COHOMOLOGY OF REAL DIAGONAL SUBSPACE ARRANGEMENTS
VIA RESOLUTIONS

IRENA PEEVA Vic REINER VOLKMAR WELKER

Abstract: We express the cohomology of the complement of a real subspace arrangement of diagonal
linear subspaces in terms of the Betti numbers of a minimal free resolution. This leads to formulas for the

cohomology in some cases, and also to a cohomology vanishing theorem valid for all arrangements.

1. Introduction

Consider R™ with coordinates given by us,...,u,. A linear subspace of the form
ui; = ... = u;, is called a diagonal subspace. In this paper we study arrangements of
diagonal subspaces called diagonal arrangements (or hypergraph arrangements according
to other authors).

The following problem has been of interest:

Problem 1.1. Compute the cohomology of the complement M 4 := R™ — A of an ar-
rangement A of linear subspaces.

The usual approach to computing the cohomology H*(M 4; k) is to
e compute the homology of lower intervals in the intersection lattice L4 (see Section 5)
using techniques such as non-pure shellability, and then
¢ apply a result of Goresky and MacPherson [GM] (or further refinements such as [ZZ,
SWe]) which expresses H*(M 4) in terms of this data.
See [Bj] for a nice survey of the subject of subspace arrangements. The goal in this paper is
to bring to bear algebraic techniques to attack Problem 1.1 for the diagonal arrangements.
We will use the following construction.

Construction 1.2. Let S = k[z1,...,z,] be the polynomial ring over a field k. Let
I be a monomial ideal in S, i.e. an ideal generated by monomials. It has a unique
set of minimal generating monomials, and among these let the square-free monomials be
mi,...,Mms. For a square-free monomial m, let U,, be the intersection of the hyperplanes
up = uq for monomials z,z, dividing m;. Define the canonical arrangement A; associated
to I to be the union of the diagonal linear subspaces Uy,,, i = 1,2,...,s. For example, if
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I = (x4, 2123, 232373, Tox374) C k[Z1, T2, T3, 74] then
A[ = {u1 = Ug} U {’u,z = Uz = ’u,4}.

For every diagonal arrangement A there exists an ideal I such that A = A;. The
square-free generators of I are uniquely determined by the subspaces in A; the nonsquare-
free generators can be chosen arbitrarily.

Furthermore, the homology Tor-groups Torf/ I (k, k) can be computed from the min-
imal free resolution of k over S/I. Since S/I carries a natural N™-grading, this resolu-
tion may also be chosen N™-graded, and for a monomial x* = z7* ---z5" we denote by

n
Torf/l(k, k)q or Tor;-g/l(k, k)xe the a-graded piece of Torf/l(k, k). m
Our algebraic approach to solving Problem 1.1 is based upon the following:

Theorem 1.3. Let I be a monomial ideal in S = k[z1,...,z,], and A its canonical
arrangement. Then

H' ( My, k) = Tori/_li (kyK)oy.z, -
The numbers dikaorf;/_ I,(k, k) are the ranks of the free modules in the minimal free
resolution of k over S/I, and are called the Betti numbers of k. Thus, Theorem 1.3 links
the Betti numbers of M4, and k. The theorem is proved in Section 2, using the Bar

resolution of k to compute Tor3/! (k, k) and relying on a specific geometric realization of
M 4,. In Section 3 we demonstrate some applications of the theorem. An example is given
which shows how dimgH*(M4) can depend upon the characteristic of the field k. We
also comment there that the theorem opens up the possibility to compute cohomology in
specific examples by the computer algebra package MACAULAY.

In Section 4 we introduce stable diagonal arrangements motivated by the fact that the
minimal free resolutions of stable ideals are well known. For such arrangements H*(M4)
is explicitly computed in Theorem 4.2. This class includes the r-equals arrangements Ap r,
for which we are able to further refine our results and describe the action of the symmetric
group on H*(My, ,;C) (Theorem 4.4). The r-equals arrangements have received much
attention recently (see [Bj, BLY, BWe, Kh, Ko, SWa, SWe]). The proofs of Example 3.4
and Theorem 4.4 are entirely based on the algebraic approach and do not make use of the
combinatorially established properties of Ay, ..

Section 5 is inspired by a result of Backelin and Eisenbud et al. on the rate of growth
of TorS/T(k,k) based on the minimum degree of generators for /. We prove a sharp
lower bound for the vanishing of the homology of the intersection lattice of an arbitrary
arrangement of linear subspaces in a vector space, based on the minimum codimension of
the maximal subspaces (Theorem 5.2).



2. Resolutions

In this section we prove Theorem 1.3 and discuss some consequences.

Proof of Theorem 1.3: The first part of the proof is a computation of Betti numbers
by the Bar resolution. This idea has already been applied in [HRW, Theorem 3.1] and
[PRS]. We present it in detail for the purposes of keeping this paper self-contained, and
we recapitulate the argument in a slightly different form here.

Denote R = S/I. In order to compute Tor®(k, k), we resolve k as a trivial R-module
k= R/(z1,...,2,) using the Bar resolution [Ma, Section IV.5]:

B..,___)Bz_.>...-—)B1——)BO—')k—')O

This is a free resolution in which B; is the free R-module having basis indexed by all
symbols [my|mg|---|m;] where mj, j = 1,...,4, are monomials in R. We interpret this
symbol as 0 if any of the monomials m; lies in I. The differential d; : B; — B;_1 is defined
R-linearly by

difma|ma) - - - |mi] = malmal -+ lmi] + Y (=D [mal- - fmy - myga] - fma).
1<5<i-1

The free resolution B is far from minimal. To compute Torf(k, k), we tensor B with k,
and then take the homology. B ®g k is a complex of k-vector spaces with differential

dilmalma|---imil = Y (=1 [ma|--|my - mypal- - fma).
1<5<i-1

Notice that d; preserves the product [], m; of the monomials between the bars, i.e. it
preserves the N™-grading. This means that B ®g k decomposes as a direct sum of chain
complexes (B ®g k)q for o € N™, and Tor?(k, k) is the homology of the chain complex
(B®gr k)a-

For X* = &1+ Tn, the chain complex (B ®g k)g,...z, = (B ®r k)o may be further
identified with the (augmented) relative chain complex for a certain pair of cell complexes
which we now describe. Consider the decomposition of R™ into cones of various dimensions
by the union of all hyperplanes of the form u; = uj, 1.e. the classical braid arrangement of
Type An—1 [OT, Section 1.2]. By restricting this decomposition to the unit sphere S*~2
inside the hyperplane ) . u; = 0, one obtains a simplicial decomposition A, of this sphere
commonly known as the Cozeter complex for Type An-1.

A typical face in A, is the intersection of the sphere with the cone defined by a
sequence of equalities and inequalities relating all the variables uj,...,un, such as

Ug = Us = U7 > Ug = U1p > Ug > Ul = U3 = Ug > Ug,
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for n = 10. Identify this face of A, with the k-basis vector [z22527|T4%10}T6|Z1Z3T8|T9] in
(B®g k)g,...c,. Observe that the symbols [my]- - |my] which have been set to 0, namely
those in which some m; € I, exactly correspond to the faces of A, which triangulate the
intersection S*~2 N A;. We conclude that

(B ®g k)g,..z, = Cu(S™2, 8" 2N AL k)

where C,(S™2,8""2 N Ar; k) denotes the augmented relative chain complex with coeffi-
cients in k for the pair (S"~2,8"2N A;). Therefore

Torf(k,k)g,..z, = Hi_2(S"72, 8" 2N A3 k).
On the other hand, I:Ii(S"‘z) = 0 unless i = n — 2, so the long exact sequence for the
pair, along with Alexander duality gives
Tor®(k, k)gy...s, = Hi—a(S" 2N A k) (2.1)
~ Ani(S"2 — (8" 2N Ap)sk) .

for ¢ < n. A similar computation shows that
TorB(k, k) g0, 2 HO(S" 2= (S" 2N A);k) Dk
=~ HY(S8" 2 — (S" 2N Ap);k).

It only remains to observe that S*~2 — (S®~2? N A;) is homotopy equivalent to M4, =
R™ — A for the following reason: one can first project perpendicularly onto the subspace
Zi u; = 0 in R™ since every subspace in A; contains the kernel u; = -+ = uy, of this
projection, and then perform a straight-line homotopy

v
v (1l-t)v+t—
vl
to project radially onto the unit sphere Sn—2,
This completes the proof of Theorem 1.3 m

The numbers Torf/ I(k, k) are equal to the ranks of the corresponding free modules
in the minimal free resolution of k over S/I, and are called the Betti numbers of k. The
multigraded Poincaré series of k is

Poingﬂ(t, x) 1= z dikaorf/I(k, k)ot'x®,
i>20,aeN"™
where we are abusing notation by using the variables x = zi, ..., Z, as both indeterminates

in S and as generating function variables in Poing /1(ts x).
For a power series f in Z[t][[z1,...,Zx]] and monomial m in the variables ¢, x denote
by coeff,,,(f) the coefficient of m in f. In this notation, Theorem 1.3 can be rephrased:
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Corollary 2.1. Let I be a monomial ideal and A its canonical arrangement. Then

Poin(Ma,; k) = t" coeffy,...q, (Poin§, (7", %)) .

Backelin showed in [Bal] that when I is a monomial ideal, Poin, /1(t,x) can always
be written as a rational fraction

(1+tzy)...(1+tzy,)
Ki(t, x) ’

Poingﬂ(t, x) =

where K7 is a polynomial which we call the I-denominator. Furthermore, he gave explicit
bounds for the maximum degree of ¢t and each z; in K7, so that in principle one need only
compute a finite number of steps in the minimal free resolution of k£ as an S/I-module to
get enough information for computing K.

It was proven by Serre (see [GL]) that

(14+tzq)...(1 +tz,)
1-—t2Qr(t,x)

Poinlg/I(t,x) < (2.2)

where the above inequality means coefficient-wise comparison of power series, and where
Q1(t,x) is the Poincaré series for the finite minimal free resolution of I as an S-module,

Q1(t, x) := Poink(t,x) = Z dimy Tor} (I, k)otix®.

i>20,a€N™
We summarize all the above information in the next corollary of Theorem 1.3.

Corollary 2.2. Let I, K((t,x),Qi(t,x), M4, be as above. Fori > 1 we have

dim HE (M, k) = dimgTor>" L (k, k)2, ..z,
(1+tz1)...(1+1tzy,)

= coeffyn-ig,...q,

KI(t’x)
(1+tzy)...(1 +tzy,)
< coeffyn-ig, ..., 1 —12Q (t,x)

3. Applications

In this section we demonstrate how to apply Theorem 1.3.
Example 3.1. Let A be a hyperplane arrangement of diagonal hyperplanes u; = u;. Then
we can choose a monomial ideal I generated by quadratic monomials so that A = A;. By
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[Fr], the minimal free resolution of k over S/I is linear. Hence Torf/ T(k,k)s,..s, vanishes
for i # n. This corresponds to the fact that H*(M 4,; %) simply counts the connected
components of M 4,. m

Among other things, Theorem 1.3 opens up the possibility of calculating H*(M4,; k)

by computer (via Grébner bases). The Betti numbers dikaoriS/ (k, k) can be computed
in the computer algebra package MACAULAY by D. Bayer and M. Stillman [BS] using
a script for N™-homogeneous calculations by A. Reeves. The minimal free resolution of
k is infinite, however note that Tor(k,k)s,..z, vanishes for i > n, so only the first n
Betti numbers need to be computed. As an illustration of this, we give an example that
demonstrates the dependence of H*(M 4,; k) upon the characteristic of the field k. We
remark that this example is the same as the one discussed in [BWa, Example 7.7].

Example 3.2. Consider the arrangement A of 10 subspaces in RS
Up = Uz = Uz, U = Uz = U, U1 = U3 = U5, U] = Ug = Up, U1 = U4 = U,
U2 = U3 = Uqg, U = Ug = U5, U = U5 = UG, U3 = U4 = Ug, U3 = U5 = U6 .
This is the canonical arrangement for the ideal
I = (1813721173, T1Z2%6,T1T3T5, L1L4L5, T1T4L6, T2T3T4, T2X4X5, L2526, T3L4T6, L3L5T6 ) .

which is the Stanley-Reisner ideal for the well-known minimal triangulation of the projec-
tive plane having 6 vertices. A computation in MACAULAY yields

, t5 + 31¢° if char(k) = 3
> dimgTorf(k, k)z,..cnt’ =
120 5 +32t5+t*  if char(k) = 2.
Applying Theorem 1.3 we conclude that:
dimg H° (M43 k) =1

31 if char(k) =3
dimkHl(MA; k) =
32 if char(k) =2,

dimgH2(M4; k) =1 if char(k) = 2,
and all other cohomology groups of M 4 vanish.
In fact, it turns out that in the previous example R = S/I is a Golod ring for any field

k (see below for definition), and using this fact one can show that the computation above
for char(k) = 3 is the same as for any field k£ with char(k) # 2. m

Next we illustrate how to apply results from commutative algebra in order to obtain
formulas for the cohomology of M 4.



Definition 3.3. A ring is called Golod if equality holds in Serre’s upper bound (2.2). It
was shown by Golod, cf. [GL], that this happens exactly when certain homology operations
(Massey operations) vanish in the Koszul complex computing Tor> (k, S/I) 2 Tor® (S/I, k).
Thus, Golodness is encoded in finite data.

Example 3.4. One class of subspace arrangements which have received a great deal of
attention recently are the r-equals arrangements A,, ,. This arrangement has been studied
extensively in recent years, see [BLY, BWe, Kh, Ko, SWa, SWe| and see [Bj] for its history.
The arrangement A, , in R™ is the union of all subspaces u;, = ... = u;, defined by
setting r coordinates equal. Equivalently, this is the arrangement Am- associated to the
r-th power m” of the irrelevant ideal m = (z1,...,z,). For any field &, we will prove that
k) = Tor™/™ (k. k)gyem,

n,r) n—s(r-2)

Z n H 7‘—1+’L]
, r+irrtiy - T+ ; r—1 ’

dim H*=2 (M4

and all other cohomology groups vanish. This formula can also be deduced from [Bj, second
formula in equation 2.4].

Proof:  For r > 2 it was first proved by Golod [GL] and is well known that R =
k[zy,...,z,]/m" is a Golod ring. Hence the m"-denominator is

1-1¢2 ( Zi>0 dim(Torf (m", k)m) t'm ) .

Here Tor} (m", k), are the Betti numbers of the minimal free resolution F, of m" over the
polynomial ring. This resolution is also well known, cf. [EK]: the elements

{(m;l <141 <...<1is)|m is a monomial of degree r,i; € N, (3.1)
is < (maximal variable dividing m) }

denote a basis for the free module in homological degree s of F,.. The desired formula
follows from a simple computation of the Betti numbers of F,. and applying Theorem 1.3
(cf. also Remark 4.5(2)).

In the case n = 3, Khovanov shows in [Kh| that M4, , is a K(w,1) or Eilenberg-
MacLane space for a group m which he calls the pure twin group on n arcs. Thus the above
argument is computing the group cohomology for this pure twin group. m

Example 3.5. Another case, where it is easy to see that S/I is Golod, occurs when the
minimal free resolution of S/I as an S-module is linear, i.e. the entries in the matrices

7



of the differentials are linear forms. In this case, Golodness follows because all Massey
operations in the Koszul homology vanish for degree reasons.

In the case when I is square-free, linearity of the minimal free resolution of S/I is
equivalent to Cohen-Macaulayness (over k) of the following simplicial complex K on vertex
set [n]: the maximal faces of K are in bijection with the minimal generators of I, and the
maximal face corresponding to a square-free generator m is spanned by the set of indices of
variables not dividing m [ER, Theorem 3]. In this case, using Golodness and Corollary 2.2,
one can express H*(M4,; k) in terms of the homology of links of faces in K. m

Motivated by such applications of Golod rings, we pose the following:

Question. When is a monomial ideal I Golod?

4. Stable diagonal arrangements

In this section we compute H*(M 4; k) for what we will call stable diagonal arrange-
ments, which include all r-equals arrangements A, .. We refine these results to give a
C).

A large source of Golod monomial ideals are the stable monomial ideals I C S. A

description of the representation of the symmetric group X, on H*(M 4

n,r?

monomial ideal I is called stable if it satisfies the following property: if m is a monomial
T;m

in I and z; is the variable of largest index ¢ dividing m, then elforalll <j<zs.

z;

It is enough if this property is satisfied by all minimal generators of I. Such ideals play an
important role in Grobner bases theory: they appear as initial ideals in generic coordinates
[Ei, Ch.15]. The minimal free resolution of a stable ideal as an S-module was constructed
in [EK]. The Golodness property for stable monomial ideals is established in [AH].

Motivated by this, we define an arrangement of subspaces A to be a stable diagonal
arrangement if A = A; for some stable monomial ideal I C S (the ideal I will in general
not be unique). It is easy to check that this is equivalent to the following condition on

A: all maximal subspaces in A are of the form u;, = -+ = u;, with ¢y < --- < 4, and
whenever such a maximal subspace is in A and we have j < i, and j & {i1,...,4r}, then
Ui, =---U;_, = u; is also contained in some subspace of A.

To describe the results of [EK] on Tor® (I, k) succinctly, we introduce the terminology
of partitions and Young tableauzr (see e.g. [Sa]). A partition A = (A\y > ... > A\, > 0)
is a weakly decreasing sequence of non-negative integers A;. We say that A has weight
|Al := >, Ai and length I(X) := r. The Ferrers diagram for X is simply a set of boxes in
the plane which is left-justified and has A; boxes in row i for each ¢. Partitions of the
form (r,17~") are called hooks because of the shape of their Ferrers diagrams. A (reverse)
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column-strict tableau of shape A is an assignment of positive integers to the boxes in the
Ferrers diagram for A so that the entries weakly decrease from left to right in each row
and strictly decrease from top to bottom in each column. A tableau is called standard if
it contains each of the entries 1,2,...,n — 1,n = |A| exactly once. Given a tableau T, let
xT =[], z5* where e; is the number of occurrences of the entry 7 in 7. We will also
use skew Ferrers shapes Ay * - - - * Ay obtained by placing the Ferrers diagrams for each of
the A; in disjoint rows and columns in the plane. Tableaux filling skew shapes are defined
similarly to tableaux of Ferrers shapes.

When dealing with a stable monomial ideal I, given a column-strict tableaux T filling
some hook Ferrers shape (r,1%), we say that T is I-appropriate if the values i1,---,1,
occurring in the horizontal row of the hook form the indices of some monomial z;, - -+ z;,
which is a minimal generator of I. Similarly for a stable diagonal arrangement .4, we say
that T' is A-appropriate if the values i1, -+, %, occurring in the horizontal row of the hook
are all distinct and form the indices of some maximal subspace u;, =---=u;_in A.

The Betti numbers in the minimal free resolution of a stable ideal were given in [EK]
and we interpret this result as follows:

Theorem 4.1. For a stable monomial ideal I C S = k[z1,...,z,] and any field k, the
Poincaré series Q 1(t,x) for the finite minimal free resolution of I as an S-module is

Qutx) = YT
T

where the sum ranges over all column-strict tableaux T of hook shapes having entries
bounded by n and which are I-appropriate. Here [(T) denotes the length of the partition
which T fills.

iFrom Theorem 4.1 and Golodness, we will deduce
Theorem 4.2. For any stable diagonal arrangement A, we have that dimyH*(M 4; k) is
the number of standard tableaux filling skew shapes of the form

1% % (71, 1%) % -+« % (14, 1%)

for which
e the skew shape has n boxes, i.e. 19 + Z;zl(rj +i; — 1) =mn,
L] i0+2;=1(’i]‘+2) =’I’L—i,
e every hook shape is filled A-appropriately.

Proof: Let I be any stable monomial ideal whose canonical arrangement A; is equal to \A.
Using the fact that S/I is Golod, along with Corollary 2.1, Definition 3.3 and Theorem 4.1

9



one concludes that
n

. 1+ tx;)
Poink ,(t,x) = ( J
/ ]1;[1 1 -2, xTeT)-1

where T ranges over the set of tableaux described in Theorem 4.1. By Theorem 1.3,
dimgH;(M 4; k) is the coefficient of "%z, - -z, on the right-hand side in this equation.
This is exactly counted by the set of tableaux in the corollary: the entries filling the
leftmost (single-column) Ferrers shape correspond to a choice of a monomial from the
numerator, while the fillings of the remaining hook Ferrers shapes correspond to a choice
of monomials from the denominator after it is expanded as a geometric series. m

Example 4.3. Let n = 4 and A = {u; = up}U{u; = uz = ug}. The diagonal arrangement
A is stable. There are four tableaux satisfying the conditions in Theorem 4.2:

Figure 5: The tableaux contributing to H!(Mg;k).

These tableaux enumerate the dimensions of H*(M 4; k) therefore

HO (M 4; k) = k2
HI(MA; k) = k2

and all other cohomology groups vanish. This is consistent with the fact that M4 is
homotopy equivalent to a disjoint union of two circles. =

This result raises two natural questions:
Questions. Is the intersection lattice of a stable diagonal arrangement shellable? Can
one use this to give a proof of Theorem 4.2 which uses the more standard approach?

We next study the case of the real r-equals arrangement A,, ., where the above result
can be refined to account for the action of the symmetric group ¥,. Note that A, , is a
stable diagonal arrangement since A,, , = Amr, where m is the irrelevant ideal (z1, ..., zn).
Note that the symmetric group ¥, acting on R™ by permuting coordinates preserves A, ,
and hence acts on its complement M4, .. In [BWe], recursive formulas are given for the
cohomology H*(M 4, ) of the complement, and the authors ask whether one can describe
explicitly the representation of X,, on H*(M_, ,) in general. Such a description was given
in [SWe], based on results from [SWa] and our next theorem shows how one can apply
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the present techniques to recover a different form of this result. First, we need to review
some notions from the representation theory of the symmetric group ¥,, and general linear
group GL(n,C) (see [Sa], [FH]).

The irreducible finite dimensional complex representations of 3,, are indexed by parti-
tions p of the number n, and we let S, denote the irreducible representation indexed by .
The irreducible finite dimensional complex representations of GL(n,C) are also indexed
by partitions u of any number, and we let V, denote the irreducible indexed by u. Let x
be the diagonal matrix in GL(n, C) with eigenvalues (z1,...,Zn), i.e. a typical element of
a mazimal torus in GL(n,C). One can decompose a GL(n, C)-representation W into its
weight spaces W = &, W, where v runs over all vectors in N, and W, is defined to be
the x¥ = z* - - - z¥~-eigenspace for the matrix representing x in the GL(n, C)-action. If u
happens to be a partition of n, then the (1,...,1)-weight space V, (1, 1) of V, is invariant
under the subgroup ¥, — GL(n, C). Furthermore, this representation of Sy, on V, (1,... 1)
is isomorphic to the irreducible representation S,. Given any tuple (1, ..., u:) of parti-
tions, the tensor product V,, ® ---® V,, is isomorphic to a special case of what is called
a skew representation V,, «...xu, of GL(n, C) corresponding to the skew shape pq * - - - % py.

Similarly, if the sum of the numbers partitioned by the u; happens to be n, then
restricting Vy,x...xp, to the (1,...,1) weight space Virweoxpey(1,...,1) ives a special case
of what is called a skew representation S,,«...«n, of L,. Lastly, we recall that a finite-
dimensional complex (rational) representation of GL(n,C) is completely determined up
to isomorphism by its formal character which is the polynomial in z,, ..., z, obtained by
taking the trace of the matrix acting on V which represents x. For the skew representations
Vp, this character is the Schur function sp(z1,...,%,) which has the formula

sp(T1,...,2,) = ZXT
T

as T ranges over all column-strict tableauz of shape D with entries in 1,2,...,n, and x7T is
the product of z; as 7 ranges over the entries of T. Analogously, the dimension of a skew
representation Sp for ¥, is the number of standard Young tableaux of shape D, where a
column-strict tableaux is standard if xT =z, ...z,

Theorem 4.4. As X,,-representations we have the isomorphisms

s/m”
TOI'n{_s(T_z)(C, C)zl...mn = @ 8(1‘0)*(r,lil)*~--*(r,1is)

(i0,31,---118)
sr+ L ii=n
J J

H =D (M,, ,;C) = @ Slio)#(ir+1,17= 1) ox(ip+1,17-1)

(10,31, ig)

sr+ Jti=n
j J
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Proof- In this case, Theorem 4.1 can be rephrased as

n—1

QI(t,x) = Z s(r,li)(x)ti

t=0

where s(,,14)(x) is the Schur function (defined earlier) corresponding to the shape (r,1%).
Therefore by Corollary 2.1 and Definition 3.3,

¢ (1) = — o1 £ 120
1— 200 50,10y (X)E
B Z?:O s(lj)(x)tj
1— 823020 sraey (%)
= Zti Z 8(1i0) (X)$(r,101)(X) - - - 8(r,140) (X)

'l:ZO (iOvil |||| ‘a)
i0+2p21(ip+2)=i

= Zti Z 3(1‘0)*(r,1i1)*...*(,.71:‘,)(X).

i>0 (i0+i10---1is)
, i 42)=i
10+Zp(1p+ y=i

independent of the field k. If we choose k = C, we can interpret the previous equation in
terms of GL(n, C)-representations. Note that GL(n, C) acts on C[z1, . .., Zn] by invertible
linear substitutions of the variables, and leaves m and m” invariant. Therefore GL(n,C)
acts on R = C[zy,...,2,)/m", and on Tor®(C,C). Since GL(n, C)-representations are
determined by their characters, we conclude from the last equation above the following
isomorphism of GL(n, C)-representations:

R
TOI‘i (C> C) = @ v(lio)*(’r‘,lil)*---*(r,lis)'
(ig,i1se-0 ig)
c‘o+2p>l(ip+2)=i

Note that by definition, Tor®(C, C)z, ...z, is the (1,...,1)-weight space of Tor*(C, C).
Hence we deduce the following isomorphism of ¥, -representations:

TOI‘zR(C,C)wl...z" = @ V(io)*(r,lil)*.--*(r,liS),(l,...,l)
(20,3150 ig)
i0+2p>1(ip+2)=i,i+a(r—2)=n
= @ S(150 ) x(r, 191 )w-oa(r, 1is) -
(i01i1)---1is)
sr+2p>0 ip=n,i+s(r—2)=n
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which is equivalent to the assertion for Tor®(C, C)g, ...z, in the theorem. The assertion
for H,(M,, ) then follows from the following facts:
e the non-degenerate Alexander duality pairing from Theorem 1.3

Torf(C, Cay.-a, @ H'™(Muri C) = Huog(877% O)

establishes an isomorphism of ¥,,-representations
Hn—i(Mn,r; C) = (TOI'%R(C, C)El"'z‘n )v® Hn—2(Sn_2; C)

where ~ denotes the contragredient or dual of a representation.

Complex representations of ¥,, are all self-dual.

H,,_2(S™"2; C) carries the one-dimensional sign representation of ¥,,, since any trans-
position in ¥,, acts by a reflection in R®~! and hence acts by —1 on the fundamental
cycle of the sphere S*~2,

When one tensors a skew representation Sp by the sign representation of X,, one
obtains the skew representation Sp¢ corresponding to the transposed diagram D* ob-
tained from D by flipping across the diagonal. m

Remarks 4.5.

(1)

The description of the ¥,-action in Theorem 4.4 could also be deduced from the
results of [BjWa, SWa, SWe}, although this computation is not carried out in any of
these three references. In fact, it is interesting to compare Theorem 4.3 with the case
d = 1 in [SWe, Theorem 4.4] since one obtains a non-trivial representation-theoretic
identity by setting the the two answers equal.

The formula for the dimension of H*~*(M,, ,; C) in Example 3.4 comes from the fact
that the skew representation Sp has dimension equal to the number of standard Young
tableaux of shape D. For D = (1%) % (r,1%) x-- - (r, 1**) the number of such tableaux

-1+
is easily seen to be _ " , H (r +1]). n
T4+t 7T+ - T+, 7 r—1

Example 4.6. Let n = 7,7 = 3, then we obtain the following formulas:

1 fori=0
351 forz=1

dimgH (M7 51 k) =
el (Mza; k) 350  for i =2

0 otherwise.

This coincides with the values given in Table 1 in [BWe], where the computations

are done using recursive relations. Furthermore, we conclude from Theorem 4.4 that as a
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representation of X, the vector spaces H i(M7,3; C) for i = 0, 1,2 are isomorphic to the
direct sum of representations corresponding to the skew shapes shown below:

i=

Figure 6: The skew representations appearing in H'(M73;C). =

5. A vanishing theorem for intersection lattices

The main result of this section (Theorem 5.2) is a vanishing theorem for the homology
of the intersection lattice associated to any arrangement of subspaces in a vector space
over any field, given a lower bound on the codimension of the maximal subspaces in the
arrangement. The theorem was inspired by a special case (Corollary 5.1) that follows from

a result of Backelin and Eisenbud et al. on the rate of growth of Tor>/(k, k).

We begin by reviewing the notion of intersection lattices. For any field F, let A
denote an arrangement of subspaces in F™. The intersection lattice L 4 is the poset whose
elements correspond to all intersections of the subspaces, ordered by reverse inclusion, with
top and bottom elements 1,0 added on corresponding to the 0-subspace and the whole
space F'" respectively. Note that this means that in the case when all of the subspaces
in A intersect in some non-zero subspace V, i.e. when A is not essential, then V already
would have been a top element and so the top element 1 # V is an extra element on top
of V in L 4. The poset L4 is actually a lattice as its name indicates, with the join Vv W
of two subspaces V, W given by their intersection V N W, and meet VA W given by the
intersection of all subspaces in A that contain V UW. The proper part L 4 is the subposet
Lg— {6, i}. Abusing notation, we can think of any poset such as L 4 as a topological space
by identifying it with the geometric realization of the order complex A(L 4). Here A(P)
is the simplicial complex having vertices corresponding to the elements of P and simplices
corresponding to the chains (totally ordered subsets) in P.

Next we discuss Backelin’s result. For an ideal I in § = k[z1, ..., z,] which is homo-
geneous with respect to the standard N"-grading (deg(z;) = 1), the following invariant of
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R = S/I was introduced by Backelin in [Ba2]:

rate(R) = sup{i l % _11,1' > 2}, where a; := max{ j | Tor} (k,k); # 0}.

The rate of R measures the degree complexity of the infinite minimal free resolution of k&
over R, and plays a similar role to that played by (Castelnuovo-Mumford) regularity for
finite graded resolutions. If I is a monomial ideal then Backelin stated that

rate(S/I) < d -1,

where d is the maximal degree of a minimal generator of I, cf. [ERT, Proposition 3]. This
fact implies a vanishing theorem for the homology of L 4,:

Corollary 5.1. Let I be a monomial ideal in S and d be the maximal degree of a minimal
generator of I. Let Br be its canonical arrangement intersected with ) . u; = 0 in R".
Then for any field k we have

n—1

Hi(Lg,;k) =0 for z'<d_1—

2.

The reason for considering the intersection of A; with ) . u; = 0 instead of A; itself is
that A; is never essential, because the line uy = ... = u,, is in the intersection of all its
subspaces. This means that the proper part of its intersection lattice would be a cone and
have no homology, so the vanishing property would be vacuously true.

Proof: By Backelin’s result

S/I e - .
Tor;" " (k,k); =0ifj > (d-1)(i-1)+1
where the subscript j refers to the usual N-grading by total polynomial degree on S/I

and on TorY/!(k, k). Since Torf/l(k,k)n contains Torf/l(k,k)zl...zn in our N™-graded
notation, we conclude that

Tor; ! (k, k)gy.oap, = 0if > (d— 1) (5 — 1) + 1.
Equation (2.1) from the proof of Theorem 1.3 allows us to rewrite this as

H;_3(S"2NBk)=0ifn>(d—1)(i—1)+1

A(S™? N Brik) = 0ifi < Sl 2

On the other hand, Corollary 2.5 of [ZZ] shows that H!(Ig,; k) is a direct summand in
H;(S"2 N By; k), so the theorem follows. m

Inspired by Corollary 5.1, the next result generalizes it.
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Theorem 5.2. Let F be any field, A an arrangement of linear subspaces in F™, and
assume every maximal subspace in A has codimension at most c. Then

B(TuZ)=0 for i< % ~2.

Proof: We can first reduce to the case where L 4 is an atomic lattice, meaning that every
element of L is the join of the elements below it which cover 0, or equivalently, every
subspace in A is the intersection of the maximal subspaces in A containing it. To achieve
this reduction, consider the closure relation on L defined by sending any subspace in L
to the join of the elements covering 0 which lie below it. The closed sets L’ C L form a
sublattice, and it is well known that the inclusion of the proper parts I’ — L is a homotopy
equivalence (see [BjWa, Lemma 7.6]).

So assume that L 4 is atomic, and let H be a maximal subspace in A, i.e. an atom of
L 4. Our method is essentially a deletion-contraction induction on the number of subspaces
in A, in which we apply Mayer-Vietoris to the following decomposition L=XUY:

L=(L-{H)UD)zx
where (I)> g denotes the subposet of elements in L which lie weakly above H. Note that
C-{H)N@D)on =L)>u = Lay,
where L Al is the proper part of the intersection lattice for the arrangement of subspaces
Alg={VNH:V e A}

sitting inside the ambient space H. Also, we can define a closure relation on L—{H} which
sends a subspace to the intersection of all subspaces of A other than H which contain it.
Then the inclusion of the closed sets L A—{H} < L 4—{H} induces a homotopy equivalence,

where L A—{H} is the proper part of the intersection lattice for the arrangement A—{H}.
We conclude that part of the Mayer-Vietoris exact sequence looks like this:

I:Ii(IA_{H};Z) o) ﬁi((Z)ZH;Z) — ﬁi(f_A;Z) — ﬁi—l(fAly;z)

Since the poset (Z)Z g has a bottom element H, it is topologically a cone, and hence has no

(reduced) homology. We can apply induction to A — {H} to conclude that H;(L A-{H}; Z)

vanishes for 1 < —72(:— — 2. The codimensions (within H) of all the subspaces V N H are again
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bounded by c since

dimpH + dimpV < dimpV V H +dimgV A H
dimgpH — dimpV V H < dimgV A H — dimpV
dimpH — dimgV N H < m — dimgV
dimpH — dimgV N H < c.

Thus, we can also apply induction to A|gy. Note that since dimpH > m — ¢, induction
m—c

says that ﬁi_l(fAlH; Z) will vanish for i —1 < — 2, that is for @ < CZ— — 2. Thus the

Cc

. . . m
term H;(L 4;Z) in the exact sequence is surrounded by terms, which vanish for 7 < e 2,

and the result follows. m

Remarks 5.3.

(1) To see that the vanishing theorem is sharp for every c, take arrangements of a maximal
number of subspaces of codimension ¢ which are pairwise orthogonal.

(2) The case of the theorem where ¢ = 1 follows from a well-known result of Folkman [Fo]
since in this instance L 4 is known to be a geometric lattice.

(3) Using the formulas of Ziegler-Zivaljevié [ZZ] and Goresky-MacPherson [ZZ, Corol-
lary 2.5] which express the homology of R™ — A and S™ ! N A in terms of the
homology of the lower intervals in the intersection lattice L 4, one obtains other new
and interesting vanishing theorems.

(4) Tt is known that every finite lattice L is isomorphic to L 4 for some .4, so one can think
of the theorem as an embedding criterion - it gives a lower bound for the codimension
of the subspaces one will need to use in .A. The bound is based on the homology of L
and the dimension of the ambient space. =

Abstracting the essential features from the the proof of Theorem 5.2 we obtain the
following more general result:

Theorem 5.4. Let L be a finite lattice with a function r : L — N which is semimodular
r(z) +r(y) <r(zVy)+r(zAy),

and order-preserving, with r(0) = 0,r(1) = m and r(z) < c for all atoms z in L. Then

B,(I;Z)=0 for i<%—2.
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