RESOLUTIONS OF STANLEY-REISNER
RINGS AND ALEXANDER DUALITY

JOHN A. EAGON AND VICTOR REINER

University of Minnesota
May 1996

ABSTRACT. Associated to any simplicial complex A on n vertices is a square-free
monomial ideal I in the polynomial ring A = kfz1,... ,en), and its quotient k[A] =
A/Ia known as the Stanley-Reisner ring. This note considers a simplicial complex
A* which is in a sense a canonical Alexander dual to A, previously considered in
[Ba, BrHe]. Using Alexander duality and a result of Hochster computing the Betti
numbers dimy, Tor? (k[A], k), it is shown (Proposition 1) that these Betti numbers are
computable from the homology of links of faces in A*. As corollaries, we prove that
Ia has a linear resolution as A-module if and only if A* is Cohen-Macaulay over
k, and show how to compute the Betti numbers dimj Tor(k[A], k) in some cases
where A* is well-behaved (shellable, Cohen-Macaulay, or Buchsbaum). Some other
applications of the notion of shellability are also discussed.

Let A be an abstract simplicial complex on vertex set [n] := {1,2,3,... ,n}, i.e.
A is a collection of subsets F' C [n] called faces which is closed under inclusion. The
dimension dim(F) of the face F' is |F|—1, and dim(A) is the maximum dimension of
its faces. We say that A is pure if all maximal faces of A have the same dimension,
equal to dim(A).

There is a well-known construction (see [St, Chapter 2]) of the Stanley-Reisner
ring k[A] associated to A: one forms a certain square-free monomial ideal I in the
polynomial ring A := k[z;,... ,2,], and then k[A] is the quotient ring A/Ix. The
ideal I is generated by the monomials 2% as G runs over the inclusion-minimal
subsets of [n] which are not faces in A, where 2% := [], .4 ;.

Every square-free monomial ideal I in A is of the form I for some simplicial
complex A, and A plays a role in understanding the homological properties of
I. Conversely, the rings k[A] have played a role in understanding combinatorial
properties of simplicial complexes, and in particular the enumeration of their faces
of various dimensions (see [St]).

One homological property of interest for k[A] are the Betti numbers

Bi(k[A]) := dimy Tor(k[A], k)

where k is given the trivial A-module structure as the quotient A/A, by the ir-
relevant ideal A} = (z1,%3,...,2n). The Betti numbers 8; := B;(k[A]) are of
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particular interest because they give the ranks of the it* resolvent in a minimal free
resolution of k[A] as an A-module:

0 AP ... 5 AP 5 A K[A] -0

Since the monomial ideal I is homogeneous with respect to the N”-grading on 4
defined by letting the variable z; have grade equal to the i** standard basis vector
e;, the Stanley-Reisner ring k[A] inherits this grading. The resolvents AP may also
be given this N"-grading so as to make the maps in the resolution homogeneous,
and hence Tor;'(k[A],k) inherits this grading. For a given grade a € N7, let
Tor?*(k[A], k) denote the a-graded component of Tor(k[A],k). One can then
collate this finer information about the dimensions of these graded pieces into the
Betti polynomaal

Ti(k[A],2) = _ dimpTorf (k[A], k)a t*

where t* = [[, t3. Hochster gave the following formula for these Betti polynomials.
Theorem [Ho)|.

Ty(k[A],t) = Y dimpHy|i1(Avik)tY
vCln]

where Ay denotes the simplicial complex on vertex set V defined by
Ay :={V' CV:V' e A}

Here ﬁ(,k) denotes reduced homology with coefficients in the field k, and tV =
[Tiev t:-

See [TH1-5, BrHil-2] for some applications of Hochster’s formula.

Our observation is that one may reinterpret the reduced homologies in Hochster’s

formula as the reduced (co-)homologies of links of faces in a certain simplicial
complex A* dual to A, defined by

A* :={F Cn]:[n] - F ¢ A}.

In other words, if one thinks of A as an order ideal in the Boolean algebra 2["l, then
A* is obtained by taking the order filter 2"l — A, and applying the order-reversing
map F > [n] — F to each of these sets yielding another order ideal A*. This same
construction plays an important role in [BrHe, §1].

Recall that the link of a face F' in a simplical complex A on vertex set [n] is the
simplicial complex on vertex set [n] — F defined by

linkaF:={GEA:GUF € AGNF =g}
We shall also need later the deletion of vertex v in a simplicial complex, defined by

delpv:={G € A:v ¢ G}.
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Proposition 1. For i > 1 we have

Ti(k[A],t) = Z dimkﬁi_z(ﬁnkA*F;k) t=F
FeA+

Proof. Given V C [n] appearing as a term in Hochster’s sum, let F = [n] — V.
Note that if V is a face of A then Ay will be a simplex and hence have no reduced
homology, therefore we may assume V is not a face of A. By definition of A* then
F 15 a face of A*, so F appears in the sum on the right-hand side in the Proposition
1. Therefore it suffices to show

dimi H;_5(linka« F; k) = dimgHyy|—;—1(Av;k).
To see this, note that the complementation map
{(VICn: V' CV} S {F C[n]: FCF'}

given by V' - [n] — F' identifies the Boolean algebra 2V with the interval [F, [n]]
in the Boolean algebra 2[™, and has the property that V' is a face of A if and only
if F' = [n] — V' is not a face of A*. Thus this map gives an isomorphism between
the complexes linka+ F' and (Ay)* if we think of both as having vertex set V. It
only remains to apply the following lemma, and use the duality between reduced
homology and cohomology over a field k [Mu, Theorem 53.5):

Lemma 2 (see [Ba, Theorem 6.4.1], [Bj, Exercise 7.43], [BrHe Lemma 1.2], [Frl,
Lemma 4]). For any simplicial complez A on vertez set [n], we have

Hi_o(A*; k) = H™ 71 (Ask).

This concludes the proof of the proposition. 0

We conclude this section with various remarks on Proposition 1.
Remark

The use of Alexander duality in connection with Hochster’s formula is not
new, although previously it has been most often used to relate ﬁ*(AV;k) and
fI*(A[n]_V;k) in the case where A is a k-homology sphere (e.g. [St, p. 76] and
(TH2-5]).

However we found out that recently many others ([Ba], [BrHe] [TH1], have in-
dependently used this same Alexander duality to show, among other things, that
the second Betti number 3;(k[A]) depends only on A and not on the field & (as is
clear from Proposition 1). In fact, the discussion in [BrHe, p.4 paragraph preceding
Corollary 1.5] is almost the same as the assertion of Proposition 1, although the
subcomplexes linka+« F' which appear there implicitly are never identified as links.
Remark

We were led to this reformulation of Hochster’s result by the results of [Ea], which
give a procedure to construct the maps in a minimal free resolution of k[A], in the
case where A* is pure. In that paper, there is given more generally a procedure to
construct maps in a minimal free resolution for all quotients of a polynomial ring
by an ideal generated by monomials which all have the same degree.
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I1. Applications.

Hochster’s formula is clearly most useful when the homology of A and all of its
subcomplexes Ay are comprehensible, a situation which is rare unless A is low-
dimensional (although see [Fr2, TH3-4] for some notable exceptions). On the other
hand, the usefulness of Proposition 1 lies in situations where one has information
about the links of faces in A*, and there are several well-known hypotheses on a
simplicial complex which state such information. We recall here the definitions for a
simplicial complex to be Cohen-Macaulay, Buchsbaum, Gorenstein*, or a homology
manifold over k, and refer the reader to [St] for equivalent definitions in terms of
properties of the Stanley-Reisner ring k[A].

The simplicial complex A is said to be Buchsbaum over the field k if it is pure, and
for every non-empty face F' of A, we have H;(links F; k) = 0 for i < dim(linka F).

If in addition to A being Buchsbaum over k one has that H;(A;k) = 0 for
¢ < dim(A) then A is said to be Cohen-Macaulay over k.

If in addition to A being Cohen-Macaulay over k one has that

Himinkar) (linka Fi k) = k

for every face F', then A is said to be a homology sphere over k or Gorenstein® over
k.
If in addition to A being Buchsbaum over & one has that

Hgim@ink o 1) (linka F; k) = kb

for every non-empty face F, then A is said to be a homology manifold over k.
Examples

It is known [Mu, §63] that simplicial complexes A which triangulate a manifold
without boundary are homology manifolds over any field k, and if A triangulates a
sphere then it is a homology sphere over any field k.

All graphs (i.e. 1-dimensional simplicial complexes) are Buchsbaum over arbi-
trary fields k, and are furthermore Cohen-Macaulay when connected.

We say that an ideal I in A has linear resolution if there is a minimal free
resolution for A/I in which all the non-zero entries in the matrices 9; : ABi 5 APi-1
for ¢ > 2 are of degree 1 in the standard grading on A where deg(z;) = 1. Froberg
[Fr1] gave a characterization of the ideals I generated by monomials which have
linear resolution, by first reducing to the case of square-free monomial ideals Ix,
and then using Hochster’s formula. Using Proposition 1 we obtain an elegant dual
formulation of this result.

Theorem 3. Ia has linear resolution if and only if A* is Cohen-Macaulay over k.

Proof. 1t is easy to see that Io has linear resolution if and only if

e its minimal generators all have the same degree ¢, and
o for each 7 we have that Tor?(k[A], k) is homogeneous of degree ¢ + 4 in the
standard grading

(in fact, this is the definition of having t-linear resolution used in [Fr1]). The first
of these conditions is equivalent to A* being pure. Using Proposition 1, the second
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condition is equivalent to linka+F having no homology over k except in its top
dimension for all faces F' of A*. Thus these two conditions are exactly equivalent
to A* being Cohen-Macaulay over k. [

Remark

Theorem 3 explains some of the “bad” behavior of resolutions of k[A] with
respect to the topology of A, as discussed in [Frl]. In [Frl, Remark 9] it is noted
that having linear resolution is not a topological invariant of A. However, it is
a topological invariant of A*. Also, [Frl, Example 3| points out that when A is
the well-known 6-point triangulation of RIP?, the resolution is linear when k has
characteristic 0 but not when it has characteristic 2. This is because in this case
A* is isomorphic to A, and hence triangulates RP* which is Cohen-Macaulay over
k exactly when k has characteristic not equal to 2.

In the case where A* is at least Buchsbaum, Proposition 1 gives an easy com-
putation of the Betti numbers B(k[A]), in terms of the number of faces of various
dimensions and (topological) Betti numbers of A* . Recall (see [St, Appendix §2]),
the definition of the f-vector of a (d — 1)-dimensional simplicial complex

.f(A) = (f—l,fO’fla-" )fd—l)

where f; is the number of i-dimensional faces of A. Also recall that the same
information may be encoded in the h-vector defined by

h(A) := (ho,h1,... ,ha)

(1) : dmi Ny i
Z fi_l(t — 1) = Z h;t**.
=0 i=0

Also define the (reduced) Poincaré polynomial Poin(A,t) by

Poin(A,t) = Z dimkﬁi(A;k)ti
i>—1

and the (reduced) Euler characteristic ¥(A) = Poin(A, —1).

Theorem 4. Let A be a simplicial complez, and A* its Alezander dual as defined
earlier, with dim(A*) =d — 1.

o If A* is Buchsbaum, then

d
(2) Y Bi(R[A]) £ = tPoin(A%,2) + (—t)*(A*) + > hi(A*)(t + 1),
i>1 =0
o If A* is Cohen-Macaulay, then equation (2) collapses to

D_BR[ADET = 3 T hi(A)(E + 1),

i>1
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o If A* s a homology manifold over k then

d-1
D Bi(k[A]) £ =t Poin(A*, 1) + Y fa—ima (A*)E.
i>1 i=0

o If A* is a homology sphere (Gorenstein* ) over k then

d
D BkAN I = 3 faia (A"

i>1

Proof.
To prove equation (2), assume A* is Buchsbaum, and use Proposition 1 to con-
clude that

Y BkANE T = 3 Y dimeH(linka F)t

i>1 Fea* j
3) =) dimH;(A* T+ Y ) dimg (link s F)
J GEFEA* j
=tPoin(A%,t) + Y (=1)*"4=E5(link o. F)t¢ ¥

P£FEA"

Combining equations from [St, §I1.7 and §I1.2] gives the equation

Y (~1)4 P g (link a. F) (;)IFI _ Pico hi(A*)td—i.

_ —_\d
e 1—1t (1-1)

If we replace ¢ by 1/(1 +t) and then multiply by ¢¢, we obtain

d
3 (~1) @O g (link s F) 71 = 3 hy(A%)(1 + ¢)
FeA~ =0

which combined with the last equation in (3) yields equation (2).
The formula in the case A* is Cohen-Macaulay follows from equation (2) upon

observing that
(—t)*"1x(A*) = t Poin(A*, 1)

since A* has only top dimensional reduced homology.
The formula in the case of A* is a homology manifold over k, follows directly
from equation (3) and the definition of the f-vector, using the fact that

(=) 4mE) f(linka- F) = 1

for all non-empty faces F. The case where A* is a homology sphere over k is then
a trivial specialization of this. O
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Remark
Note that the definition of A* gives an obvious relation between the f-vectors
of A and A*, namely

n
(AY) = — fr—i—2(A).
@ = (1)) - freical@)
Similarly, Lemma 2 gives a simple relation between the topological Poincaré poly-
nomials of A and A*. Therefore one has a choice in the previous theorem to express
the formulas in terms of the f-vector and Poincaré polynomial of A*, or in terms
of A itself.

The next result provides a large class of examples where the Betti numbers of
k[A] do not depend upon the field (see [TH1-5] other such results). It is pointed
out in [TH2, §3] that this is equivalent to the existence of a minimal free resolution
of Z[A] over Z[zy,... ,z,].

The field independence comes from the condition of shellability [BW1-2]. Say
that a simplicial complex A is shellable if one can order its maximal faces Fy, Fs,... , F,
in such a way that for each 7 > 2 the intersection

(6) F; 0 (Uj<:Fj)

between F; and the subcomplex generated by the previous maximal faces is a sub-
complex of codimension 1 inside F;. When A is shellable and pure of dimension
d — 1, the h-vector has the following interpretation: h, is the number of maximal

faces F; for which the intersection in (6) consists of exactly d —r of the (d — 2)-faces
of Fj.

Corollary 5. If A* is shellable then the Betti numbers 8; of k[A] are independent
of the field k. If furthermore A* is pure and shellable, then regardless of the field

k, we have that the resolution of In 1s linear and

S BRAD T = S hi(A)(t + 1),

i>1 i>0

Proof. When A* is shellable, its homology is independent of the field [BW1, Cor.
4.2], and all of its links linka,F' inherit the property of shellability [BW2, Prop.
10.14] so their homology is also independent of the field. The first assertion of the
theorem then follows from Proposition 1.

Since A* being pure and shellable implies it is Cohen-Macaulay over any field
(see e.g. [BW1-2, Cor. 4.1, Prop 10.14]), the rest of the assertions follow from
Theorems 3 and 4. O

Directly translating the definition of pure shellability of A* produces the follow-
ing condition on the generators of the monomial ideal I = Ix: one can linearly
order the monomial generators my, my,... ,m, of I in such a way that for each
pair ¢ < k there exists an index j < k satisfying

o m; divides the least common multiple lem(m;, my)
o mj,my differ in at exactly 2 variables, i.e. m; = %”—mk for some p, q.
q
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It follows immediately from the preceding corollary that any square-free mono-
mial ideal satisfying this condition will have a linear resolution regardless of the
field k. On the other hand, this same definition also makes sense for monomial
ideals I which are not necessarily square-free. Say that such a monomial ideal (not
necessarily square-free) is dually shellable.

Theorem 6. Let I be a dually shellable monomial ideal in k[z,,... ,z,]. Then I
has linear resolution regardless of the field k.

Proof. Assume I is dually shellable, with linear order m;,ms,... ,m, on its mono-
mial generators as in the definition. If all the monomials m; are square-free, then
we are done by the previous corollary. Otherwise there is some variable, say z, for
which the maximum z-degree appearing among all the m;’s is d > 1. In this case
we introduce a new ideal I' which is “closer” to being square-free, by defining m!
to be
Zom; if z¢ divides m;
m; = .
m; otherwise

and letting I' be the ideal generated by m},m},... ,m.. Since A/I is the quotient
of A[zo]/I' by the linear non-zero divisor z¢ — z, it follows from [Frl, Lemma 1]
that I will have linear resolution if and only if I’ does.

Therefore it suffices (by induction on d) to show that I’ inherits dual shellability
from I, with respect to the ordering m},m5,... ,m. of its generators. So let 7 < k,
and let j < k be the index satisfing m; divides lcm(m;, m) with m;, m;, differing
in exactly 2 variables. We claim both that m} will divide lem(m}, m}) and that
m’, m; differ in exactly 2 variables. To see the first claim, note that the power of
any variable 1 other than z or z¢ is the same in m;, m’, m} as it was in m;,m;, ms,
so we only need to check that the z-degree and zo-degree of m; are no bigger than
their minimum values for m}, m}. This is true for the zo-degrees because mj has a

factor of z¢ exactly when z¢ divides m;, which implies that =¢ divides at least one
of the two monomials m;,m;, and so one of m}, m}, will be divisible by z¢. Similar
reasoning shows that it is true for the z-degrees. To show the second claim about
m’;,m} differing in exactly 2 variables, consider the four cases

Y ..
® mj; = mj,m; = mg. Trivial.

* m} # mj,mj # my. Here it must be that mj, m; were both divisible by
z¢, so we must have m; = %mk for two variables z,,z, # z. But then

m! = Tyt
J T =g ke
o m} = mj,m # my. In this case it must be that m; is divisible by z? while

m; is not, so m; = %"-mk for some variable z,. But then

8
8
3
]
D)
8
-]

m; =mj = Pmp=2L"m, = my
z z z

as desired.
. m;- # mj, m} = my. Symmetric to the previous case.

This completes the proof of the claim, and hence the Theorem follows. [

The remainder of this section discusses two situations where the conclusion of
Corollary 5 applies because the dual complex A* is not only shellable, but satisfies
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the stronger condition of vertex-decomposability. A simplicial complex A is said
to be vertez-decomposable if it satisfies the following recursive definition: either
A = {@} or there exists some vertex v of A for which both subcomplexes delav
and linkav are vertex-decomposable. This concept was introduced by Provan and
Billera, who showed that vertex-decomposable complexes are shellable (see [BKL,
Lemma 4.14)).

Say that Ia is matroidal if its set of minimal generators {z®=} satisfy the
MacLane-Steinitz ezchange aziom: For any a,f,i, if z; divides G« then there
exists a j such that z; divides 8% and %{-Ga is also a minimal generator. Equiva-
lently, Ia is matroidal if the set of exponents B := {G4} of its minimal generators
form the set of bases for a matroid M on the ground set [n] (see [BKL]).

Proposition 7. If In is matroidal, then A* is vertez-decomposable, and hence
shellable. Therefore In has linear resolution over any field k.

Proof. In this situation, A* will be the dual complez for the matroid M, i.e. the
complex of independent sets in the dual matroid M*. As a consequence it is vertex-
decomposable (see [BKL, Section 5]). O

Note that [Frl, Example 4] is an instance of a matroidal ideal Ia, in which M
is the uniform matroid of rank k + 1 on ground set [n]. See [Bj, Theorem 7.8.1
and Exercise 7.43] for more about this duality of complexes in the matroid setting.
We also remark that the hypotheses in the previous proposition may be weakened
somewhat to assume only that the generators of Ip correspond to the set of bases
in a greedoid G on the ground set [n] (see [BKL] for definitions). In this situation
A* again forms the dual complez of G, which is known to be vertex-decomposable
[BKL, Theorem 5.1]. Unfortunately we are not aware of any simple characterization
for when a family of subsets B form the bases of some greedoid (and there may be
many such greedoids), so it is not easy to check these weaker hypotheses.

Lastly we re-interpret a result of Fréberg [Fr2] which characterizes the ideals
I generated by gquadratic square-free monomials having linear resolutions. Note
that Ia is generated by quadratic square-free monomials exactly when A is the flag
complez A(G) associated to some graph G on the vertex set [n], i.e. the simplices
of A(G) are exactly the subsets F' of [n] for which every pair in F is an edge
of G. Froberg’s characterization involves chordal graphs, which we now discuss.
Say that a graph G is chordal if for every cycle v1,v2,... ,¥m,,Vm,v1 in G with
m > 4, there exists some chord i.e. an edge in G between two vertices which are
not adjacent in the cycle. It is well-known (see [Go]) that chordal graphs may also

be characterized by the existence of an elimination ordering vy,vs2,... ,v, on the
vertices, meaning that for all 7 there are edges between all pairs of v;’s neighbors
in G — {v1,va,... ,vi—1} (v; is said to be a simplicial vertez of G —vy,vs,... ,vi—1}

in this situation).

Theorem [Fr2, Theorem 1]. A Stanley-Reisner ideal In generated by quadratics
has linear resolution if and only if A = A(G) for some chordal graph G.

In light of Theorem 3 and Corollary 5, the following proposition gives a “dual”
explanation of this result:
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Proposition 8. The following are equivalent for a graph G:

(1) A(G)* is vertex-decomposable.

() A(GQ)* s Cohen-Macaulay over any field k.
(i) A(G)* s Cohen-Macaulay over some field k.
(iv) G s chordal.

Proof. The implications (¢) = (it) = (4¢2) are all trivial.
(731) = (iv): If G is not chordal then there exist some subset V of the vertices
which supports a cycle in G having no chord. Borrowing from the argument of

[Fr2], note that A(G)v is homeomorphic to a circle. Lemma 2 implies that if we
set F' = [n] — V then

Hyv|_s(linka(g) F3 k) = Hi(A(G)vik) £ 0

so that A(G)* is not Cohen-Macaulay over any field k.

(iv) = (d): If G is chordal, let v1,v3,... ,v, be an elimination ordering for its
vertices. A vertex decomposition for A(G)* starting with v; will then follow from
the following lemma, whose proof is straightforward.

Lemma 9.

1. For any vertez v in a graph G, we have linkp(g)sv = (A(G — v))* as
complezes on the vertez set [n] — {v}.

2. For any simplicial vertez v in a graph G, the deletion delp(gy«v is the
simplicial complez on vertex set [n]—{v} having mazimal faces {[n]—{v,v'}}
as v' runs over all non-neighbors of v in G.

We must show that the lemma implies both subcomplexes linka(g)sv: and
dela(g)-v1 are vertex decomposable. By induction and part 1 of the lemma we have
that linka(g)»v1 = (A(G — v1))* is vertex-decomposable, since G — v; is chordal
whenever G is chordal. By part 2 of the lemma, since v; is simplicial, dela(g)-v1
is the complex generated by a collection of codimension 1 faces of a simplex , and
all such complexes are easily seen to be vertex-decomposable. [J
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