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CATALAN TRIANGULATIONS OF THE MOBIUS BAND

PavuL H. EDELMAN
VicToR REINER

University of Minnesota

ABSTRACT. A Catalan triangulation of the Md8bius band is an abstract simplicial
complex triangulating the Mé&bius band which uses no interior vertices, and has
vertices labelled 1,2,...,n in order as one traverses the boundary. We prove two
results about the structure of this set, analogous to well-known results for Catalan
triangulations of the disk. The first is a generating function for Catalan triangulations
of M having n vertices, and the second is that any two such triangulations are
connected by a sequence of diagonal-flips.

I. Introduction and definitions.

By a Catalan triangulation of the disk (resp. Mdbius band), we mean an abstract
simplicial complex triangulating the disk (resp. M6bius band) which uses no interior
vertices, and has vertices labelled 1,2,... ,n in order as one traverses the boundary.
We will refer to a triangle in such a triangulation by the unordered triple :7k of
vertices it contains, and similarly for edges ¢j and vertices 1.

Let A,, and M,, denote the set of Catalan triangulations of the disk and Mobius
band , respectively. The present paper was motivated by two very well-known facts
about A,, (see, e.g., [STT]):

(1) The cardinality a, of A, is the Catalan number ﬁ(zn_‘}), which has

n—2
generating function

22

A(:c) = Z anz” = 1—}-\/_——1—:——2{;.

(here we are using the convention that a; = 1).

(2) Any two triangulations in 4,, may be connected by a sequence of operations
which we will call diagonal flips, in which two triangles ijk and ikl which
share the diagonal edge ¢k within the quadrangle 75kl are replaced by the
two other triangles ¢5/ and jk! in the quadrangle.

The two main results of this paper (proven in Sections 2 and 3) are:
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Theorem 1. The cardinality m,, of M, has generating function

_ n_ 1132((2—5:1:—4w2)+\/—j[__jq_;(_2+m+2m2))
M(z) = ,;mnw T (1-4z)(1 -4z + 222 + V1= 4z(1 — 2z))

= 2% +142% + 11327 + ...

Theorem 2. Any two triangulations in M, may be connected by a sequence of
diagonal flips.

A few remarks are in order about the connection of these results to previous work
on triangulations of surfaces S with boundary. In the case where § is the disk, let
An m be the set of triangulations using exactly m interior vertices and n boundary
vertices. Brown [Br] generalized the Catalan enumeration by giving a simple closed
form for the cardinality of A, . A more recent result of Pachner [Pa, Theorem
5.3] shows that any two triangulations of simplicial d-polytopes having the same
number of vertices are connected by bistellar operations that preserve the number
of vertices. In the special case d = 3, diagonal flips are the only bistellar operations
which preserve the number of vertices, and Pachner’s proof along with Steinitz’s
Theorem (see, e.g., [Gr, p. 235]) actually shows that any two triangulations in An m
are connected by diagonal flips.

Moving on to surfaces without boundary, the analogous results to Theorems 1
and 2 are known for labelled triangulations of 2-spheres. A result of Tutte [Tu]
counting rooted planar triangulations may be converted to a simple closed form for
the number of labelled triangulations of a 2-sphere having n vertices, and Wagner
[Wa)] was the first to prove that all such triangulations are connected by diagonal
flips. Dewdney [De] proves that unlabelled triangulations of the 2-torus are all
connected by diagonal flips. However, this is not true for labelled triangulations as
there is exactly one unlabelled triangulation of the 2-torus using 7 vertices which
has no neighbors under diagonal flips, but can be labelled in more than one way.

For surfaces S of arbitrary genus, both orientable and non-orientable, there has
been a great deal of work on enumerating the triangular maps embeddable on §
(see [Gao] for some references). However these results differ from Theorem 1 in
that a triangular map on S is not a simplicial complex, but rather a regular cell
complex in which all maximal cells (along with their boundaries) are isomorphic
to triangles. For example, in a planar map on S, two distinct edges can have the
same pair of endpoint vertices, which is not allowed in a simplical complex (see e.g.

[Gao], Fig. 4.1).

II. Enumeration.

Before embarking on the enumeration of M, we establish a diagrammatic no-
tation which will be useful in this and the next section. We will sometimes draw
a picture of the disk having two of its vertices labelled with the same label r (see
Fig. 1(b)). When we talk about a triangulation of this figure, we mean an abstract
simplicial complex which triangulates the quotient space of the disk in which these
two vertices are identified. This is equivalent to a triangulation of the disk itself in
which these two vertices do not share an edge, nor are they both adjacent by an
edge to some third vertex. Sometimes we will draw a picture of the disk in which
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there is an extra edge going around the outside of the disk connecting two vertices
s and t on its boundary (see Fig. 1(c)). By a triangulation of this figure we mean
a triangulation of the disk in which there is no edge connecting s and . Sometimes
we will have both of these anomalies in our picture of the disk (see, e.g., Fig. 1(d)),
and this means that both of the above restrictions apply to triangulations of the
object drawn.

The usual method for proving facts about triangulations and triangular maps on
surfaces with boundary is to distinguish a boundary edge e, and then decompose the
set of all triangulations according to the third vertex in the unique triangle to which

e belongs. The following lemma is the key fact we need about such decompositions
for the Mobius band.

Lemma 3. Let T be a triangulation in M,, and let 1kn be the unique triangle of
T containing the boundary edge 1n. Let M' be obtained from the Mobius band M
by removing the interiors of 1kn and 1n. Let T' be the simplicial complex in which
1kn and 1n have been removed and the vertex k has been “split” into two copies.
Then there are two possibilities (see Fig. 2):

(1) M’ is disconnected, in which case T' consists of two disconnected simplicial
complexes, one triangulating a disk and the other a Mobius band.

(2) M' is connected, in which case T' is a triangulation of Fig. 1(d) and we
must have 3 <k <n - 2.

Proof. As a preliminary step, shrink the triangle 1kn into an edge e by a homotopy
which keeps k fixed and coalesces 1 and n into a single vertex. The result is
a Mobius band M with an edge e having both endpoints on the boundary, and
M — e = M'. Note that the topology of the complement M’ is unchanged by
homotopies of the edge e or by sliding the endpoints of e around the boundary of
M. For this reason, it suffices to examine the the quotient space RP? of M in
which the boundary is identified to a single basepoint. The edge e maps under
the quotient to a loop with this basepoint, and gives rise an element e, of the
fundamental group m;(RP?) 2 Z /2. By our previous comment about homotopies,
the topology of M’ only depends on whether e, is trivial or not. In either case, one
can easily check (by choosing one’s favorite edge e giving rise to the appropriate
element e, in 7 (RP?)) that the assertions of Case 1 or Case 2 follow, depending
on whether the group element e, is trivial or non-trivial respectively. Furthermore,
in Case 2 one must have k£ > 3 since when k = 2, the triangle 12n shrinks to an
edge e contained entirely in the boundary of M so that e, is the trivial element in
71 (RP?). By symmetry, one must also have k < n — 2 in Case 2. B

As in the introduction, let A, be the set of Catalan triangulations of the disk
in Figure 1(a), and M,, the set of Catalan triangulations of the Mobius band .
Also let B; ; (resp. D; ;) be the set of triangulations of Figure 1(b) (resp. 1(d)) in
which there are 7 — 1 vertices traversed counterclockwise strictly between the two
vertices labelled », and j — 1 vertices traversed clockwise strictly between them:.
Note that in Figure 1(d), one copy of the vertex r is adjacent to s and the other
is adjacent to t. Let my,an,b; j, and d; ; be the respective cardinalities of the sets
Mau, An, Bi j, D; ;, where we have adopted the convention that a; = 1.
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Proposition 4. We have the recurrences

(R1)
My = Z a;m; +m;a; + d,',j
i+j=n+1
(R2)
dij =bi,j — (ai+1 — ai)(aj+1 — aj)
(R3)
i-1 j—1
b;; = Z ak—1bi_kt2,; + Z ak(@itj—kt1 — GiGj—k+3 — Qit1Qj—kt2 + G5 _k+2)
k=3 k=2

and initial values
m; =01fori<4
a;=0fori <1
bij=dij=0fori<2o0rj<2

Proof. The first two terms on the right-hand side of (R1) come from Case 1 of
Lemma 3, depending upon whether the edge 1k or the edge kn forms part of the
boundary of the Mdbius band component of T' (see Figure 2). The last term on
the right-hand side of (R1) comes from Case 2 of the Lemma.

Recurrence (R2) comes from the fact that a triangulation of Figure 1(d) is the
same as a triangulation of Figure 1(b) which does not have an edge from s to ¢.
It then suffices to show that the number of triangulations of Figure 1(b) which do
have the edge st is

(@41 — a,-)(a,-_H - aj)-

This follows from the fact that the edge st will divide the triangulation into tri-
angulations of two smaller disks having ¢ + 1 and j + 1 vertices respectively. One
of these smaller triangulations must not use an rs edge, and hence is counted by
a;+1 — a;, while the other must not use an rt edge, and is counted by a;+1 — a;.
Recurrence (R3) uses the usual decomposition technique. Assume we have a
triangulation T of Figure 1(b). Distinguish the top vertex labelled r, let s be the
vertex counter-clockwise adjacent to it, and let rst be the unique triangle of T which
contains the edge rs. We then classify the triangulation according to the location
of t. The first sum counts triangulations in which the ¢ is on the shortest path
between the two vertices labelled r» which passes through s, and the summation
index k is one more than the number of edges on the path upward from ¢ to the
top vertex labelled r. In this case, removing the triangle rst and splitting the
vertex ¢ into two copies leaves two disjoint simplicial complexes, one triangulating
a smaller disk (counted by ak—1) and the other triangulating a smaller version of
Figure 1(b) (counted by b;—+2,;). The second sum counts triangulations where ¢
is on the other side, and the summation index has the same meaning as before.
In this case, removing the triangle rst and splitting ¢ into two copies again leaves
two disjoint simplicial complexes. One triangulates a disk (counted by ay), and the
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other triangulates a disk which must avoid using either of the edges rt,rs, which is
counted by
Qitj—k+l — BiQj—k+3 — Qi+10j—k+2 + CiQj k42

using inclusion-exclusion. W

Once these recurrences are known, it is then straightforward to find the desired
generating functions. We summarize one approach in several steps below.

Step 1. Rewrite (R3) using the Catalan recurrence
Ap = Z a;a;
i+j=n+1

on the last three terms in the second sum, to obtain the recurrence (R3’)

i1
b;; = E ak—1bi—kt+2,; — GiGj42 + 2ai0541 — Gi10541 + Gip1a5 + €55
k=3
where

Zl+m=i+j+1 aa, ifi,7>3
e = m<io1
! else

Step 2. Find the generating function for e j. Since

€3,; = E aiam

I+m=j+4
m<j—-1

= __>_ alam

I+m=j+4
125

= E aiam — 405 — A3A 541
l4+m=j+4

= Qj43 — Aa4a5 — A3Aj41

one can sum over j to get an expression for E3(y) = Zj>3 es,jyj in terms
of the known generating function A(z) = ). 5, an™.
Step 3. Once E3(z) is known, summing the recurrence

€i,j — €it+1,j—1 = @i4205-1

over i, ] gives an expression for E(z,y) = Ei,j>3 ei,j:ciyj.

Step 4. Summing (R3’) over 7,j gives an expression for B(z,y) = Ei,jzs b; jziy’
in terms of E(z,y), A(z), A(y).

Step 5. Summing (R2) over ¢, gives an expression for D(z,y) = Ei’j23 b; jz*y’ in
terms of B(z,y), A(z), A(y). ;From this one obtains an expression for

D(z,z) = limy_,,D(z,y)

using L’Hopital’s rule.
Step 6. Summing (R1) over n gives an expression for M(z) = }_, 5, mnz™ in terms

of D(z,z) and A(z), which yields Theorem 1.
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III. Connectivity by diagonal-flips.
The goal of this section is to prove Theorem 2, but in fact we will prove something
slightly more general.

Thereom 2’. For a fixed number of vertices, and for each of the diagrams in
Figures 1(a)-(d) and the Mobius band M, any two triangulations are connected by
a sequence of diagonal flips.

Proof. Assume that we have chosen a particular one of the diagrams in Figures
1(a)-(d) or the Mobius band, and have fixed the number of boundary vertices. As
in the previous section, the strategy will be to decompose the set 7T of triangulations
in the following way: Given a triangulation T in 7, we distinguish a boundary edge

ab and decompose
T=| |7
k

according to the third vertex k in the unique triangle abk of T' which contains the
edge ab. As usual, we let T' be the simplicial complex obtained from T' by removing
ab,abk and splitting the vertex k into two copies, and check that 7' is always a
disjoint union of one or two simplicial complexes triangulating diagrams appearing
in Figures 1(a)-(d), but with fewer boundary vertices than T'. By induction this
will imply that any two triangulations in 7} are connected by diagonal flips, and
will complete Step 1 of the proof. In Step 2, we linearly order the vertices k which
can appear in the decomposition 7 = | |, 7k, and check that for any two adjacent
values k,k’ in this order there exists a triangulation T in 7} and 7" in 73 which
are related by a single diagonal flip. This will complete the proof of the Theorem.

In the cases where T triangulates one of the Figures 1(a)-(d), the argument
for Step 1 is relatively simple, and is summarized in Figure 3. For each case,
the distinguished boundary edge ab is shown darkened, the alternatives for the
location of k are displayed, and the connected components of 7" are labelled with
the diagram that they triangulate.

The case where T triangulates the Mobius band is slightly more bothersome.
In this case, we choose the distinguished boundary edge ab to be 1n. Note that
here the description of the decomposition 7 = | |, 7k is slightly inaccurate, in that
we need to not only decompose the triangulations according to the vertex k in the
unique triangle 1kn containing 1n, but also according to the alternatives given in
the Lemma 3, and furthermore according to whether the edge 1k or the edge kn is
contained in the boundary of the Mébius strip in Case 1 of Lemma 3 (see Figure
2). Strictly speaking, we should rename this decomposition

T:Un

in this case. We need to know that in this finer decomposition, one can apply
induction to conclude that any two triangulations in 7, are connected by diagonal
flips. However one cannot simply induct on the number of vertices, since in Case
2 of Lemma 3, the simplicial complex 7' has the same number of vertices as T.
However, in this case T' triangulates the “simpler” object of Figure 1(d), and so
induction still applies. This completes Step 1.
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To carry out Step 2 for triangulations of Figures 1(a)-(d), in each of these cases
we linearly order the vertices k that can appear in the decomposition 7 = |, 7% in
clockwise order, beginning to the left of the distinguished boundary edge ab. Given
two adjacent values k,k' in this order, we wish to exhibit triangulations T',T" in
7,7’ that are connected by a diagonal flip. To do this, we have drawn in Figures
4(a)-(d) pictures of the appropriate figures along with the quadrangles abkk' and
both of the diagonals of the quadrangle. For each of these pictures, it suffices
to exhibit a triangulation of the rest of the figure outside this quadrangle which
does not use either of these diagonal edges. In each case (a)-(d), this is equivalent
to triangulating the disconnected set of figures shown in Figures 4(a)-4(d), and it
is easy to check that at least one such triangulation exists (one really need only
worry about cases in which the diagrams have few vertices). Note that some of
the diagrams which arise in these disconnected sets are “new” in the sense that we
have not encountered them in our previous analysis, but this does not concern us
since we only need to show that they have at least one triangulation.

Step 2 for triangulations of the Mdbius band is similar, except that the o’s which
appear in the finer decomposition 7 = | |, 7, discussed above must be linearly
ordered differently. We first put in order of increasing k those sets 7, which are in
Case 1 of Lemma 3 and where kn is an edge of the Mdbius band component of 7.
Next we put in order of decreasing k those sets 7, which are in Case 1 of Lemma
3 and where 1k is an edge of the Mobius band component of T'. Last we put in
order of increasing k those sets 7, which are in Case 2 of Lemma 3. The pictures
in Figure 5, like those in Figure 4, show for any adjacent a, ' in this order exactly
what sort of triangulations are needed to produce a pair of triangulations T' and
T' which differ by a diagonal flip. It is then easy to check that in each case such
triangulations exist. W

Remarks:

(1) Figure 6 shows the unique triangulation in My and the graph of Mg in
which the vertices are triangulations, and two triangulations are connected
by a diagonal flip. Notice that the dihedral group Dj, of order 2n acts as
symmetries of the boundary triangulation of the Mobius band, and hence
acts on M,, and on this graph.

There are several questions one might ask about this graph, by analogy
to the graph on A,,, which is known to be the 1-skeleton of a simple (n — 3)-
polytope called the associahedron or Stasheff polytope (see [Lee]). The
last fact implies that the graph on A, has edge-connectivity and vertex-
connectivity n — 3 by Balinski’s Theorem (see [Ba]), and the diameter of
the graph on A,, was proven to be 2n — 10 for n sufficiently large in [STT].
What are the edge-connectivity, vertex-connectivity, and diameter of the
graph on M,? Computer calculations show that Ms, Mg, M7, and Mg
have diameters 0,5,10, and 16 respectively.

(2) In light of Theorem 2, and also the result of Pachner [Pa, Theorem 6.3]
which says that any two triangulations of homeomorphic PL-manifolds
(possibly with boundary) are connected by a sequence of shelling and
inverse-shelling operations (possibly altering the number of vertices), one
might be tempted to make the following
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Tempting conjecture. For a fixed surface (2-manifold with boundary)
with fixed boundary triangulation and fixed number of interior vertices,
any two triangulations are connected by a sequence of diagonal flips.

However, this is false. For example, let S be the M&bius band with three
boundary vertices labelled 1,2,3 and three interior vertices labelled 4,5, 6.
Then there are a total of 6 such triangulations of S, all isomorphic (they
come from removing the 123 triangle in any triangulation of RP? as the
quotient of the boundary of an icosahedron by the antipodal map), but
each has no neighbors under diagonal flips.

Lest the reader think this phenomenon is confined to non-orientable
surfaces S or to triangulations which use interior vertices, consider the
example where § is the punctured 2-torus (i.e. a disk with one handle) and
triangulations having no interior vertices and 6 boundary vertices labelled
1,2,3,4,5,6. There are a total of two such labelled triangulations

{124,135,136,145, 235, 246, 256, 346}

{125,134, 135,146,236, 245, 246, 356}

which are isomorphic as unlabelled triangulations, and neither has any
neighbors under diagonal flips.
Nevertheless, computer data suggest the following conjecture.

Conjecture. Let S be the set of all triangulations of a fixed surface S
having a fixed boundary triangulation and fixed number of interior vertices.
If the total number of vertices (both boundary and interior) is not minimal,
i.e. there exists a triangulation of S having fewer total number of vertices,
then any two triangulations in S are connected by a sequence of diagonal
flips.
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