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where 7(k) is given in (8.6). A simple check verified that 6 >0 whence the
latter error term in (10.3) is subsumed by the former—and, mirabile dictu,
Theorem 2 is proved.
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ITERATED FIBER POLYTOPES

LOUIS J. BILLERA anp BERND STURMFELS
Dedicated to the memory of Paul Filliman

Abstract. The construction of the fiber polytope Z(P, Q) of a projection
n: P—Q of polytopes is extended to flags of projections. While the faces of
the fiber polytope are related to subdivisions of Q induced by the faces of P,
those of an iterated fiber polytope are related to discrete homotopies between
polyhedral subdivisions. In particular, in the case of projections

R"+2—?R3—’R2'—>R],

starting with an (n+ 1)-simplex, vertices of the successive iterates correspond
to, respectively, subsets, permutations and sequences of permutations of an n-
set. The first iterate will always be combinatorially an n-cube, and, under
certain conditions, the second will have the structure of the (n— 1)-dimensional
permutohedron.

§1. Introduction. We recall the definition of the fiber polytope given in
[4]. Let P<R” be any polytope, and let 7: R"—>R“ be a linear map. Then the
image Q= n(P) is a polytope in R? and each fiber 77'(x), x€Q, is a polytope
in R". We define a subset of R” by averaging all fibers of the projection &

N S R

(P, Q) ol (Q) j n (x)dx. (1.Y)
xe@

The set-valued integral (1.1) can be understood in three different but equivalent

ways:

(1) as the Riemann-type limit of all Minkowski sums 1/N Zf;, (%),
where x,€Q;

(2) as the set of points jx o y(x)dxeR" where y: Q— P runs over all sections
of r; or

(3) as the convex set whose support function is the pointwise integral of
the support functions of the fibers.

In [4] it is proved that the set X(P, 0)<R" is a polytope of dimension
dim P—dim Q, called the fiber polytope of the map 7 P—-Q. When P=A,,
the n-simplex, Z(P, Q) =Z(Q), the secondary polytope of [8], whose vertices
correspond to regular triangulations of Q. In general, the face poset of 2(P, Q)
is isomorphic to the poset of P-coherent polyhedral subdivisions of Q. In
particular, if dim Q=1 then X(P, Q) is a polytope of dimension dim P—1,
whose vertices are in bijection with certain monotone edge paths on P. This
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construction was applied in [3] to resolve a topological problem posed in [1].

The thrust of the present paper is to investigate functorial properties of the
fiber polytope operator X( -, - ). We extend this operator to flags of projections.
This results in a polyhedral model for homotopies between subdivisions of a
given polytope. The case where that polytope is 1-dimensional is the subject
of [3].

The point of departure in [3] was the observation that the fiber polytope
of a generic map of an (n+1)-simplex A, onto a line is combinatorially
isomorphic to the n-cube. As an indication of this, note that a triangulation
of a set of n+2 points on a line is determined by a subset of the #» non-extreme
points, giving the association with the vertices of an n-cube. Similarly, the fiber
polytope of a generic map of a regular n-cube onto a line has the structure of
an (n— 1)-dimensional permutohedron (defined as the convex hull of the orbit
of a point with distinct coordinates in R” under the action of the symmetric
group S,). Assuming the minimum and maximum points in the cube with
respect to this projection to be (0,...,0) and (1,..., 1), then vertices of this
fiber polytope correspond to monotone paths in the cube between (0, ..., 0)
and (1, ..., 1); each such is determined by the order in which the coordinates
are turned from 0 to 1, and thus are in bijection with the vertices of the
permutohedron. The face posets in both these cases are examined in detail in
Section 4.

One can now take the permutohedron and project it onto a line in such a
way that the vertex corresponding to the identity permutation e=123...#nis
first while its reverse wo=n ... 321 is last. What is the fiber polytope of this
map? Its vertices correspond to certain (but not all [1, Section 1I1.7, p. 121])
maximal chains in the weak Bruhat order on S,. An explicit example for n=
4 is worked out in Section 5. In that example the iterated fiber polytope is a
planar polygon with 12 vertices, corresponding to 12 of the 16 maximal chains
in the weak Bruhat order on S;.

The paper is organized as follows. In Section 2 we examine the iterated
fiber polytope of two consecutive projections. A basic construction is that of
a fan obtained via projection of a higher dimensional fan. We also study
coherent homotopies of polyhedral subdivisions arising from this iterated fiber
polytope. The section ends with a brief discussion of how results in this paper
can be interpreted in terms of quotients of toric varieties [9].

In Section 3 we introduce the flag polytope of a given polytope with respect
to a general flag of projections. For instance, the usual fiber polytope arises
from a flag of length 1, and the iterates discussed above arise from certain flags
of length 2 or 3. Our main result here concerns Minkowski sum relations
among flag polytopes.

In Section 4 we concentrate on the case of a flag of projections
Ay 1= 03— 0>,— 0. We show that the flag polytope Z(Z(A,+1, Q1),
2(Q:2, @,)) is combinatorially a permutohedron whenever @, is an (n+2)-gon
in convex position. A complete example for n=4 is worked out in Section
5. The next iterate, the polytope X(F.3) =X(A,+; Fix3) of (4.2) and (5.2),
corresponds to projecting this permutohedron onto a line. For general n, it
remains an open problem to give a combinatorial description of this flag

polytope.
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§2. Iterated projection and homotopies of polyhedral subdivisions. Let
P35 Q % R be surjective linear maps of polytopes. By Lemma 2.3 of [4], the
fiber polytope Z(Q, R) equals the image of the fiber polytope Z(P, R) under
the linear map 7. We will study the iterated fiber polytope Z(2(P, R), (0, R)).

Note that if dim P=r and dim Q=d, then both Z(P, Q) and X(X(P, R),
2(Q, R)) are (n—d)-polytopesin V= R”. Our first theorem establishes a natural
surjection from the fact lattice of the latter polytope to the face lattice to the
former polytope.

TueoreMm 2.1.  X(P, Q) is a Minkowski summand of Z(Z(P, R), Z(Q, R)).

Before starting the proof, we describe some basics about normal fans in
the context of fiber polytopes. Let W<V are vector spaces and projy,w the
canonical projection from ¥ to ¥V/W. If C<V is a cone, then the projection
of Conto V/Wis

projV/WC={x+ W|(x+ W)hc#@},

proj,,wC is again a cone. If # is a fan in V, then define the fan proj,,w% as
follows: the relatively open cells of projy,w# are the equivalence classes under
the relation

X+ Wex'+ We{CeF|(x+ W) n CA B} ={CeF|(x+W)n C£Z}, (2.1)

where elements of & are considered to be relatively open cones. Alternatively,
projy,w# is the common refinement of the set of cones {projy,wC|CeZ }.

If V is the ambient vector space of the polytope P, we consider its normal
fan A"(P) as the collection of relatively open normal cones N(P, F) to the
faces F of P; these cones lie in the dual vector space V*. Considering
(P, Q) cker =, it follows that A" (Z(P, Q)) is a fan in the space (ker m)*,
which we identify with ¥*/im n*, where n* is the adjoint to #. The same is
true of each A (1~ '(x)). In fact,

N (27 (x)) = {Projker  N(P, F)| 7' (x) N rel int F# Z}, (2.2)

and A4 (Z(P, Q)) is the common refinement of these fans as x runs over Q=
n(P). Here projer »)* means Proju*/imn+. These observations prove the follow-
ing result (cf. [9, Prop. 2.3]).

PROPOSITION 2.2. The normal fan of the fiber polytope (P, Q) is the pro-
jection of the normal fan of P, i.e.,

N (E(P, @) = Projger my* A (P)- (2.3)

Proof of Theorem 2.1. Applying Proposition 2.2 twice, we find that the

normal fan of the polytope Z(Z(P, R), £(Q, R)) is the projection, under the
map

@:V*/im (8 o 1)* —(V*/im (0 - m)*)/(im m*/im (0 o m)*) = V*/im 7*
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of the fan A (Z(P, R)) =projero- (A (P)). This fan refines the fan
./V‘(Z(P, Q)) =pr0j(kcr n)'-M(P) because

PIOj(ker m* = §7 © PTOj(ker 6= m)* -

This completes the proof, because the relation on polytopes “is a Minkowski
summand” is equivalent to the relation “has a coarser normal fan”.

A key element in the theory of fiber polytopes is the notion of coherent
polyhedral subdivision. Let z: V'~ W, P a polytopein ¥, Q=r(P) and y € v*
The P-coherent subdivision TI(y) of Q consists of all #(F), where F is a face
of P such that N(P, F) n (v +im n*)# &, If n(F)eIl(y), we will say that y
picks F under r.

We will see now that the faces of the polytope Z(Z(P, R), Z(Q, R)) corre-
spond to what might be called coherent homotopies of polyhedral subdivisions.
In the special case where d=dim @=dim R+ 1, 2(Q, R) is a line segment con-
tained in Q, and (P, R) is an (n—d+ 1)-polytope in P, whose vertices corre-
spond to P-coherent subdivisions of R. The polytope Z(2(P, R), Z(Q, R)) has
vertices corresponding to certain paths (homotopies) between the subdivisions
of R induced by the top and bottom of Q with respect to 6. Theorem 2.1
relates these homotopies to P-coherent subdivisions of Q. Such homotopies,
in the case dim R=2 and dim Q=3, played an important role in the construc-
tion in [11, Section 2.6]. For an example see the last table of Section 5, which
gives all seven coherent homotopies between the top and the bottom of a cyclic
3-polytope with six vertices.

For simplicity, we assume for the rest of this section that P=A,, the
n-simplex in V=R"*', d=dim Q=dim R+1, and the matrices defining the
maps 7 and @ have all their maximal minors non-zero. This genericity assump-
tion implies that the polytopes Q and R are simplicial, and that their corre-
sponding oriented matroids are uniform: [5].

Let h=(ho, ..., h,)eV™ be a height vector of the vertices of Q over their
projections in R, ie., h is any element in im z*\im (6 - 7)*. The faces
(P, R)™" and (P, R)" are thus defined and independent of the choice of A.
By our genericity assumption, both are vertices of Z(P, R); they correspond,
respectively, to the triangulations I, of R induced by the “top” of Q, and
the triangulation IMyoom Of R induced by the “bottom” of Q. We define a
(Q, R)-homotopy to be a sequence H= (Ilo, IT,, IT,, . . ., IT;) of triangulations
of R such that Iy =TIy,p, ITx=ponom, and all adjacent pairs I1;, I, differ
by exactly one bistellar flip [2; (3.8)]. For regular triangulations, such flips
correspond to edges of Z(P, R), the secondary polytope of R (see [8; Theorem
3A.8)).

A generic ye V™ defines a (Q, R)-homotopy H(y) as follows. Consider
the sequence of vertices (P, R)**®", as a ranges from —co to +co. This gives
a sequence of regular triangulations of R, which is a (Q, R)-homotopy. (@, R)-
homotopies of the form H(y) are called coherent.

It follows from [4; Lemma 2.3] that the polytope Z(Z(P, R), Z(@Q, R))
equals the monotone path polytope L,(Z(P, R)), which parametrizes the mono-
tone vertex paths of the form {Z(P, R)¥**"|a e(—o0, +00)}, between Z(P, R)™
and (P, R)". This leads to the following interpretation.
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THEOREM 2.3. The vertices of Z(Z(P, R), Z(Q, R)) are in one-to-one corre-
spondence with the coherent (Q, R)-homotopies connecting Tlop With Tpotom -

Theorem 2.1 implies that there is a surjection from the set of vertices of
the polytope Z(E(P, R), Z(Q, R)) to those of Z(P, Q). We will describe this
surjection more explicitly under the same genericity assumption as above.

Let . be a linear functional on A, which supports a vertex of Z(Z(A,, R),
2(Q, R)). By Theorem 2.1, v also supports a vertex of L(A,, 0)=2(Q). Let
T(y) be the corresponding regular triangulation of Q. For any two consecutive
triangulations I1; and I, in the coherent (Q, R)-homotopy H(w), there exists
a unique d-simplex 7,= t(I1;, i+, Y={Xo0, X1, ..., x4} which is involved in the

bistellar flip between IT; and I1;,,. More precisely, there exists a partition
A; U B; of 7; such that

T\ = {{x0, X15 . - x4} \{a}:aed;},
and (2.4)
. \IL={{x0, X1, - . -, xa}\{b}: beB:}.

COROLLARY 2.4. Each coherent (Q, R)-homotopy H= (I, I,
,,...,I,) defines a regular triangulation

T(H)={f(ni, I+ )}i=0,1,... ,k—l}
of Q. More precisely, T(H(y))=TI(y).

Proof. We will show that T(H(y)) equals the regular triangulation N(y)
of 0. The above lifting vector A is a linear functional in im 7*\im (0 © n*;
in fact, we have

im 7* =span (h) +im (0 o 7)*. 2.5)

Let 7,= t(I1;, [1;+ ) be any d-simplex in T(H(y)). There exists a real number
a, such that, for all £¢>0 sufficiently small:
(i) w(a,;— €)h picks the (d— 1)-simplices in IT;\IT;+, under Gorm;
(ii) v+ a;h picks the d-simplex 7; under 6 o 7;
(i) w+ (a;+ €)h picks the (d—1)-simplices in IL; i \IT; under 0 o .
Statement (ii) is equivalent to

N(A,, 1) N (y+ah+im (0o 1)) #D.
This implies
N(A,, )~ (y+im n*) #

which means that 7; is picked by y under 7.

Conversely, let T be any d-simplex which is picked by y under 7. By the
definition of “picking”, there exists a real number a such that (ii) holds, and
there exists a partition 4 U B of t such that (i) and (iii) hold. Therefore 7=
r; and a = a; for some i€{0,... . k—1}.

The map Hw T(H) is usually not injective, as can be seen in the example
of Section 5.
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All results in this paper can be translated into the language of algebraic
geometry. It was shown in [9] that the construction of the fiber polytope
corresponds to taking the Chow quotient of a projective toric variety modulo
a subtorus of its dense torus. Hence every statement about fiber polytopes is
also a statement about Chow quotients of toric varieties. For instance,
Theorem 2.1 translates as follows.

COROLLARY 2.5. Let X be a projective toric variety with dense torus (C*)",
and let Ty T, (C*)" be subtori. Then there exists an equivariant morphism
from the iterated Chow quotient (X//T,)//(T1/T.) onto the Chow quotient
X//T;.

All results to follow are given only in terms of combinatorial convexity. In
each case, there is a relatively straightforward toric translation.

§3. Flags of polytope projections. The construction in Theorem 2.1 can be
iterated as follows. Let %, . 4(R") denote the flag variety consisting of all
flags of linear subspaces 0=V, V,c...c ¥V, Vi =R", where dim V;=d,.
This is a real algebraic manifold of dimension Zf;l (d;+,—d;)d;. Elements in

Fa. . .aR") will be denoted by Fr, or by F4 . 4. Each flag
FieF 4. .. . 4(R") gives rise to a chain of orthogonal projections
Fo: Vi Voo = = 1 =5 Vo= {0}, G.1)

which is preceded by one additional map R"— Vi. We write F,_, for the
natural image of F,e % 4 ... .. e Foap d -

Fix a polytope P<R" (e.g., a simplex), and consider its projections into V;
and its further projections under (3.1). This situation is abbreviated by writing
P—>F,.

We now define the iterated fiber polytope X(P, F;). We proceed by induc-
tion on k. For k=0 we set Z(R, Fo) =R, for any R. For k>0, let Q,=m.(P)
and notice that both P =3 F._: and O, RSN F._;. By induction, both
X(P,Fr_1)and Z(Qx, Fy-1) are defined. By repeated application of [4; Lemma
2.3], they are seen to be related by the projection

(P, Fey) = 2(Qs, Firr ). (3.2)
We define X(P, F,) Lo be the fiber polytope
E(P, Fk)=z(Z(P’ Fk—l)s E(Qk, Fk—l))' (33)

This polytope is an invariant of the polytope P and the flag F,. We call
X(P, F;) the flag polytope. Note that for k=1 the flag polytope Z(P,F,)=
Z(P, m(P)) is just the usual fiber polytope. For k=2 we get the polytope in
Theorem 2.1. In order to generalize Theorem 2.1 to arbitrary flag polytopes,
we need the next lemma.
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LEMMA 3.1. Let n be a linear map such that n: P+ P,—Q,+Q, and
n: Py=Q,. Then (P, Q1) is a Minkowski summand of L(P\+ P2, Q1+ (O»).

Proof. Refinement of fans is preserved by projection. Since A"(P + P;)
refines A" (P;), the fan projer oy A (P1 + P2) =N (Z(P1+ P2, Q1 + (1)) refines
the fan projwer my* A (P1) = A (Z(Py, Q1))

THEOREM 3.2. For any k>0, the flag polytope L(P,F,) has dimension
dim P—dim Qc, and it has the fiber polytope (P, Qi) as a Minkowski summand.

Proof. By induction on k. For k=1, the first conclusion is known and
the second is vacuous, and for k=2 this is Theorem 2.1. Let < denote the
relation of being a Minkowski summand.

Assume the result is true for chains of length k—1. Then we have both
(P, Q1) <Z(P, Fi_ ) and 2(Qx, Ox—1)<Z(QO«, Fi—1). Further, Z(P, Fr_1)
has dimension dim P—dim Qx—, and Z(Qk,Fi-1) has dimension
dim Q,—dim Q,-,, and so by (3.3) Z(P, Fy) has dimension dim P—dim Q.
By [4, Lemma 2.3],

i
Z(P, Q1) = L(Qks Ck—1)s (3.4)
and so by Theorem 2.1, (3.2) and Lemma 3.1,

(P, Qu)<Z(Z(P, Qrm1), Z(Qrs Qu—1))<Z(P, Fy).
Here Py=3%(P, Qx—1), P+ P,=%(P,F,_,) and 7 =r; in (3.2) and (3.4).

It is well known that the coordinates of any secondary polytope Z(A,, &)
are given by linear functions in the volumes of the spanning simplices in &/
(see e.g., [7] or [2, Section 3]). When ./ lies on an affine hyperplane, these
volumes are the absolute values of the Pliicker coordinates of the corresponding
linear subspace F,. Hence for fixed P the flag polytope Z(P, F;) isa piecewise
linear function on the Grassmannian in its Pliicker embedding. By this we
mean that the support function of Z(P, F,) depends piecewise-linearly on the
Pliicker coordinates of the non-trivial subspace V; in the flag F;. Moreover,
if P=A,_,, the standard (n— 1)-simplex, then Z(P, F,) is a linear function on
each oriented matroid stratum of the Grassmannian (c¢f. [5], [6]).

The Pliicker coordinates on the flag variety #4,,.. . 4(R") are indexed by
chains of subsets I,chc...chc{l,2,...,n} with card (I;)=d,. The
Pliicker coordinate of F, with index (1, . . ., Ir) is the product over j=1, ...,k
of the Pliicker coordinates indexed I, of the subspaces V;. The flag oriented
matroid strata are defined to be the largest regions in Fg4,, ... 4(R"™) on which
the sign of each Pliicker coordinate is constant. The following proposition can
be proved by induction on k.

PROPOSITION 3.3. For each fixed polytope P lying on an affine hyperplane
in R", the flag polytope X(P, F,) is a piecewise linear function on the flag variety
Fa. ... a(R") (in its Pliicker embedding). In particular, if P=A,_, the standard
(n—1)-simplex, then (P, F,) is a linear function on each flag oriented matroid
stratum.
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It would be of interest to have an explicit formula for the vertex coordinates
of flag polytopes.

§4. Simplex, cube, permutohedron and beyond. The sequence of construc-
tions in [1, Ch. III] can be interpreted as computing the iterated fiber polytopes
given by a flag

2

Fias:Va— 1, Vi Vo= {0},

where dim V;=i. If R"*? =, Vs, and A,+ <R"*? is the standard simplex,
then Z(A,+1, F;) is combinatorially an n-cube. Under certain conditions,
Z(A,+1,Fi2) has vertices corresponding to permutations in S, and
S(A.+1, Fi23) has vertices corresponding to certain sequences of these permuta-
tions. It is the purpose of this section to study this sequence of flag polytopes.

We first describe certain facets of monotone path polytopes. These corre-
spond to ““coarsest” possible coherent cellular strings in a polytope P < R” with
respect to a linear objective function y e (R”)*. For any polytope FcR”", denote
by F?” the face of F on which y achieves its maximum, that is,

F"={xeF|{x, y>={p, v, forall yeF}.

A cellular string on P with respect to y is an ordered list Fi, F;, ..., F; of
faces of P, 0<dim F;<dim P, having the property that F{"=P 7, F[ =P,
and, for i<~k,ﬁ7=E1ﬂ. A string is said to be coherent if there is a e (R™)*
satisfying e N(F;) n N(F,) n ... n N(F}), where

g= Projr* /span 0 and N(F) = Projwy*/span yN(P, F).

The monotone path polytope Z,(P) is defined to be the fiber polytope of P
with respect to the map y: R"—R. Its faces correspond to coherent cellular
strings of P (see [4], [3]).

ProrosITION 4.1, If F\, F; is a cellular string in P with F\ N F, a simple
vertex and dim F, +dim F,=dim P, then it is coherent and corresponds to a facet
of £,(P).

Proof. Let N(P,F,nF,)=cone{v,...,v,}, where cone denotes the
strictly positive span of {v;,...,v,}. After possible reordering, we have
N(P, F;)=cone{vy, ..., 0n}, N(P, ;)=cone{tm+1,...,0n},

N(F,, FinF)=span{v,, ..., v, } +cone{tps1,..., Un}, and
N(Fy, FFnF)=cone{vi,....,Un}+span{tuy+i,...,0n},
with 1 <m<n. Now
YEN(FI, FiNnF)n=N(F, i F)=cone{—vi, ..., —Umn, Unsis---»Un}s

so y=0,—0,, where 9,e~N(P, F,l and 0,eN(P, F,). Projected into (R")*/
span y, we get 5,=§26N(F,)0N(F2). Hence the cellular string F,, F, is
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coherent. It corresponds to a facet of I,(P) because Fi N F; is simple and
dim F, +dim F,=dim P, so it cannot be coarsened.

Suppose we specify the linear map 73 :R"*?> V; by means of a 3x (n+2)
matrix

Yo 71 ce s Y+
A=l 0wy @... ®n+1
Vo Vi ...Vat+i

and the maps x;, i=2, | as projections on the first i coordinates, so that the
composition 7,0 ;0 3 :R"*?> ¥ is given by the inner product with y=
(Yo, ¥1s - - - » Yus1). For the rest of the discussion we take y=(0,1,...,n+ 1),
although any values yo<7y:<...<7,+; would yield the same results.

Suppose that Q;, defined as the convex hull of the columns of A4, is a 3-
polytope, and let Q, be the polygon conv{(0, @), (1, ®1), ..., (n+ 1, @nss )}
By the results in Section 3, we have the following flag polytopes and Minkowski
sum relations among them:

Z(Ani1, F1)=Zy(Ans1);
Z(Q2)<E(An+1, F12) =Z0(Z(An+1)); 4.1
and
Z(03)<Z(An+1, F23)<Z(Ans1, Fi23) = Zu(Za(Zy(An+1)))-

Here the polytope in the first row has dimension n, the two polytopes in the
second row have dimension n— 1, and the three polytopes in the third row have
dimension n—2. To see Z(A,+1, Fi2) as an iterated path polytope, note that,
by definition, Z(A,+1, Fi2) =Z(Z,(Au+1), 202, F1)). Here Z(Q,, Fy) is the
monotone path polytope given by the projection of the polygon Q>< V; onto
the first coordinate, and so it lies in a complementary one-dimensional sub-
space. Thus Z(A,+1, Fi2) =Zu(Z,(As+1)), where the linear functional @ acts
on a point of £,(A,+,) by integrating ® over any y-monotone path in A+,
representing that point.

The following result is known, e.g., [8; §3E.1] or [7; Cor. 23]. We include
a proof for completeness.

PROPOSITION 4.2. X(A,4, F\) is combinatorially equivalent to an n-cube.

Proof. A cellular string F, ..., Fx on A, with respect to the objective
function y is given by a sequence of integers 0=iy<i; <...<i=n+1 and sets
Fc{imy, ija+1, ..., 5}, with {1, 4} <F;,j=1,..., k. The correspond-

ence to faces of the n-cube C"=[0, 1]" is given by sending the string Fi, ..., Fi
to the face
{(x1, ..., x))eC x;=xp=...=x;_, =1,

and x;,=0, jé¢FiuU...UF}. 4.2)
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To see that each such string Fy, . .., Fi is coherent, note first that for any face
F of A,+, (considered as a subset of {0,1,...,n+1}), the inner normal
cone is given by  N(A,.;, F)=cone{e?|i¢ F} +span {e}, where
e=ef+ef+...+ek is the linear functional defining the hyperplane aff A, + .
To show Fi, ..., F, to be coherent, we must show

() (N(A,+1, F) +span {7}) # 2.

For any 0=(0¢, 04, ..., 0,+,1)e(R"*, let, f5 be the convexification of 0, that
is, the largest convex function on the real interval [0, n+ 1] with fp(i) <6; for
i=0,1,...,n+1. Given the cellular string Fi, ..., F, as above, we can find
0 satisfying

So(i)=0,forieF U...UFy, fo(i)<O;forie{l,...,n}\Fiu...UF, (43)
and
fo is given by a distinct affine linear function f; on each interval [i;,_,, ;]. (4.4)

Then by the convexity of fy, the function f, —f; is zero on i€ F; and positive on
i€{0,...,n+1}\F;. Writing

n+1

Z ﬁ(i)ei*=a7+ﬁ€
i=0

for suitable a, feR, this says 6—ay—feeccone {¢*|i¢F;} and so
0eN(A,+1, Fj)+span {y}.

The properties (4.3) and (4.4) of the function f; define the normal cone
N(F,, ..., F,)tothecube Z(A, ., F,) at the face corresponding to Fi, . . ., Fi.
Facets of (A, +1, Fi) correspond either to cellular strings F,, F,, where F;=
{0,1,...,i} and F,={i,i+1,...,n+1} (corresponding to the facets x;=1 in
C™), or to single-element strings F={0,1,...,n+1}\{i} (the facets x,=0),
for 1<i<n.

To compute (A, 41, F2)=Z,(Z,(A,+1)), it is enough to specify the action
of ® on vertices of X,(A,+1), i.e,, on cellular strings Fi, ..., Fi consisting
entirely of edges of A, (each |F;|=2). If 0=iy<i;<...<i,=n+1 are the
vertices of this string then

| LA w; +o,
CO(F],...,F/C)='*——“ Z (lj—lj_|)—/—ll
n+1,5 2

(see [4; Theorem 5.3]).
In the following theorem, we need the additional hypothesis that the points
0, w0), (1, 01),...,(n+1, ®,+,) are in strict convex position.

THEOREM 4.3. If Q is an (n+ 2)-gon then the flag polytope L(A,+, Fi2)
is combinatorially isomorphic to the (n— 1)-dimensional permutohedron P,.

Proof. The boundary of the polygon Q, is divided into two paths with
respect to the projection onto the first coordinate, one on “top” and the other



358 L. J. BILLERA AND B. STURMFELS

on the “bottom”, having vertices indexed by sets 7 and B, respectively, with
TuB={0,1,...,n+1} and TnB={0,n+1}. We consider w-decreasing
monotone paths on the cube Z,(A,+1). Faces of Z,(Z,(An+1)) correspond to
cellular strings in Z,(A,+ ) joining the initial vertex, corresponding to the top
path, to the final vertex, corresponding to the bottom path. Since @, is an
(n+2)-gon, these paths correspond to complementary vertices of the n-cube
by (4.2) and so there are no proper faces containing both vertices. We show
now that all cellular strings on X,(A,,) are coherent and that 2,(Z,(Ans1))
is combinatorially equivalent to P,.

The face lattice of the permutohedron P, is isomorphic to the lattice of
ordered partitions of the set {1,2,... ,n}, ordered by refinement (see, e.g.,
[12; Chap. 5, §3]). We give an isomorphism between this poset and the poset
of cellular strings on the regular n-cube C" with respect to the linear functional
Y..ref—X.se}. Anordered partition 4;, Az, ..., Ak corresponds to a cellular
string Gy, G, . . ., Gx on C” given by

Gi={(x1, ..., X)eC"| x;=1,
jeBn(A .. VA )u(Tn(dinv. U A));
x=0, je(Tn(A4u...VADuBn(divv.. OA. (4.5)

This correspondence determines an isomorphism of posets because G; deter-
mines A;.

To prove the theorem, we need to construct a similar isomorphism to the
poset of w-monotone cellular strings on the non-regular n-cube Z,(A,+1).

Given an ordered partition A, 45, ..., A of {1,..., n}, define a sequence
of paths Ty, T, . . ., T between vertices of 0 as follows: To=T and for i>1,
Ti=(T,—1\4;) U (B A;). Note that T, = B and that the path 7; together with
the region between T;_, and T; consists of a string F;,, ..., Fi;, of edges and
one or more polygons. This is the cellular string on A, +, corresponding to the
face G, of ,(A,+,)=C", as can be verified by comparing (4.2) and (4.5).
G,, G, ..., Gis a cellular string on Z,(A,+,) because the vertex correspond-
ing to the path T; is @-minimum on G; and w-maximum on G;+,.

Conversely, every w-monotone cellular string Gy, Gz, . . ., G, on Z, (A1)
arises this way. Indeed, if 7; is the vertex path on A,., corresponding to the
vertex G;n G, 4., To=T corresponding to the maximum vertex of G, and T,=
B to the minimum of Gy, then define A4;=(T:\Ti—,) v (T;-1\T;). Since T; lies
below T;_, in their projection into Q,, we have T\T;-,<B and T, \\T.<T.

Consequently, 4,, 43, ..., Ax is an ordered partition of {1,...,n}, inverting
the correspondence above. In each direction, the correspondence is order
preserving.

We have shown that the poset of all cellular strings in Z,(A,+1) is iso-
morphic to the face lattice of the (n— 1)-dimensional permutohedron P,. The
theorem follows by an applciation of

LEMMA 4.4. Suppose n:P—Q is a linear map and P is the poset of all P-
induced polyhedral subdivisions of Q. If % is isomorphic to the face poset of a
polytope of dimension dim P—dim Q, then all induced subdivisions are coherent
and P is the face poset of the fiber polytope (P, Q).
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Proof. This follows since a full-dimensional spherical subcomplex of a
sphere must be the entire complex (see, e.g., [10; Thm. 6.6 and Exer. 6.9,
pp. 67-68]).

Figure 1 illustrates the situation with respect to a face F of the 14-
dimensional permutohedron X,(X,(Aj)). The corresponding ordered parti-
tion Ay, Ad,,..., A, satisfies A U ... ud;_={1,2,11,12,14,15}, A;=
{3,4,8,13} and 4,4, u...UA=1{5,6,7,9,10}. T,_,is the path 0-2-3-5-7-
9-12-13-14-16, T, is 0-2-4-5-7-8-9-12-14-16, and so F; . .. F;; is the string

(0,2} —12,3,4,5}— {5, 7} —{7.8,9} — {9, 12} — {12, 13, 14} — {14, 16}

and G; is the 4-dimensional face of the 15-cube X,(A6) corresponding to the
face

15 e e o e v v v
{xeR [ Xo=Xs=X7=Xg=Xx1,=X1a= |, X; = Xg=Xx10= X, = %15=0, 0<x; <1}

of the regular 15-cube.
We describe now the normal cone N(£) to the polytope Z(A,+, Fi2)= P,
at the face F corresponding to the ordered partition #=(A4,, 4,, ..., A;) of

{1,...,n}. Again, let the sequence of paths Ty, Ty, ..., T, between vertices
of O, be given by To=T, T,=B and for 0<i<k, T,=(T;-\4;) v (Bn A4;),
and let the cellular string F;,, . . ., Fi;, on A, corresponding to the face G; of

2,(A,+1) be as above.

A linear functional 8=(68,, 9,, ..., 0,+,) supports Z(A,,, Fi;) at F, if,
and only if, it defines the cellular string Gy, G», . . ., Gi in the cube Z,(A, 4+ ).
Thus

k
N(P) = Q (N(Fy,...,F,)+span {o}}.
So 8eN(P), if, and only if, there are real numbers ¢, t,, ..., & such that

0 + 1,0 satisfy conditions (4.3) and (4.4) with respect to N(F;,, ..., F;;). Con-
sider a lifting of the polygon @, to a 3-polytope Q with vertices given by the

Figure 1. A face of the 14-dimensional permutohedron Z,(Z,(Ass)).
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columns of
0 1...n+1
Wy Dy...0n+1
00 0|.-.9n+|

To specify a e N(#) it is necessary and sufficient that the image of Q under
the shear s :(x,y, z)—(x,y,z+1y) followed by the projection
pi3: (%, p, 2) (x, z) is a polygon whose “bottom” is the convexification of a
linear functional in (R"*?)* which supports the chain F;;, ..., Fy, as in (4.3)
and (4.4) for t=t¢,. :

Note that if (a, b, ) is normal to a face F of Q then (a, b—tc, ) is normal
to the face s,(F) of s(Q). The bottom of the polygon (p1.3 © 5, )(Q) consists of
the images of faces of Q having normals (a, b, ¢) with b—tc=0 and c<0. If
we normalize so that ¢=—1, then we conclude that 1= —b. Thus we want to
arrange Q so that the desired faces are sorted by the y-coordinates of their
normal vectors, that is, so that the faces F;; allow normals (a;, —t;, —1) for
t,<t;<...<t. This can be achieved by folding Q, along the chords appearing
in the paths Ty, ..., Tr-y.

Remark 4.5. Recall that the 1-skeleton of the permutohedron P, is the
Hasse diagram of the weak Bruhat order on the symmetric group S,. Thus,
under the hypothesis of Theorem 4.3, vertices of Z(As41,Fi3)=
2. (Zo(Z,(An+1))) correspond to paths in this graph. It would be of interest
to determine conditions under which these paths are in fact maximal chains in
the weak Bruhat order. An example of this phenomenon is given in the next
section.

§5. An example. We illustrate the results of the previous section for n=4
and the example

0o 1 2

A={1 2 0

0 0

5
1. (5.1)
-1 0

S O W
—_ N

Let Q; denote the convex hull of the column vectors from the first i rows of
A. Thus @, is a segment, Q, is a hexagon, and Qs is a cyclic 3-polytope with
six vertices. The sequence of projections As—Qs—Q,—Qy gives rise to the
following iterated fiber polytopes

Z(F,)=Z(As, O1),

I(F2) =L(Z(As, 1), 2(Q2, O ) >Z(F2)=Z(As, 02),

2(F123) =Z(E(Z(As, 02), (@2, 1)), E(E(Qs, ©2), 2(Q2, @1)))
>2(F2) =Z(Z(As, 02), T(As, 02))>-Z(F3) =Z(As, O3).

All six polytopes lie in R®. We now describe them explicitly. When listing the
vertices, we always clear denominators to get integer coordinates.

(5.2)
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The polytope Z(F; ) is the secondary polytope of six equidistant points on
the line. It is combinatorially isomorphic to the 4-dimensional cube. We list
its 16 vertices in decreasing order with respect to the value of the linear func-
tional y,=(1,2,0,0, 2, 1):

voa=(140041), v, =(150004), vy =(400051), vyize=(123031),
viaa=(130321), v, =(500005), 234 =(122221), v =(130402),
Dy = (204031), 12 =(124003), g4 =(300421), vy =(122302),
Dzaay =(203221), vy =(205003), 03 =(300502), vz =(203302).

The flag polytope £(F;,) parametrizes edge paths on the cube X(F,) which
are monotone with respect to y,. It is combinatorially isomorphic to the
3-dimensional permutohedron (Theorem 4.3). We list its 24 vertices in decreas-
ing order with respect to value of the linear functional y;=(0, —1,0,0, 1, 0).

Permutation Monotone edge path on Z(F,) Coordinates
[‘234] [U“_q s Vyay, V24, 0(23.4) N U(Z.J)] (71, 12, 56, 19, 91, 3!)
[1243] [v01.41, Diay,s D2y s D2y D23y ] (71,12, 68, 3, 87, 39)
[1324] [U‘ 1.4}, Vi4), D(;_4) N 0(2.3.4} N U(z;;)] (8', 12, 21, 49, 86, 31)
[]342] [0“.4) » Viay, Vg3 4y, Ugay, 0(2.3;] (87, 12, 3, 63, 82, 33)
[1423] [U(l.d) s Uiy, Ugy, Uy, D{z‘g)] (99, 12, 33, 3, 52, 81)
[1432) [B01.41» Bgay» 03 » D315 Doy | (105, 12, 3, 33, 52, 75)
[2134] [0(1.4) s U243, D24y, Up23.4y, 0(2.3}] (41,42,71, 19,76, 31)
[2143] [1)“.4) » D{1.2.4y, Vy243» U{z) N U(z.g)] (41, 42, 83, 3, 72, 39)
[2314] [9{1.41 y V124, V(1234), U234y, U(z.z}] (37, 50, 61, 31, 70, 31)
[3124] [v(1.4), V{1341, U3.4y, D323y, D323y ] (45, 54, 21, 67, 62, 31)
[3142] [D(La) > Di3a4), Vi3ay, U3y, 0(2_3,] (51, 54, 3, 81, 58, 33)
[3214] [0(1.4)5 V{13435 Vg1234) > Vy2.34) 5 D023 ] (37, 58, 37, 55, 62, 31)
[2341] [Vi1.4), D24y, D234), V23)s D23y ] (31, 62, 55, 37, 58, 37)
[2413] [vi14y, Vi2ays U2y, U2y, U2y ] (33, 58, 81, 3, 54, 51)
[2431] [U{IA) » Dir2ays Vi2y, V2sys 0(2_3)] (31, 62, 67, 2‘, 54, 45)
[3241] [Vi1.4)5 V13, D234y, D23y, D2y ) (31, 70, 31, 61, 50, 37)
[3412] [0“_4} s Vg, V(s Uyay, 0{2.3)] (39, 72, 3, 83, 42, 41)
[3421) [0(1.4) » Ug1.3.4), Uf13), V(123) 0(2.3)] (31,76,19,71,42,41)
[4123] [U“A) s U1ys U(y, Ug2y - 0{2_3;] (75, 52, 33, 3, 12, 105)
[4132] [0(1,4) » D1y, Uy Uy, D(z_g;] (81, 52, 3, 33, 12, 99)
[4213] [U(L.ﬂ, vy, U2y, U2y 0‘2_3)] (33, 82, 63, 3, 12, 87)
[4231] [0(1.4},0(1),0(1.2),U(|_2V3),U(2_3;] (31,86, 49,21, 12, 81)
[4312] [vp.ay, vy, vy, v, V2] (39, 87,3, 68,12, 71)
[4321] [v1a15 D3y, DY, D233 Uy ] (31,91, 19, 56,12, 71)

The polytope X(F;) is the associahedron. Its 14 vertices are labeled by the
triangulations of the hexagon @,. We list them in decreasing order with respect
to y3. Since Z(F,) is a summand of Z(F,,), each vertex corresponds to one
or more of the 24 permutations.

# Triangulation of @ Permutations Coordinates
1) {014, 024, 234, 345} [1234] 9,3,8,5,14,3)
2 {014, 023, 034, 345} [1324], [1342] (11,3,1,11,13,3)
3) {014, 024, 235, 245} [1243] 9,3,11,1,13,5)
“) {014, 025, 045, 235} [1423] (13,3,6,1,8,11)

5) {014, 023, 035, 045} [1432] (14,3, 1, 6,8, 10)



362 L. J. BILLERA AND B. STURMFELS

(6) (012, 124,234,345} [2134], [2314], [2341] (3,9, 11,5,11,3)
(N 1012, 124,235,245} [2143], [2413], [2431] (3,9, 14, 1,10,5)
(8) {013,023, 134,345} [3124], [3142], [3412] (5,10, 1, 14,9,3)
9) (012, 123, 134,345} [3214], [3241],[3421]  (3,11,5,11,9,3)
(10) {015,025, 145, 235} [4123] (10, 8,6, 1,3, 14)
(1) {015,023, 035, 145} [4132] (11,8,1,6,3,13)
(12) {013,023, 135, 145} [4312] (5,13,1,11,3,9)
(13) {012, 125, 145, 235} [4213], [4231] (3,13, 11,1,3,11)
(14) {012, 123, 135, 145} [4321] (3,14,5,8,3,9)

The flag polytope Z(F ;) is a 12-gon. Each vertex is labeled by a maximal
chain in the weak Bruhat order on S;. We list the 12 vertices in their order
on the polygon.

#H Chain in the weak Bruhat order Coordinates

(@) [4321, 3421, 3241, 3214, 2314, 2134, 1234] (12606, 18077, 13173, 14133, 18077, 12414)
(b) [4321, 3421, 3241, 2341, 2314, 2134, 1234] (12414, 18077, 14133, 13173, 18077, 12606)
(¢)  [4321,4231,2431,2341,2314,2134,1234] (12414, 17555, 18831, 7431, 17555, 14694)
(d) [4321,4231,2431, 2413, 2143, 2134, 1234] (12542, 17299, 20495, 5255, 17299, 15590)
(e)  [4321,4231,4213,2413,2143,2134,1234] (12806, 16963, 22199, 2879, 16963, 16670)
(f) [4321,4231,4213,2413,2143, 1243, 1234] (13046, 16723, 23159, 1439, 16723, 17390}
(g)  [4321,4231,4213,4123,1423,1243,1234] (24244, 11633, 12979, 1439, 11633, 26552)
(M) [4321,4312,4132,1432, 1342, 1324, 1234] (26552, 11633, 1439, 12979, 11633, 24244)
(i) [4321,4312, 3412, 3142, 1342, 1324, 1234] (17390, 16723, 1439, 23159, 16723, 13046)
(j)  [4321, 3421, 3412, 3142, 1342, 1324, 1234] (16670, 16963, 2879, 22199, 16963, 12806)
(k) [4321, 3421, 3412, 3142, 3124, 1324, 1234] (15590, 17299, 5255, 20495, 17299, 12542)
() [4321,3421, 3241, 3214, 3124, 1324, 1234] (14694, 17555, 7431, 18831, 17554, 12414)

The weak Bruhat order on S, has 16 maximal chains. The four chains which
are missing in our list are not coherent, i.e., the corresponding monotone edge
paths on the permutohedron Z(Fy,) are not coherent with respect to y3. Two
of the four “missing vertices” lie in the interior of the 12-gon, while the other
two lie on the edge (g, /).

The polytope X(F,;) is a 7-gon. Its vertices correspond to the seven coherent
(03, 0,)-homotopies, each running from the top surface to the bottom surface
of the cyclic polytope Q;. Such a homotopy sweeps out a regular triangulation
of the cyclic polytope Q;, and thus defines a vertex of Z(F;), the secondary
polytope of Qs. The latter polytope is a pentagon. We list the vertices of
X(F33) in their order on the polygon.

(Qs, O2)-homotopy Triangulation of Qs Chains Coordinates
(1,6,9, 14) [0124, 1234, 1345] (a, b) (186, 413, 325, 325, 413, 186)
(1,6,7,13,14) [0124, 2345, 1245, 1235] (c,d,e) (186,395, 487, 127, 395, 258)
(1,3,7,13,14) [2345, 0124, 1245, 1235] N (198, 383, 535, 55, 383, 294)

(1,3,4,10,13, 14)
(1,2,5,11,12,14)
(1,2,8,12,14)
(1,2,8,9,14)

[2345, 0245, 0145, 0125, 1235)  (g)

[0234, 0345, 0145, 0135, 0123) ()
[0234, 0134, 1345, 0123] )
[0234, 0134, 0123, 1345] G, k, 1)

(429, 278, 325, 55, 278, 483)
(483, 278, 55, 325, 278, 429)
(294, 383, 55, 535, 383, 198)
(258, 395, 127, 487, 395, 186)

The column labeled “Chains” gives the vertices of X(F,;) corresponding to
the given vertex of £(F;). Geometrically, the 7-gon is a Minkowski summand
of the 12-gon. The column labeled ““Triangulation of Q3 describes the surjec-
tion onto the vertices of X(F;), the secondary polytope of Q;. Geometrically,
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the pentagon Z(F:) is a Minkowski summand of the given 7-gon. Note that
the coordinate vectors in the previous two tables lie in 2-dimensional affine
subspaces of RS parallel to the kernel of 4 and (1,1, 1,1, 1, D).
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COXETER-ASSOCIAHEDRA

VICTOR REINER anp GUNTER M. ZIEGLER

Abstract. Recently M. M. Kapranov [Kap] defined a poset KPA,_,,
called the permuto-associahedron, which is a hybrid between the face poset of the
pernmutohedron and the associahedron. lts faces are the partially parenthesized,
ordered, partitions of the set {1,2, ..., n}, with a natural partial order.

Kapranov showed that KPA, _, is the face poset of a regular CW-ball, and
explored its connection with a category-theoretic result of MacLane, Drinfeld’s
work on the Knizhnik-Zamolodchikov equations, and a certain moduli space
of curves. He also asked the question of whether this CW-ball can be realized
as a convex polytope.

We show that indeed, the permuto-associahedron corresponds to the type
A, in a family of convex polytopes KPW associated to the classical Coxeter
groups, W=A, ,, B,, D,. The embedding of these polytopes relies on the
secondary polytope construction of the associahedron due to Gel’fand,
Kapranov, and Zelevinsky. Our proofs yield integral coordinates, with all
vertices on a sphere, and include a complete description of the facet-defining
inequalities.

Also we show that for each W, the dual polytope KPW* is a refinement
(as a CW-complex) of the Coxeter complex associated to W, and a coarsening
of the barycentric subdivision of the Coxeter complex. In the case W=A,_,,
this gives a combinatorial proof of Kapranov’s original sphericity result.

§0. Introduction. This paper is concerned with the construction of poly-
topes with prescribed combinatorial structure. In fact, there is a three-part
problem associated with combinatorial objects like permutohedra, associa-
hedra, .. .:

1. the first part is the combinatorial description of a finite poset (definition);

2. the second part asks for a proof that the poset under consideration is

the face poset of a regular CW-ball (sphericity); and

3. the third part is the construction of a convex polytope whose face lattice

is isomorphic to the poset (realization).

Note that realization gives a proof of sphericity, since every convex polytope
is a regular CW-ball (¢f. [Bj2], [BLSWZ, Sect. 4.7]).

For the permutohedron, the definition and realization are classical. For the
associahedron, the definition is due to Stasheff [Stas] (and later independently
to Perles [Per]). Sphericity was proved by Stasheff, realization was achieved by
Milnor (unrecorded), Haiman [Hai] and Lee [Lee]. A “systematic” construc-
tion method for the associahedron was achieved by Gel’fand, Zelevinsky and
Kapranov [GZK 1, Remark 7c] with their construction of secondary polytopes,
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