+1 < n. For
a polygon in a dissection, the interior vertices are those which neither carry the
maximum nor the minimum label among all vertices of the polygon. Say that an
assignment of a sign ;from {0, +, —} to each of the vertices labelled 1,2,... ,nisa
signed dissection of the 2™ kind if

o every vertex assigned O is an interior vertex of some leaf polygon, and

o whenever a leaf polygon has some interior vertex assigned 0, then all of its

interior vertices must be assigned 0.
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(6) - {-3-56-8} C {1-34.56-7-89}
FIGURE 6. The map y: A chain of isotropic subsets S; C S; C S3
of {£1,+£2,...,+£11}, and the associated signed dissection

The partial order on signed dissections of P, of the 2"* kind is the same as that
on signed dissections, and we let NZ denote this poset. Let (NZ)* denote its dual
poset. The goal of this section will be to sketch the proof of the following fact:

THEOREM 6. AZWV. is the face poset of a regular CW -sphere.

We will call this CW-sphere the non-simple signed associahedron, and by abuse
of notation, denote it (NZ)*. We have depicted (N2)* in Figure 8

Our strategy is very similar to the one employed in [9, §2]. We define a map ¢
from the poset of faces of the hyperoctahedral group’s Coxeter complex TF to the
poset (NB)*. Then we show that the inverse image y~1((N? )<,) of each principal
order ideal (N% Yoy in NP is a ball, and that this gives a regular CW-decomposition
of L.

To this end, recall that the Coxeter complex TZ for the hyperoctahedral group
B,, is the barycentric subdivision of the n-cube or the n-hyperoctahedron. Faces of
5 may be identified with chains

z:=(51CSC---CS)

of isotropic subsets of {£1,+2,...,%n}, where S; being isotropic means that it
can contain at most one element of each pair {+¢, —2}.

Given such a chain z, we can produce a signed dissection ¥(x) of P, of the
second kind in the following way (see Figure 6). Let E; be the path of edges which
starts at the vertex of P, labelled 0, visits the vertices labelled by the elements of
S; in order of increasing absolute value, and then ends at the vertex labelled n + 1.
The union of the paths {J; E; gives a dissection of P, and the largest set S, gives
a partial assignment of + signs to the vertices, which can be completed to a full
assignment by putting 0 on the remaining vertices. It is not hard to check that this
gives a signed dissection of the 2 kind.

For a given signed dissection of the 2" kind y in N2, we now describe the inverse
image %LQZWVML of the principal order ideal AZwvm_\ generated by y. Let P, be
the partial order coming from the tree structure on those polygons of the dissection
y which do not contain vertices assigned 0, in which the root polygon is lowest in
the partial order. An example is shown in Figure 7. Any non-empty order ideal
I in P, gives rise to an isotropic subset by replacing each polygon in I by the set
of labels of its interior vertices along with their assigned signs. This gives a poset
isomorphism & between SLAAZWVMEV and the poset of chains (ordered by inclusion)
in the distributive lattice J(Py) of order ideals in P,.

Since only non-empty order ideals are relevant, the map « then induces a simpli-
cial isomorphism from the order complez A(J(P,) —9) to eLQZwvmev, where here
we are considering ¢~ (NZ )<y) as a simplicial complex (and in fact, a subcomplex
of 5y,
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FIGURE 7. An illustration of A(J(P,) — 0) ~ v~ ((NZ),)
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(Na) o
mﬁcwm 8. L8 refines AZWV, which refines both the n-
hyperoctahedron and n-cube.

It is known that for any poset P, the order complex AJ(P) is shellable [1], and
since every codimension 1 face lies in at most 2 maximal faces, shellability implies
that it is homeomorphic either to a (|P|—2)-dimensional ball or to a (|P|—2)-sphere
[5]. Furthermore, if the poset P has at least one order relation (as is the case for
P,), the complex A(J(P)— @) will be homeomorphic to a ball. One can check that
under the simplicial isomorphism

A(J(R,) - 0) =y~ H{(NT)<y)
—B) maps to the subcomplex Y~1((NB),). Consequently,

C P IND)<y)

yeNE

the boundary 8A(J(P,
the decomposition

is a regular CW-sphere whose face poset is AZW )*, finishing the sketch proof of
Theorem 6.
Remark
It is well-known that the Coxeter complex £F may be identified with the barycentric
subdivision of either the n-cube or the n-hyperoctahedron, and hence refines them
both. The map ¥ shows that the sphere (NBy is a coarsening of £Z, and a
slightly closer look reveals the fact that (NZ)* refines both the n-cube and the
n-hyperoctahedron (Figure 8).

To see this fact, note that two maximal chains

=(5,C S C--CSn)
=(5]CS5C---CSy)
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represent faces of ZF that lie in a common (subdivided) face of the n-cube if and
only if §; = 5. They lie in a common (subdivided) face of the n-hyperoctahedron
if and only if S, = S’,. So one must check that ¥(z) = ¥(z’) implies both §; = 5]
and S, = S, which is straightforward: ¥(z) = ¥(z') will be some fully signed
triangulation of the second kind y, and then S; = S is the sign and label of the
root vertex in y, while S, = S/, is the set of signs and labels on the vertices in y.

4. REMARKS, OPEN PROBLEMS

Remark 1 Is the non-simple signed associahedron NZ the face poset of a convex
polytope? Are there embeddings of it and of the simple signed associahedron Nw
using Gale transforms as in [8, §4] and [6, Chapter 7]7

Remark 2 In (3}, the authors consider a natural map « from the symmetric group
S, to the vertices of the usual (n — 2)-dimensional associahedron, having many nice
properties:

e permutations x,7’ € S, which differ by an adjacent transposition map to
either the same vertex, or to adjacent vertices of the associahedron,

e the inverse image under a of any vertex in the associahedron is a set of
permutations which forms an interval [x1, 72} in the weak order on Sy,

e any linear extension of the weak Bruhat order on S, gives rise to a shelling of
the Coxeter complex for S, and pushing such an ordering forward by o gives
rise to a shelling order of the dual simplicial complex to the associahedron.

In particular, the last property listed allows one to compute the h-vector of the
associahedron in by a method very similar to (8, §6].

In the signed case, there are again natural maps from the hyperoctahedral group
B, of signed permutations to the vertices of the two signed associahedra K, N2
which have properties analogous to the first property above. More specifically, the
map from B, to the vertices of Zw is no more than the restriction of the map ¥
from the previous section to the set of maximal faces of the Coxeter complex. If
one chooses a set of Coxeter generators for B, to be the adjacent transpositions

; = {(i,7+ 1) along with the sign change s, in the last coordinate, then two signed
vmnsiwsovm which differ by some s; with 1 < ¢ < n will either map to the same
vertex of N2 (= maximal face of (NF)*) or to two adjacent vertices. A similar map
can be defined from B, to the vertices of ww , and the same property holds.

Unfortunately, there are examples of vertices from Nw and Zw whose inverse
images in B, under these maps do not form an interval in the weak Bruhat order
(with respect to the above set of Coxeter generators), although they will always be
convex subsets of B, in the sense of Tits (see [2, Appendix]). It is also unfortunate
that linear extensions of the weak Bruhat order on B, do not map forward to a
shelling order on the simplicial complex (KB)*. In fact, we do not know of any
simple explicit shelling of (KZ)* which helps to compute its h-vector, even though
shellings are known to exist because it is a polytope [4].
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