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1 Introduction

Given a group G, there are several interesting and naturally defined simplicial
complexes and partially ordered sets on which G acts as simplicial maps or order
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preserving maps. When this happens, the hom%ogy groups acquire a G-module
structure and so have importance in representation theory (see [Web87]), but in
this work we will mainly be interested in the equivariant topological structure of
such posets and simplicial complexes. We survey what is known about equivariant
homotopy type in this context.

Section 2 contains the basic definitions and constructions. In Section 3 we include
theorems that allow us to recognize, for example, when a G-poset is G-contractible
and which conditions are sufficient to ensure that two G-posets have the same G-
homotopy type. The main result in this direction is a theorem due to Quillen.
Section 4 contains applications of the theorems of section 3 to different G-posets.
Finally in section 5 we discuss techniques that have been applied only recently,
and possible directions in which this research may continue.

2 (G-posets

We refer the reader to Chapter 3 of Stanley’s book ([Sta86]) for many of the
basic concepts about posets, lattices and simplicial complexes. In order to review
notation and make the definitions in an equivariant setting, we recall some of them
now.

2.1 Definitions

Let G be a group. A G-poset P is a poset in which a G-action is defined such that
z <yand g € G imply gz < gy. A morphism of G-posets then is a map of G-sets
which is also order-preserving.

A G-subposet P' of P is a subposet invariant under the action of G. Given an
element z € P one can define the subposet P<; = {y € P | y < z }, analogously
one defines P>, Pcy, Py, ete. If 7 is fixed by G, then clearly P<;, P>y, etc. are
G-subposets. More generally we see that P<z, P>, etc. are G;-subposets.

If P and Q are G-posets, we can define a G-action on the product poset P X Q
by g(p,q) = (gp,gq). This product together with the natural projections have the
usual universal properties. If P and QQ are posets on disjoint sets, then the disjoint
union P + @ has also a natural G-action. The disjoint union together with the
inclusions form the coproduct in the category of G-posets.

The ordinal sum P & @ of Stanley will be called here the join of two posets P, @,
and denoted by P * Q. It has the disjoint union of P and @ as underlying set
and the same order relations as in P + @ together with the additional relations
that every element in P will be less than every element in ). The join also
becomes a G-poset if we define the natural action on it. Two special instances of
this construction are the cone of the poset P, defined as CP = {0} * P and the
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suspension P of P, defined as ©P = {0,0'} * P, in which {0,0'} is a poset of two
noncomparable elements with trivial G-action. We also define, given P, the poset
P ={0}*Px{1}.

If A is a subset of the poset P we say that z € P is an upper bound of Aifa <z
for every a € A. We say that x is the join of A, denoted VA, if z is the least
upper bound of A. We can observe that the join of A is unique when it exists.
We similarly define lower bound and we call the meet the greatest lower bound. If
every finite subset of P has a meet and a join, then P is a lattice. If P is a lattice
that has a maximum element I and a minimum element 0, we call P a bounded
lattice. In this case P® = P — {0,1} is called the proper part of the lattice.

If A is a poset such that no two elements of A are comparable, we say that A is
an antichain.

We say that a subposet A C P is bounded if it has either a lower bound or an
upper bound in P. (We will use this concept in a different context than that of a
bounded lattice, so hopefully, no confusion will arise).

If A C P, we denote by P(A) the subposet of all elements comparable to all
elements of A. The subset A is astral if P(A) # 0. Given C C P, we denote by
['(P, C) the simplicial complex of finite nonempty astral subsets of C. We observe
that if P is a G-poset and C C P is G-invariant, we can define a natural G-action
on I'(P, C), because if A C C is astral, then gA C C is astral as well.

A subset C C P is called a cutset if every maximal chain in P has an element
in C. A cutset C is coherent if every A in I'(P, C) which is bounded has either a
meet or a join in P. (For example, in a lattice every cutset is coherent).

2.2 Implications of the G-action

If P is a G-poset, the fact that every element of GG defines a poset automorphism
P — P has several implications about the poset structure on P.

Let P be a G-poset and A = {z1,z2,...,Zp} C P be a subset that has a join. We
then denote VA by 1 V29 V- -+ V z,. In this case, given that multiplication by g
is a poset automorphism, we have

g(VA) =g(zy Vs V---Va,) =gz Vgra V-V gzn. (1)
If in addition, A is invariant under G, then clearly
g(VA)=gz1VgzoV---Vgzp, =21 V2 V---Vz, =VA (2)

that is, VA is a fixed point. In particular, if P is a G-poset with a maximum
element 1, note that 1 = VP, and so 1 has to be fixed by G.

A

Remember that if z and a are elements in a bounded lattice P such that zAa =0
and £V a = 1, we say that = and a are complements. We denote the set of
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complements of a by at. If every element in the lattice P has a complement, we
say that P is a complemented lattice. By calculations similar to equations (1) and
(2) above, we can see that if a is a point fixed by G in a G-lattice, then a* is G-
invariant. Other classes of subsets which are invariant by G is the set of minimal
elements, the set of maximal elements, and the set of elements with a given fixed
rank.

Note that if we have gz < z, with g € G of finite order, then
z=¢"Wr <. <g’z<gz<sw (3)

that is, gz = z. Hence every G-orbit is an antichain. Clearly, we obtain the same
conclusion if P is finite.

2.3 The order complex and other constructions

A G-simplicial complex A is a simplicial complex such that there is a G-action
defined on its set of vertices in such a way that every g € G acts simplicially. We
say that a G-simplicial complex is admissible if G, acts trivially on o for every
simplex ¢ in A.

We can associate to any poset P a simplicial complex A(P), called the order
compler of P, that has finite chains ¢ < 27 < -+ < z, of elements of P as
simplices. We can see that a map ¢: P — @ of posets induces a simplicial map
A(@): A(P) = A(Q), also if P is a G-poset we can define a natural action of G on
A(P) such that A(P) becomes a G-simplicial complex, which can easily be seen
to be admissible. On the other hand, the G-simplicial complex I'(P, C) defined
above is not admissible in general.

Now, starting with A a G-simplicial complex, one can define a G-poset P(A),
called the face poset of A, with points the faces of A and order relation given by
face inclusion.

Given a simplicial complex A we denote its geometric realization by |A|. We
will use |P| to denote |A(P)| in case P is a poset. Again, if A is a G-simplicial
complex, we can define an action on |A| that makes it a G-topological space. It
is by means of |P| that one can associate topological concepts to a poset P.

If X and Y are G-spaces, a G-homotopy from X to Y is a continuous map H: X X
[0,1] = Y such that H(gz,t) = gH(z,t) forallg € G,z € X and ¢t € [0,1]. We
say that two G-posets are G-homotopic if | P|, |@Q| are G-homotopic. Two G-maps
between G-posets ¢,1: P — @ are G-homotopic if there is a G-homotopy from |P)|
to |Q| such that H(z,0) = |¢|(z) and H(z,1) = |¢|(z). Using this definition, we
can speak about G-homotopy equivalence of posets, for example, we say that P
is G-contractible if P is G-homotopy equivalent to a point. The relation of being
G-homotopic is denoted by ~¢.
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Given a G-poset P, its barycentric subdivision sd (P) is the poset P(A(P)), this is
the poset of all chains of P ordered by inclusion. It is known that |P| and [sd (P)|
are G-homeomorphic ([CR87], p.589). Similarly, the barycentric subdivision of
a simplicial complex can be defined as A(P(A)), and we have A =g A(P(4))
(G-homeomorphic). Hence

P ~g P, < A(P)) =g A(P2)
by definition, but also

Al ~a AQ == P(Al) ~a P(AQ)

Remember that if z < y in P, the interval [z,y] is {z € P |z < 2z <y}. Given
P, we then define the poset of intervals of P: Int(P) = {[z,y] C P |z <y}
ordered by inclusion. The poset Int (P) can also be given a G-action that makes it
a G-poset. We have that the map Int (P) — |P| given by [z,y] — 2z + Sy defines
a G-homeomorphism between |Int (P)| and |P| (see [Wal88]).

We define the join of two G-simplicial complexes A, A’ as:

AxA'=AUAU{ocUT|oceA reA"}

2.4 Canonical homeomorphisms

We present some well-known homeomorphisims relating various of the construc-
tions we have considered. Where these have not appeared before, we give proofs
which relate to the equivariant situation.

Theorem 2.4.1 Let P and Q be G-posets. We have the following G-homeomor-
phism:
[P+ Q| =g |P| +|Q|

in which |P| * |Q| has the associated compactly generated topology.

Proof: 1t is really just a matter of looking at the definitions to see that A(P * Q)
and A(P) * A(Q) may be canonically identified (in particular, in a G-equivariant
fashion). Thus it is enough to prove that for two G-simplicial complexes A, A’ we

have
|Ax Al =g |A x |A]

Define the map f:|A|* |A'} = |A x A/| by [z,y,t] = (1 — t)z + ty. It is proven in
[Wal88] that this is a homeomorphism. It is immediate that it is equivariant. m

Of course, this also means that |SP| =g Z|P|.
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Theorem 2.4.2 Let P and Q be G-posets. We have the following G-homeomor-
phism:
|P x Q| =¢ |P| x|Q|

in which |P| x |Q| has the associated compactly generated topology.
Proof: See [CR87], p. 592, also [Wal88]. m

Theorem 2.4.3 Let P and Q be G-posets, and z € P, y € Q fized by G. Then
we have the following G-homeomorphism:

[(P X Q)5 @y Ze [Poal * Q>

in which |Psg| * |Qsy| has the associated compactly generated topology.

Proof: In [Wal88], the author defines the map (P X Q)s(z,y) = | P>z * @y that

sends (z,y') =~ ¢/, (z',y) = 2’ and (z',y') = 22’ + 1y for 2’ > zand ¢y > y

and proves that it is a homeomorphism. It is immediate to check that is is also
equivariant. |

As a particular case of this theorem, we have the following G-homeomorphism
([Qui78], Prop. 1.9):

CPXCQ—{0,0}] 26 [(CPXCQ), 15.0y] = [CP,ol#IC Q] = [PI¥IQ] 2 |1P+Q.

Theorem 2.4.4 Let P be a G-poset, and z,y € P fired by G, with x < y Then
we have the following G-homeomorphism:

IInt (P)<[z,y]| =g Z‘l(may)l
Proof: See [Wal88]. We have that

Int (P)<[z,y] = Int ([:I"’ y)) U Int ((sc,y])

and that |Int ([z,9))| =¢ |[z,9)] =¢ z * |(z,y)], |Int ((z,9])] =¢ |(z,y]] =c
|(z,y)| * y and these G-homeomorphisms restrict to the canonical homeomor-
phism |Int ((z,y))| =¢ [(z,y)|. So Int(P).[;,) is the union of two cones over
((2,v)l, which is B|(z,5)]. =

As a particular case, we have the following:

[Int (P) — {[0,1]}] = IInt (P) 5 31| = =(0,1)| = =|P).
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2.5 Orbit posets

If P is a G-poset, we would like to define the orbit poset P/G with points the
orbits of G on P and order relation

[z] < [y] if there is a g € G with gz < y. (4)

It turns out that this relation is reflexive and transitive, but not always antisym-
metric. However, a sufficient condition for condition (4) to define a poset is that
every (G-orbit is an antichain, which we have seen to be satisfied if either the poset
or the group is finite. One can also prove easily that for any G-poset P, the
G-poset sd (P) satisfies this property.

We can observe that if ¢: X — Y is a G-homotopy equivalence of G-spaces, then ¢
induces an ordinary homotopy equivalence X/G — Y/G. But on the other hand,
for a G-poset P such that P/G is defined, it turns out that |P/G| is not always
related to |P|/G. A sufficient condition for them to be homeomorphic can be given
(see [Bre72]):

For every chain z; < --- < z, in P and every sequence of elements
g1, ---,9n in G for which we get a chain g127 < --- < gpzy, there is a
g € G such that g;z; = gz;.

We can call a G-poset satisfying such condition a regular G-poset. It can be
proven that if P satisfies the condition that the orbits are antichains, then sd (P)
is regular and so in this case

|P|/G = [sd (P)|/G = |sd (P)/G]|

and so if we want to consider the orbit space |P|/G as the geometric realization
of a poset, we can take sd (P)/G as such.

3 Homotopy Equivalences

In this section we include some theorems which are basic tools when dealing
with homotopy type of G-posets. Most of the results presented here appear in
a nonequivariant form in [Bj695].

3.1 The Order Homotopy Theorem and its Consequences

This is 1.3 in Quillen’s paper [Qui78], and (10.11) in [Bj695]. The equivariant case
appeared in [TW91].




3 HOMOTOPY EQUIVALENCES 8

Theorem 3.1.1 Let P, QQ be G-posets and ¢,9: P — Q two G-maps such that
d(z) < (z) for all z € P. Then ¢ and ¢ are G-homotopic.

Sketch of Proof: Let {0 < 1} be a G-poset with trivial G-action. Then the G-
map H: P x {0 < 1} = Q@ given by H(z,0) = ¢(z), H(z,1) = ¥(z) induces a
G-homotopy |P| x [0,1] = |P| x [{0 < 1}| = |P x {0 < 1}] B Q] between |¢|
and 4|, =

Corollary 3.1.2 Let P be a G-poset and ¢: P — P be a G-map such that ¢(z) >
x for all z € P. Then ¢: P — Im(¢) is a G-homotopy equivalence, with the
inclusion 1:1m (¢) — P as G-homotopy inverse. (Dually, the conclusion also
holds if ¢(z) <z for allz € P.)

Proof: Apply the previous theorem to show that both ¢ o+ and 2 o ¢ are both
homotopic to the identity map on P. =

Now we have the basic tools to prove that a poset is contractible

Corollary 3.1.3 Let P be a G-poset that has a mazimum (or a minimum) ele-
ment. Then P is G-contractible.

Proof: The constant map that sends P to the distinguished element is a G-map
that satisfies the hypothesis of the previous corollary. =

Corollary 3.1.4 Let P be a G-poset and a and element fized by G such that zVa
is defined for every x € P (respectively, if x A a is defined for every x € P). Then
P is G-contractible.

Proof: The map ¢: P — P given by z — z V a is a G-map by equation (1) in
section 2.2 and satisfies ¢(z) > =z for all z € P. By corollary 3.1.2, we have that
P and Im (¢) are G-homotopy equivalent. But then Im (¢) has a as a minimum
element and so is G-contractible. m

A poset P as in the previous corollary is said to be join-contractible via a (Res-
pectively, we define a meet-contractible poset). The inequalities used in the proof
are stated frequently in the literature as

z<P(z)=2zVa>a.
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3.2 Contractible Carriers

These were used by Walker in [Wal81] to give an elementary proof of Quillen’s
theorem. But we can also see some more immediate applications. They were made
equivariant in [TW91].

Definition 3.2.1 Let A be an admissible G-simplicial complez and X a G-topolo-
gical space. A contractible G-carrier from A to X is a map C that sends simplices
of A to subspaces of X such that:

1. C(o) is contractible for every simplex o in A,
2. If T C o then C(1) C C(0),
3. C(go) = gC(o) for all g € G and all simplices o,

4. G4 acts trivially on C(o) for all simplices o.

We say that a G-map f:|A| = X is carried by C if f(|o|) C C(0) for all simplices
o of A

The following lemma is basic to prove some important facts.

Lemma 3.2.2 If C is a contractible G-carrier from A to X, then:

1. There is a continuous G-map f:|A| = X carried by C,

2. Any two continuous G-maps carried by C are G-homotopic.

Proof: See [TW91] p. 176. =

A first consequence of this is the following generalization of Theorem 3.1.1.

Corollary 3.2.3 Let P, Q be G-posets and ¢,v: P — Q maps of G-posets. If
¢(z) and (x) are comparable for every z € P, then ¢, 1 are G-homotopic.

Proof: Define C(o) = |¢(0) U 9(o)| for a chain o in P. We have that C(o) is
contractible because ¢(c) U (o) C @ always has a minimum element. Then C is
a contractible G-carrier from A(P) to |Q] that carries both ¢ and 1, hence they
are G-homotopic by the previous lemma. n

(See [BWS83] p. 14 for the non-equivariant case). Also we have the following
generalization of the join-contractibility of section 3.1.1.

Theorem 3.2.4 Let P be a G-poset and a € P an element fized by G such that:
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1. For all x € P, either a ANz or aV x exists,

2. Whenever z <y, a Az does not exist but a Ay ezists, we have that (aAy)Vz
exists.

Then P is G-contractible.

Sketch of Proof: Let M = {y € P|a Ay exists} and M® = P — M. Then define,
for o a chain in P.

Clo)=|oU{a} UW{aVz|zeonM}U{aAy|yEocnNM}
WAy Vz|lz<y,z€onNMiyconMl}|.

Let z be the minimum element in o. Then if z € M we have that C(o) is meet-
contractible via z and if z € M€, C(o) is join-contractible via z. So C is a
contractible G-carrier from A(P) to |P| that carries both the identity map and
the constant map a. =

Remember that in section 2 we defined the proper part of a bounded G-lattice P
as P® = P — {0, 1}.

Corollary 3.2.5 Let P a bounded G-lattice, and a € P° an element fized by G.
Ifat ={z € P|lzAa=0,2Va=1} is the set of complements of a, then P®—at
15 a G-contractible G-subposet of P.

Sketch of Proof: Apply the previous theorem to the G-poset P? — at and the
element a € P° —gt. =

Corollary 3.2.6 In this situation, if a has no complements, then P° is G-
contractible. m

The last theorem and its corollaries appeared first in [BW83] and the equivariant
form appeared in [Wel95].

3.3 Quillen’s Theorem

Then we have the most powerful tool to prove G-homotopy equivalences.

Theorem 3.3.1 (Quillen’s Theorem) Let P and Q be G-posets and ¢ : P — Q
a map of G-posets. If for all y € Q we have that ¢_1(Q5y) is Gy-contractible, then
¢ 18 a G-homotopy equivalence. (Dually, the conclusion also holds if ¢_1(Q2y) 18
Gy-contractible for all y € Q).
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This was proved in the nonequivariant case by Quillen [Qui78] and extended to
an equivariant result in [TW91].

It is an easy consequence of this theorem that if z € P is a point such that P,
is contractible, then the inclusion P — {z} — P is a homotopy equivalence. But
Bouc observed ([Bou84]) that in a poset of finite length we can remove all such z
simultaneously preserving the homotopy type:

Corollary 3.3.2 Let P be a G-poset of finite length and define
P* ={z € P| Ps; is not Gy-contractible }

(Define P, dually using P.,). Then for any G-subposet P' C P such that P* C
P’ C P we have that the inclusions P* — P’ < P are G-homotopy equivalences.
(Similarly for a G-subposet P' C P such that P, C P' C P).

Proof: See [TW91} p. 177. =

Remember that an ideal of the poset P is a subposet I such that ¢ € I and p <
imply p € 1.

Corollary 3.3.3 Let P and Q be G-posets and R C P x QQ a G-invariant ideal in
the product poset. If R, = {y € Q| (z,y) € R} is Gg-contractible for all z € P
and Ry = {z € P | (z,y) € R} is Gy-contractible for all y € Q, then P and Q
are G-homotopy equivalent.

Proof: Consider the projection m: R — P, which is a G-map. Define F, =
7 Y(Psz) = {(2,9) € R| 2>z} and G;-maps ¢: F, — R, given by (z,9) — y
and v: R, — F, given by y — (z,y). The map ¢ is well-defined because R is an
ideal. We have then (¢ o ¢)(z,y) < (2,y) and (¢ o 9)(y) = vy, hence Fy is Gy~
homotopy equivalent to R; by section 3.1.1, hence G -contractible. By Quillen’s
Theorem, R and P are G-homotopy equivalent. Similarly, R and @ are homotopy

equivalent, hence so are P and Q. =

The nonequivariant case appeared first in [Qui78].

Lemma 3.3.4 Let P be a G-poset, C a coherent cutset and A C C a G-invariant
astral subset. Then P(A) is a G-contractible G-subposet of P.

Proof: Let ¢ € P(A) and A' ={a € A|a > z}. Assume first that A’ # @. Then
A’ is G-invariant, because if a € A’ and ga ¢ A, then ga < z < a, contradicting
equation 3 of section 2.2. Then A’ is a bounded subset of the coherent cutset C
so it has a meet or a join, which will be fixed by G. If A’ has a join VA’, then
VA" € P(A) (because VA’ > z > a for all a € A— A’), and any element in P(A) is
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comparable with VA’ (Let y € P(A). If y < o' for some o’ € A’ theny < o’ < VA’
Otherwise y > o' for all a’ € A’, hence y > VA’). In case A’ has a meet AA', then
a <z < ANA foralla € A— A" so again AA' € P(A). Again, let y € P(A4). If
y > a' for some a' € A, then y > a' > AA'. Otherwise y < o’ for all o’ € A, hence
y < AA'. In any case, by corollary 3.1.4, P(A) is G-contractible. Now, in case
A’ = @, then A is bounded above, so it has a meet or a join. We can prove then
as before that every element in P(A) is comparable to such meet or join. =

Theorem 3.3.5 (Cutset Theorem) If C is a G-invariant coherent cutset in P,
then P and I'(P,C) are G-homotopy equivalent.

Proof: Consider the G-invariant ideal in the product of G-posets sd (P) x I'( P, C).
R={(z,A) €sd(P) xI'(P,C) |z C P(A)}.
If z € sd (P) we have
R, ={AeT(P,C)|zCP(A)}={Ac(P,C)|AC P(z)},

and this is the set of all non-empty subsets of P(z) N C, which has a maximal
element P(z) N C and so is G;-contractible. Now

Ra={z€sd(P)|zC P(A)} =sd(P(A)).

Given that P(A) is G g4-contractible by the previous lemma, we can apply 3.3.3. =
(See [Wal81] p. 380 for the non-equivariant case).

3.4 Wedge decomposition.

Now we will state another kind of result. The following lemma is used in the proof
of the theorem of this section.

Lemma 3.4.1 Let P be a G-poset and P' C P a G-contractible G-subposet of P.
Then P and the quotient |P|/|P'| are G-homotopy equivalent.

Assuming P and P’ as in the lemma, suppose further that A = P — P’ is an
antichain. Given that P’ is invariant, A will also be invariant. Consider the space

Q =\ ({z,p} * (|P<s| ¥|Pssl))

T€EA

(i.e. a wedge of the suspensions of the spaces |P<,|*|P;|), where p is a new point
disjoint from P which is taken to be the wedge point. Define a G-action on it by
fixing the point p, permuting the elements z € A C P in the same fashion as G
did already and sending y € Py to gy € Py, etc.
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Theorem 3.4.2 In this situation, P and Q are G-homotopy equivalent. m

This is Proposition 2.5 in [Wel95]. The theorem is particularly useful in the case
when P is a G-lattice, because as we saw before in Corollary 3.2.5, P® — at is
always contractible and in some cases a* is an antichain. This will be used in
section 4.4.1 to describe the structure of the lattice of subgroups of a solvable

group.

4 Applications

In this section we apply the previous theorems to posets defined in terms of sub-
groups of a group.

4.1 The p-subgroup complex

Let G be a finite group and p a prime such that p | o(G). We define the G-poset
Sp(G) = { P < G| P is a non-identity p-subgroup }

on which G acts by conjugation. This poset was considered by K. Brown in [Bro75]
where he proved the formula

X(Sp(G)) =1 (mod o(G)y)

where o(G), is the order of a p-Sylow subgroup of G.

We may ask when is Sp(G) contractible. Let Op(G) be the largest normal p-
subgroup of G.

Theorem 4.1.1 O,(G) > 1 if and only if Sp(G) is G-contractible.

Proof: Let Op(G) > 1. We have that O = Op(G) € Sp(G) is such that HV O =
(H,O) is defined for any H € Sp(G) and that O is fixed by G (because O < G).
Hence Sp(G) is contractible by Corollary 3.1.4. On the other hand, if S,(G) is
G-contractible to a point p, then inclusion of p in |S,(G)| must be a G-map,
hence the image of such point is a fixed point in |S,(G)|. Given that Sp(G) is
admissible, this means that a chain is fixed by G, and so that chain consists of
normal subgroups. ]

Of course G-contractibility implies contractibility, so O,(G) > 1 implies Sp(G) is
contractible. Quillen conjectured in [Qui78] the converse of this very last state-
ment. The conjecture is still open, but has been proved for special classes of
groups.
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Conjecture 4.1.2 (Quillen) Let G be a finite group. If S;(G) is contractible,
then Op(G) > 1.

Theorem 4.1.3 Let
Ap(G) = { P € 85(G) | P is elementary abelian }

and
B,(G) = {P € 5,(G) | P = Oy(Na(P)) }
Then, in the notation of 3.3.2, we have Ay(G) = Sp(G)x and Bp(G) = Sp(G)*.

Proof: See [TW91], p. 178. =

Corollary 4.1.4 Let Q be a subposet of Sp(G) containing either By(G) or Ap(G).
Then the inclusion of Q in Sp(G) is a G-homotopy equivalence. m

The homotopy equivalence of A,(G) and S,(G) was discovered by Quillen [Qui78],
and the one between B,(G) and S,(G) by Bouc [Bou84]. The fact that the homo-
topy equivalence can be taken to be G-equivariant was first observed in [TW91].

We may also observe that H € Ay(G) being equivalent to Sp(G)<n not being
Ng(H)-contractible, is also equivalent to S,(G) < not being contractible. Because
if H € Ay(G), then Sp(G)<x is the lattice of proper subspaces of a vector space,
which is well known to be homotopy equivalent to a wedge of spheres or empty.
See Theorem 4.4.1 below. On the other hand, the assertion that H € By(G)
implies Sp(G)> g is not contractible is in fact equivalent to Quillen’s conjecture:
By Proposition 6.1 in [Qui78] we have S,(G)>py =~ Sp(Ng(H)/H). Assuming
Quillen’s conjecture, then

H € B,(G) = Oy(Na(H)/H) = Op(Ho(H))/H =1
= Sp(Ng(H)/H) ~ S,(G)>x is not contractible

On the other hand, if G is a group with O,(G) = 1, then 1 = Op(Ng(1)), so the
trivial subgroup satisfies the property that defines B,(G), hence Sp(G)s1 = Sp(G)
would be not contractible, this is Quillen’s conjecture.

The importance of the subgroups in B,(G) is that in the case of a group which
has a building they are the unipotent radicals of the (proper) parabolic subgroups.
The inclusion relation on these subgroups is the opposite of the inclusion of the
parabolics, and also B,(G) is the opposite of the poset which defines the building.
Thus A(B,(G)) may be identified with the (barycentric subdivision of the) build-
ing. This means that B,(G) and hence S,(G) and Ay(G) can be regarded as the
generalization to all finite groups, at every prime, of the notion of a building.

Regarding orbit posets, we have that if G is finite, then S,(G) is finite and so
Sp(G)/G is defined. Now, by Sylow’s theorem, Sp(G)/G has a maximum ele-
ment and so is contractible. Webb conjectured in [Web87] that |S,(G)|/G was
contractible, and this was recently proved by P. Symonds.
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4.2 Complexes mentioned by Alperin.

The complexes mentioned here appeared in [Alp90], where it is stated without
explicit proof that they are homotopy equivalent to Sp(G). We show here as an
application of the crosscut theorem that they are in fact G-homotopy equivalent
to Sp(G).

Theorem 4.2.1 Let A1 be the G-simplicial compler having as vertex set the set
of Sylow p-subgroups of G and simplices the sets of vertices having nontrivial
intersection. Then Ay and Sp(G) are G-homotopy equivalent.

Proof: Let P = S,(G) and C = {Sylow p-subgroups of G}. Then C is an invariant
cutset in P, we check it is coherent. Since every element in C' is maximal, no subset
T of C is bounded above. So it reduces to prove that if T C C is bounded below,
it has a meet in P. Let T = {Py,..., P,} such that there is H € P which is a lower
bound of T'. But then H C N]_;P; = Py and Py = AT # 1 so Py € Sp(G) is the
meet of T in P. Hence C is a coherent cutset, and by the cutset theorem (3.3.5),
we have Sp(G) ~ I'(P,C). But it is immediate that A = {P,..., P} is astral
iff NI_,;P; # 1. Hence I'(P,C) is the complex described in the statement of the
theorem. m

Theorem 4.2.2 Let Ay be the G-simplicial complex having as verter set the set
of subgroups of G of order exactly p and simplices the sets of vertices that commute
pairwise. Then Ag and Sp(G) are G-homotopy equivalent.

Proof: We show that A, and A,(G) are G-homotopy equivalent from which the
result follows by theorem 4.1.3. Let P = A,(G) and C C P the set of subgroups of
order p. We have that C is an invariant cutset in P. To check that it is coherent,
let {Th,T%,...,7,} C C bounded above by T. This means that the T; belong
to the lattice of subgroups of the group T, and so they have a join in T', hence
in P. So C is a coherent cutset. We can then see that a subset A of C is astral
iff the subgroups in A commute pairwise. Hence I'(P, C), which is G-homotopy
equivalent to P = Ay(G) by the cutset theorem, is precisely the poset described
in the statement of the theorem. [

4.3 The poset of subgroups of p-power index

In [WW93], the authors consider the G-poset
S7(G) = {H <G |[G: H] =i #0)

and prove that for all finite groups G, this poset is homotopy equivalent to a
join of antichains, hence homotopy equivalent to a wedge of spheres of the same
dimension. Also they prove the equivalence of the following statements:
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1. 8P(@) is G-contractible,
2. SP(QG) is contractible,
3. x(87(G)) =1,

4. OP(G) # G,

where OP(G) is the minimal normal subgroup of index a power of p.

4.4 The lattice of subgroups

We have the following theorem, which applies the wedge decomposition from 3.4
to the proper part L(G)°? = L(G) — {1, G} of the lattice of subgroups of G.

Theorem 4.4.1 Let G be a finite solvable group. If L(G) is a complemented lat-
tice, then L(G)° is G-homotopy equivalent to a wedge of spheres of dimension k—2,
where k is the length of a chief series. Otherwise, if L(G) is noncomplemented,
then L(G)° is G-contractible. m

This theorem was proved in a nonequivariant way in [Thé85], the equivariant
version is in [Wel95]. The proof is by induction on the length of a chief series of
G and is an application of a remark at the end of section 3.4. We give a sketch
of it: Let N be a minimal normal subgroup of G which appears in a fixed chief
series. Then we can see that the set of complements of N in L(G) is an antichain,
and each C € N* is a solvable group with a chief series of length one less than
that of G. If there is any subgroup that has no complements, then L(G)0 is
GG-contractible by 3.2.6.

This also gives a proof of the Solomon-Tits theorem in the case of the building of
GL(n,p), because in this case the building is L(C;})O, where Cj, is the cyclic group
of order p.

For nonsolvable groups, Welker mentions in [Wel95]: L(4s5)° is homotopy equiv-
alent to a wedge of 60 spheres S!, L(4g)" is homotopy equivalent to a wedge of
720 spheres S2, L(A7)? is homotopy equivalent to a wedge of 2520 spheres S3 and
conjectures that L(A,)° is homotopy equivalent to a wedge of n!/2 spheres S*~*
for n > 6. On the other hand, L(GL(3,2))° is homotopy equivalent to a wedge of
2-spheres and 1-spheres.

We consider now orbit posets. Under the hypothesis of last theorem, it is also
proven in [Wel95] that both L(G)°/G and |L(G)°|/G have the homotopy type of
a wedge of spheres S¥~2. For non solvable groups, we have that L(A4,)°/A, ~
|L(An)°|/Ap, for n = 5,6,7, also L(M1)? /My ~ |L(M11)%|/Mi; for the Mathieu
group My;. But |L(Mj2)%|/Mis is contractible while L(Mi2)° /M5 is not.
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5 Open problems and other techniques

There are still unanswered questions about the structure of these posets.

1. Quillen’s conjecture (4.1.2). This has been proven, for example, in the case
that G is p-solvable and for G of Lie type in the same characteristic p, and
some other cases. See [AS93].

2. Homotopy type of S,(G) and L(G)°. Are the connected components of these
posets always a wedge of spheres, of possibly different dimensions?

3. The A; geometry. There is a 2-dimensional geometry A; for A7 discovered
by Neumaier ([Neu84]) and another 2-dimensional geometry A, which arises
because A7 < Ag = GL(4,2) acts on the building of GL(4,2). It is known
that

H.(XA2(A7)) Sz Ho (A1) @ H(A]) © Ho(Ag),

where o is the outer automorphism of order 2 of A;. We wonder if X.A5(A7)
is of the same A7-homotopy type as A1 V AV Ao.

4. What happens if G is not finite? There are various questions one may ask
to do with extending the results stated earlier to suitable classes of infinite
groups. For example, one may ask if the result of theorem 4.4.1 is true when
G is a polycyclic group. (A polycyclic group is a group G with a finite chain
of subgroups 1 = Gy <1 G1 1G24 --- <G, = G so that G;/G;—; is cyclic for
all1 <i<r).

Some techniques that might be applied are:

1. The non-pure shellability of Bjérner and Wachs (see [BW96]). A shellable
poset is homotopy equivalent to a wedge of spheres, of possible different
dimensions. Even though, as Welker points out in [Wel94], we cannot expect
this concept to be conclusive in the study of subgroup complexes, it can still
be useful.

2. Diagrams of spaces. They have already been used in [PW95] to give a
wedge decomposition of A,(G) in some particular cases using the notion of
homotopy limits (i.e. homotopy colimits), but without the group action.
In order extend this to the equivariant situation, we propose the following
definition: (compare with [WZZ95), [PW95)]). A diagram of spaces D over
the G-poset P is an assignment of spaces D, to the elements € P, of maps
dgy: Dy — Dy to the order relations z > y in such a way that d;, is the
identity and dgy o dy, = dy; if ¢ > y > 2, and of maps 7y ;: Dy — Dy, for
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z € P, g € G such that n; ; is the identity, and the following diagrams are
commutative:

Mgy,
D, — Dy,

Ngy.922
7791572,XA l

Dglgzw

forz e P, g1,92 € G,

day
D, —— Dy

Mg, Mg,y
D dg:c,gy .D
gz g 9y

for g € G and z > y in P. Remember that the homotopy limit holim D of the
P-diagram D is defined as the quotient of the disjoint union of topological

spaces
UxEP[A(PSm) X Dw]

by the equivalence relation generated by the identifications

(z,0) ~ (2, dzy(a))

where z < y < z, a € D, and we consider (z,a) € A(P<;) X Dz and
(2,dzy(a)) € A(P<y) x Dy. We then define first a G-action on the disjoint
union above by the following rule: If (z,a) € A(P<z) x Dy, then g(z,a) =
(92,m4,2(a)) € A(P<ge) X Dygy. We then can check that this is a G-action
that can be defined in the quotient holim D. In order to use this notion we
need to establish a series of lemmas identifying the equivariant homotopy
type of this construction, but this remains to be done.

3. Traditional methods of algebraic topology. For example, Symonds proved
Webb’s conjecture by establishing that the space |Sp(G)|/G has trivial ho-
mology in all dimensions and trivial fundamental group.

4. Computer assisted methods. They have already been used in [Kut93] to
prove that S,(G) is shellable for a certain group of size 5832, and in [Wel95]
for some of the results presented in section 4.4. We plan to use the package
GAP and its feature GRAPE (designed to handle graphs) to adapt it to the
analysis of G-simplicial complexes and G-posets.

5. Representation theory, as in [AS93].
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