ON SUBDIVISION POSETS OF CYCLIC POLYTOPES
PAUL H. EDELMAN, JORG RAMBAU, AND VICTOR REINER

ABSTRACT. There are two related poset structures, the higher Stasheff-Tamari orders, on
the set of all triangulations of the cyclic d polytope with n vertices. In this paper it is shown
that both of them have the homotopy type of a sphere of dimension n — d — 3.

Moreover, we resolve positively a new special case of the Generalized Baues Problem:
The Baues poset of all polytopal decompositions of a cyclic polytope of dimensiond < 3
has the homotopy type of a sphere of dimension n —d — 2.

1. INTRODUCTION

This paper continues the investigation of certain posets of triangulations of cyclic poly-
topes, the higher Stasheff Tamari posets, initiated in [4] and continued in [5].

The first higher Stasheff Tamari poset is the poset Sj(n,d) of all triangulations of the
cyclic d-polytope with n vertices C(n,d), partially ordered by increasing bistellar opera-
tions; the second higher Stasheff Tamari poset is the poset S (n,d) of all triangulations of
C(n,d), partially ordered by the height of their characteristic sections in C(n,d + 1) (see
(4], [5D.

Our first main result is the following.

Theorem 1.1. (i) For all n > d + 1 the proper part Si(n,d) of Si(n,d) is homotopy
equivalent to a sphere of dimensionn —d — 3.

(ii) For all n > d + 1 the proper part S(n,d) of S(n,d) is homotopy equivalent to a
sphere of dimensionn —d — 3.

In [4], it was proved for d < 3 that the poset structures S;(n,d) and S5(n,d) coincide.
It was also shown that the poset $(n,d) is a lattice for d < 3. If d = 2 this is the well-
known Tamari lattice on triangulations of a convex n-gon. We will use this lattice structure
to resolve in the affirmative a special case of the Generalized Baues Problem of Billera,
Kapranov, and Sturmfels (see [1], [6], [8]).

Theorem 1.2. For cyclic polytopes C(n,d) of dimension d < 3, the refinement ordering on
the set of polytopal subdivisions gives a poset which is homotopy equivalent to a (n—d —
2)-sphere.
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We will prove Theorem 1.1 by induction on n — d, showing that the poset 5 (n,d) (resp.
S»(n,d)) is homotopy equivalent to the suspension of S;(n — 1,d) (resp. $(n— 1,d)).

The proof of Theorem 1.2 is via a reduction to the poset $(n,d), by showing that the
poset of polytopal subdivisions of C(n,d) is homotopy equivalent to the suspension of
5 (n,d). We will make use of a lemma (Lemma 6.5) about the homotopy type of non-
contractible intervals in a poset which we think is of interest in its own right.

This paper is structured as follows: in Section 2 we recall some notation and basic
facts about simplicial complexes, posets, and cyclic polytopes. In Section 3 we prove
Theorem 1.1. Sections 4 and 5 provide the necessary details. In Section 6 we prove
Theorem 1.2, the special case of the Generalized Baues Problem. Section 7 discusses
some of the remaining open problems in the area of triangulations of cyclic polytopes.

2. NOTATION AND BASIC FACTS

In this section we will introduce our notation and discuss some basic facts that have
appeared previously.

Let [n] := {1,2,...,n}. We regard the cyclic d-polytope with n vertices as the convex
hull of points on the moment curve

C(n,d) = conv{(i,%,...,i¥) € R? :i € [n]}

Since we are dealing with the combinatorial structure of all triangulations of cyclic poly-
topes we may choose these special coordinates without any loss of generality. We will
often refer to the i* vertex (i,i2,... ,i%) of C(n,d) as simply i.

The canonical projection p = p, 4 from C(n,d + 1) onto C(n,d) is given by deletion of
the x4, 1-coordinate. Facets of C(n,d) that can be seen from a point in R4*! with a very
large (negative) x4 ;-coordinate are called upper (lower) facets.

Two simplices are said to be admissible if they intersect in a common (possibly empty)
face of each. A triangulation of a polytope P is a set of simplices with vertices in the vertex
set of P such that

e the union of the simplices equals P,
e every face of a simplex in the triangulation is itself in the triangulation, and
e any two simplices are admissible.

Triangulations are often identified with their sets of inclusion-maximal faces. Simplices
are usually identified with their vertex sets.

To test intersections of simplices S; and S, we will use the concept of zig-zag-paths
based on the alternating oriented matroid property of cyclic polytopes (see [5]). We con-
struct a table with n columns, corresponding to the labels 1,...,n, and two rows, corre-
sponding to the simplices S; and S,. In row i, column j, there is a star * if and only if
j €S;. An (81,5,)-zig-zag-path of length k is a set of k stars in the columns s; < --- < s
such that s,s3,5s.... are in Sy and s2,54,56,... are in S, or vice versa. The simplices
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FIGURE 1. Zig-zag-paths: (a) S| and S, are non-admissible in dimensions
5 or less, hence S; and S, cannot be in a triangulation of, e. g., C(9,4) at the
same time; (b) S1 and S, are admissible in dimensions 3 or greater, therefore
S; and S, may be in a triangulation of C(9,4).
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FIGURE 2. Gaps: (a) S| is a lower facet of C(9,4), S, is an upper facet of
C(9,4); (b) neither Sy nor S, are facets of C(9,4), but §; is a lower facet and
S, an upper facet of the cyclic subpolytope C({2,3,6,7,8,9},4). Therefore,
Sy is lower than S, in C(9,5).

S and S, are admissible in dimension d if and only if there is no (S;,S;)-zig-zag-path of
length d + 2 (see Figure 1).

Any subset V C [n] gives rise to a cyclic subpolytope C(V,d), namely the convex hull
of the subset V. For a cyclic subpolytope C(V,d) and a d-subset F of V we call a label
i € V\F an even (odd) gap of F (in V) if the number of labels j € V with j > i is even
(odd). Then we know that the set of lower (upper) facets of C(V,d) is the set of all F € (Z)
containing only even (odd) gaps [5]. This applies, in particular, to simplices so that we can
talk about the upper and lower facets of a d-simplex in C(n,d). For a visualization, we use
the same table as for the zig-zag-paths and fill an e (resp. o) for an even (resp. odd) gap
into the corresponding field (see Figure 2).

Let T be a triangulation of C(n,d) and S be a (d + 1)-simplex in C(n,d + 1) all of whose
lower facets lie in T. An increasing bistellar operation or increasing flip in T at S is an
operation that replaces in T the lower facets of S by the upper facets of §. The result, it is
clear, is a new triangulation of C(n,d). The transitive closure of this operation defines the
first higher Stasheff-Tamari poset S;(n,d). We write T <; T to indicate that T is less than
T' in S (n,d).

The characteristic section of a triangulation T of C(n,d) is the unique piecewise linear
map (with respect to the simplicial complex T') from C(n,d) to C(n,d + 1) that is inverted
by the canonical projection p and has the property that it sends the i vertex of C(n,d) to
the i vertex of C(n,d + 1). We identify a triangulation T with its characteristic section
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T : C(n,d) = C(n,d+ 1) and with its image T (C(n,d)) in C(n,d + 1). The second higher
Stasheff-Tamari poset S,(n,d) is the set of all triangulations of C(n,d) partially ordered by
the height of characteristic sections. That is, T <, T’ if and only if T (x) 441 < T'(x)441 for
all x € C(n,d), where here v, denotes the (d + 1)* coordinate of the vector v in RA+1,
We then say that T is weakly lower than T’. If T (x)441 < T'(x)441 holds for all x in the
(geometric) intersection of a simplex S € T and a simplex S’ € T’ we say that § is weakly
lower than S'. We write T <, T’ to denote that T is less than 7’ in S(n,d).

The unique minimal element in S; (n,d) respectively S;(n,d) (which is the set of lower
facets of C(n,d + 1)) is denoted by 0, 4. Similarly, the unique maximal element (which is
the set of upper facets of C(n,d + 1)) is denoted by 1, 4. The d-simplices in C(n,d) are
partially ordered by the following relation: S < §' if and only if SN S’ is a lower facet of S/
and an upper facet of S (see [5]).

We will make use of some standard constructions on simplicial complexes. Let A be a
simplicial complex on the ground set X. That is, A is a collection of subsets of X that is
closed under containment. If § C X define the link of § in A to be the complex

ka(S):={R\S: R€A,SCR};
the star of S in A is the complex
sta(S):={Re€eA:SCR};
and the deletion of S in A is the complex
delps(S):={ReA:SZR}.
If there is another complex A’ on a ground set Y disjoint from X we will define the combi-
natorial join of A and A’ to be the complex on the ground set X UY
AxA:={SuS :SeASeA}.

If T, T' are the sets of inclusion maximal faces of A, A’ then the above formulas yield the
sets of inclusion maximal faces of the link, the star, the deletion, and the join, respectively.

Given an i-simplex ¢ spanned by some (i + 1)-subset (also denoted G) of vertices of
C(n,d), there is also a unique linear section 6 : 6 — C(n,d + 1) of p having the property
that it sends each vertex i of ¢ to the vertex labelled i of C(n,d + 1). Say that ¢ submerged
by the triangulation T of C(n,d) if

O(x)a+1 < T(X)d+1

for every point x in 6. For a triangulation T of C(n,d) let its i'" submersion set sub;(T) be
the set of i-simplices submerged by T.

When we refer to the topology or homotopy type of a poset P, we will always mean
the topology of the geometric realization of its order complex, i. e., |A(P)| [3, §9]. If P is
a poset with bottom and top elements 0,1, then its proper part P is simply the subposet
P\{0,1}.

We recall the following facts from [4] and [5] which will be crucial for our main results:
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Theorem 2.1. [5, Theorem 1.1] The first higher Stasheff Tamari poset S (n,d) is bounded.

Theorem 2.2. [5, Theorem 4.2(iii), Proposition 5.14(iii)] The following map is well-defined
and order-preserving:

[ Simd) > Si(n—1,d),
: T delT(n)U(dellkr(n)(n—l)*{n—l}).

Proposition 2.3. [4, Proposition 2.15 ] For any two triangulations Ty, T, of C(n,d), we
have Ty < T» in S(n,d) if and only if
subr%](Tl) - sub[%] (T»).

Proposition 2.4. [4, Propositions 3.2, 4.1 ] Membership in [%] - submersion sets for d =
2,3 has the following characterization.

For T a triangulation of C(n,2) and e = {i, j} an edge inside C(n,2), we have that
e € suby(T) if and only if there does not exist an edge € = {k,l} of T withk < i<l < j.

For T a triangulation of C(n,3) and t = {i, j,k} a triangle inside C(n,3), we have that
t € suby(T) if and only if there does not exist an edge {x,y} of T withi < x < j<y<z

Theorem 2.5. [4, Theorems 3.6, 4.9] For d < 3, the higher Stasheff-Tamari poset S)(n,d)
is a lattice, i. e., any subset of its elements has a meet (greatest lower bound) and a join
(least upper bound).

Theorem 2.6. [4, Theorems 3.9, 4.11] For d < 3, the proper part S;(n,d) of the higher
Stasheff-Tamari poset has the homotopy type of an (n —d — 3)-sphere.

3. THE HoMOTOPY TYPES OF Sj(n,d) AND $(n,d)

In this section, Theorem 1.1 will be proven by induction on n — d, using the Suspension
Lemma 3.1 below to show that the proper part of S(n.d) is homotopy equivalent to the
suspension of the proper part of S(n— 1,d), where S(n,d) can be either S (n,d) or S(n,d).
(A more detailed proof of the Suspension Lemma can be found in [7].)

Lemma 3.1 (Suspension Lemma). Let P, Q be bounded posets with GQ #* iQ. Assume there
exist a dissection of P into green elements green(P) and red elements red(P), as well as
order-preserving maps

f:P>Q and i,j:Q—P
with the following properties:

(i) The green elements form an order ideal in P.
(ii) The maps foiand f o j are the identity on Q.
(iii) The image of i is green, the image of j is red.
(iv) Forevery p € P we have (io f)(p) < p < (jof)(p).
(v) The fiber f~! (OQ) is red except for Op, the fiber ! (iQ) is green except for 1p.
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Then the proper part P of P is homotopy equivalent to the suspension of the proper part 0
of Q.

Sketch of proof. Define

P — 0x{0,1},
g: (f(p),0) if pis green, N
P {(f(p),i) if p is red;
and
0x{0,1} — P,
h (9:0) = i(q), 2)
(¢.1) — J(g).

The assumptions guarantee that the above maps are well-defined and order-preserving.
Observe that go & is the identity map on Q x {0,1} and that Q x {0,1} is homeomorphic
to the suspension of Q. It is easy to show that both #o g and the identity map on P are
carried by the following contractible carrier on the order complex A(P) of P.

c-{ AP) — 280), B
= A(P (jof)(ming) N P< jof) (maxs) N P)-

Thus, by the Carrier Lemma [3], the map 4 o g is homotopic to the identity on P,and g
and h are homotopy inverses to each other. O

We now prove that the assumptions of the Suspension Lemma are satisfied by the fol-
lowing set of data.
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P:5(n,a’),
reen(S _ {TESnd {n—d,...,.n} ¢ T} ford even,
8 “{TeSnd) : {n—d,...n}eT} fordodd;
{T € S(nd):{n—d,...,n} €T} fordeven,
red(S(n,d)) = {{TES(nd) {n—d,...n}¢T} ford odd;

S(n — S(h—1,d),
T —  dely(n) Udely,(m(n—1)x{n—1}

n—ld —  S(n,d),
TUsténd(n);

|.__)

— 5(”,‘1)7
. — delT(n— 1)

I Ulkr(n— 1) * {n}
Ustln’d({n— 1,n}).

H&

Theorem 2.1 shows that S(n,d) is bounded. Moreover, by Theorem 2.2 we know that
f(T) is a triangulation of C(n— 1,d) for all triangulations T of C(n,d). The geometric
description of f is as follows: starting with the triangulation T of C(n,d), if one slides
the vertex n along the moment curve until it coincides with the vertex n — 1, then certain
d-simplices of T will degenerate. Removing these degenerate simplices and renaming all
occurrences of n by n — 1 yields the triangulation f(T).

The constructions of i and j can be described geometrically as follows: The cyclic poly-
tope C(n— 1,d) can be embedded into the cyclic polytope C(n,d) in many different ways.
For example, there is an embedding that sends vertex k of C(n— 1,d) to vertex k in C(n,d)
for all 1 < k < n— 1. There is another embedding which sends vertex k to vertex k for all
1 <k<n—1and vertex n— 1 of C(n— 1,d) to vertex n of C(n,d).

The map i uses the first embedding of C(n — 1,d) into C(n,d) to embed a triangulation T
of C(n— 1,d) into C(n,d). This leads to a partial triangulation of C(n,d). Since the “new”
vertex n in C(n,d) “sees” a convex polytope from outside, the only possibility to complete
that partial triangulation is to join every facet of T that is “visible” by n to n. It is an easy
calculation using Gale’s Evenness Criterion {10, Theorem 0.7] that the given formula for i
describes exactly that.

The map j uses the second embedding of C(n— 1,d) into C(n,d) for embedding a trian-
gulation T of C(n— 1,d) into C(n,d). Again, the “new” vertex n— | “sees” certain facets
of a cyclic polytope with n— 1 vertices. Given a triangulation of C(n—1,d ) that is embed-
ded into C(n,d) in this fashion, the only way to complete it to a triangulation of C(n,d) is
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to join n — 1 with the visible facets of the embedded C (n—1,d). Gale’s Evenness Criterion
again allows us to obtain the formula for j. This proves that i and j are well-defined.

In the following we outline the proof of Theorem 1.1 by verifying the assumptions of
the Suspension Lemma. Whenever the details are more involved we give a reference to a
Lemma in Section 4 or 5, respectively

If n>d+?2 then 0,_, 47 | 1.4- From Lemma 4.1 (resp. 5.1) we get that all maps
are order-preserving. From Lemma 4.2 (resp. 5.2) we know that no green element can be
above a red one. By construction, foi and f o j are both the identity on S(n,d). Since
whether or not {n —d,...,n} is contained in i(T) (resp. j(T')) does not depend on T, it can
easily be seen that the image of i is green and that the image of j is red. From Lemma
4.3 (resp. 5.3) it follows that the preimages of any T € S(n d) under f are bounded by

i(T) and j(T). Finally, Lemma 4.4 (resp. 5.4) imply that 0,, d is the only green element in
10, .4) and that O,, 4 is the only red element in f~ e d)-

The proof of Theorem 1.1 then follows from the well-known fact that C(d +2,d) has
exactly two triangulations (i. e., its proper part is the empty set which is a (—1)-sphere)
and induction on the codimension n — d using the Suspension Lemma 3.1.

4. LEMMAS ON $;(n,d)

We first formulate a lemma that we are using to establish the comparability of elements
in 5 (n,d).

Lemma 4.0. Let T and T' be triangulations of C(n,d). T is less than or equal to T’
in Si(n,d) if and only if there is a triangulation of the region between the characteristic
sections of T and T' in C(n,d + 1).

In other words, T <, T' if and only if there is a set T of (d + 1)-simplices such that the
following hold:

(i) Every pair of (d + 1)-simplices in T are admissible.

(i) For every lower facet S of a (d + 1)-simplex in T either there is another (d + 1)-
simplex in T containing S, or SisinT.

(iii) For every upper facet S of a (d + 1)-simplex in T either there is another (d + 1)-
simplex in T containing S, or Sisin T’

(iv) Every d-simplex in T\T' is a lower facet of some (d + 1)-simplex in T.

(v) Every d-simplex in T'\T is an upper facet of some (d + 1)-simplex in T.

(vi) Every d-simplex in T\T' UT'\T is a facet of at most one (d + 1)-simplex in T.

If the above assumptions are met we say “T connects T and T'.”

Proof. Given a set of (d + 1)-simplices T as in the assumption we get a sequence of in-
creasing flips from T to T’ by sorting the simplices of T by any linear extension of “<,”
as was shown in [5]. On the other hand, every set of (d + 1)-simplices corresponding to a
sequence of increasing flips from 7 to T’ has the properties listed above. (I
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We now prove a sequence of lemmas that allows us to apply the Suspension Lemma in
the case of S (n,d). Throughout this section it is always assumed that n > d + 2.

Lemma 4.1. The following maps are order-preserving.

| Si(n,d) — Si(n—1,d),
f T > delp(n)Udely, ) (n—1)*{n—1};

. Sl(n—lad) - 51(n7d)7

L T TUstﬁnd(n);

| Si(n—=1,d) — Si(n,d),

] T — lkT(n—l)*{n}Ustind({n—l,n}).

Proof. The assertion for f is contained in Theorem 2.2. To prove the claims about i and
j, observe that any increasing flip S in T € $;(n — 1,d) gives rise to an increasing flip S
in i(T) and an increasing flip S\{n— 1} U {n} in j(T). This completes the proof of the
lemma. a

Lemmad.2. Lt T <, T’ € 5(n,d) and Sy := {n—d,...,n}.

(i) Ifd is even and Sy is in T then Sy is also in T'.
(ii) Ifd is odd and Sy is in T' then Sy is also in T.

Proof. The claim follows from the observation that for even d the simplex Sy is an upper
facet of C(n,d + 1), whereas for odd d it is a lower facet of C(n,d + 1). O

Lemma 4.3. Forall T € 5 (n,d) we have i(f(T)) <, T <1 j(f(T)).

Proof. We start with a geometric description of the flip sequences that are going to establish
the claim. Think of the action of io f as sliding vertex n of a triangulation T of C(n,d)
continuously to n— 1 along the edge {n— 1,n} and then adding a collection of lower facets
of C(n,d +1) to the result. If one imagines this process taking place in C(n,d + 1) then one
observes that the characteristic section of T slides to the characteristic section of i( f(T)).
Every d-simplex § in T that contains n but not n — 1 slides exactly across the (d+1)-
simplex SU {n — 1} (see Figure 3). As the characteristic section T slides, these simplices 5
are the only ones whose paths sweep out (d + 1)-dimensional simplices. This yields a set
of (d + 1)-simplices as in the assumptions of Lemma 4.0.

On the other hand, one may regard the action of j o f as sliding vertex n— 1 of T contin-
uously to n along the edge {n — 1,n} and then adding a bunch of upper facets fo C (n,d+1)
to the result. However, the slide—considered in C(n.d + 1)—moves the characteristic sec-
tion of T to the characteristic section of j(f(T)). Again, the “tracks” of certain d-simplices
provide the connecting set of (d + 1)-simplices.
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il

T ’ T i)

FIGURE 3. The characteristic section of T slides to the characteristic sec-
tion of f(T). The simplices containing n and not containing n — 1 are
sweeping out the increasing flips from i(f(T)) to T.

In the following, we give a combinatorial proof of this idea. For T € S;(n,d) define the
following abbreviations.

A(T):={SeT:neS,;n—1¢S},
B(T):={SeT:n¢Sn—-1€5}.

We prove that i(f(T)) <; T for an arbitrary T € S;(n,d). Consider the following set of
(d + 1)-simplices in C(n,d + 1).

A(T):={Su{n—1}:S€A(T)}.

We claim that A(T) connects i(f(T)) and T. To verify this claim, we check properties
(i)-(vi) from Lemma 4.0 in Steps (i)-(vi) below.

Step (i): All pairs of (d + 1)-simplices in A(T) are admissible in C(n,d + 1) because
any zig-zag-path of length d + 3 can be transformed into a zig-zag-path of length (d+2)
by deleting n; deleting n from a simplex in A(T), however gives a simplex in f(T); all of
these are clearly admissible in C(n— 1,d).

Step (ii): We now show that every lower facet S of a (d + 1)-simplex S in A(T) is either
in i(f(T)) or there is another (d + 1)-simplex § in A(T) containing S.

To this end, let S be an arbitrary lower facet of a (d + 1)-simplex Sin T. Hence, S\S is
an even gap of Sin S.

CASE 1: If S\S = n then S is contained in f(T'), in particular it is contained in i(f(T')).

CASE 2: If $\S=s<n—1then F:=S\{n—1} isa (d — 1)-simplex in 7.

If F is a facet of C(n,d) then it is an upper facet of C(n,d) because n— 1 is an odd
gap in F. Then S = F U {n— 1} was already a lower facet of C(n,d + 1) containing n and
n— 1. However, all these lower facets of C(n,d + 1) are in i(f(T)) by construction, and
thus S € i(f(T)).

If F is not a facet of C(n,d) then there is another simplex ' € T with ' # Sand F C §'.
Since n— 1 ¢ ' we have that § := §'U{n— 1} € A(T) with §' # Sand S C S

Step (iii): Next, we show that every upper facet S of a (d + 1)-simplex S in A(T) is either
in T or there is another (d + 1)-simplex S in A(T) containing S.
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To see this, let S be an arbitrary upper facet of a (d + 1)-simplex S in T. Hence, S\S is
an odd gap of S in S.

CASE 1: If S\S — n— 1 then S is contained in T by the definition of A(T).

CASE2: If§\S=s<n—1then F:=S\{n—1}isa(d—1)-simplexinT.

We show now that F is not a facet of C(n,d): Because s is an odd gap of S in § and
n—1> s is an additional gap of F larger than s we conclude that s is an even gap of F
in S. However, n— 1 is clearly an odd gap of F in S because n € F. Thus, F contains an
even and an odd gap, and is therefore not a facet of S. Consequently, it cannot be a facet of
C(n,d).

Hence, there is another simplex §' € T with ' # Sand F C §'. Sincen— 1 ¢ S’ we have
that § ;=8 U{n—1} € A(T) with §' # Sand SC §'.

Step (iv): We now prove that every d-simplex in i(f(7T))\T is a lower facet of some
(d +1)-simplex S in A(T).

Let S be a d-simplex in i(f(T)) but not in 7. There are two types of d-simplices in
i(f(T))\T: simplices of the form § = §'\{n} U{n— 1} with §' € A(T) (case 1), and lower
facets of C(n,d + 1) containing n and n — 1 (case 2) .

CASE 1: If S is of the form S = §'\{n} U{n — 1} with §' € A(T) then § := SU {n} is
in A(T) and n is clearly an even gap of S in S. Thus, S is a lower facet of the simplex
S e A(T).

CASE 2: If S is a lower facet of C(n,d + 1) containing n and n — 1 then all gaps of S are
even. Hence, all gaps of F := S\ {n — 1} are odd. Thus, F is an upper facet of C(n,d). This
leads to the existence of a d-simplex &' in T containing F. Since n is in F we know that
nisalsoin §'. f n—1€ S then S =S € T; contradiction to S € i(f(T))\T. Therefore,
§' is in A(T) and, consequently, . S:=5u {n—1}isa(d+1)-simplex in A(T). Moreover,
S =FU{n—1} is a facet of § because S contains n— 1. Additionally, S is — by the
assumption of this case — a lower facet of C(n,d + 1), so it must be a lower facet of S.

Step (v): We now prove that every d-simplex in T\i(f(7T)) is an upper facet of some
(d + 1)-simplex S in A(T).

Let S be a d-simplex in T but not in i(f(T)). Then S is, in particular, not contained in
f(T). There are two types of d-simplices in T\ f(T): simplices from A(T) (case 1), and
simplices containing both n — 1 and n (case 2).

CASE 1: Assume S is in A(T). Then S:=SU{n— 1} isin A(T). Since n— 1 is an odd
gap of S in § we conclude that S is an upper facet of the (d 4 1)-simplex Sin A(T).

CASE 2: If both n — 1 and n are in S then S cannot be a lower facet of C(n,d+ 1), because
all lower facets of C(n,d + 1) containing both n and n — 1 are in i(f(7')) by construction.
Assume, for the sake of contradiction, that F := S\{n — 1} is a facet of C(n,d). Then either
all gaps of F are even or all gaps of F are odd. Since n € F we know that n — 1 is an odd
gap of F, thus all gaps of F must be odd. However, then all gaps of § = FU {n — 1} are
even; contradiction to the fact that S is not a lower facet of C(n,d + 1). We conclude that F
is not a facet of C(n,d). Thus, there is another simplex §' # S in T containing F'. Moreover,
because n— 1 & §' but n € §', we have §' € A(T), and, consequently, §:= S U{n—1} is
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in A(T). Because n— 1 is an odd gap of §' in § we know that §' is an upper facet of S.
Moreover, since S’ and S are both in T they are admissible in C(n,d). That means that S is
also an upper facet of §. (A lower and an upper facet of a (d + 1)-simplex in C(n,d + 1)
are never admissible in C(n,d).)

Step (vi): Finally we prove that every simplex in T\i(f(T)) Ui(f(T))\T is a facet of at
most one (d + 1)-simplex in A(T).

CASE 1: S is a d-simplex in T\i(f(T)). If S is in A(T) then § = SU {n — 1} is the only
(d + 1)-simplex in A(T) containing S because membership in A(T) requires the contain-
ment of n — 1. If both n and n — 1 are in S then we proceed as follows. Assume, for the sake
of contradiction, that there are two distinct (d + 1)-simplices § and § in A(T) containing S.
Then S is a lower facet of one of them, say $ and an upper facet of the other one, say §'. In
other words, s := §\§' < n— 1is an odd gap of §’ and ' := §'\§ < n— 1 is an even gap of §
in SUS'. By construction of A(T), we know that § = RU {n—1}and & = R'U{n—1} for
some R,R' € A(T). In particular, R and R’ are in T, thus admissible in C(n,d). However,
R= S\{n — 1} and R’ = §\{n — 1}. Therefore, s is an even gap of R’ and 5’ is an odd gap
of R in RUR’'. But that means, R’ is a lower and R is an upper facet of the (d + 1)-simplex
RUR’; contradiction to the fact that R and R’ are admissible in C(n,d).

CASE 2: Sis ad-simplex in i(f(T))\T. If S is of the form $"\{n} U{n— 1} for some §' €

A(T) then SU{n} is the only (d + 1)-simplex in A(T) containing S because membership in
A(T) requires the containment of n. On the other hand, if S is a lower facet of C(n,d + 1)
then there cannot be two distinct (d + 1)-simplices which both contain S and are admissible
inC(n,d+1).

Steps 1 to 6 prove that the assumptions of Lemma 4.0 are satisfied, thus A(T) connects

i(f(T)) and T, proving i(f(T)) <1 T.

Analogously, the set

B(T):={Su{n}:SeB(T)}.

connects T and j(f(T)), proving T <; j(f(T)). We omit the details verifying this, which
are similarly tedious. O

Lemma 4.4. Let T be in S (n d)and Sy :={n—d,...,n}.

(i) Letd be even, f(T)=0,_14, and So ¢ T. ThenT On.a-
(ii) Let d be even, f(T )— ln-—ld: and So € T. Then T = lnd
(iii) Letd be odd, f(T)=0p-1 4, and So € T. Then T = O,,d
(iv) Letd be odd, f(T)=1,_14 and So ¢ T. Then T = ln,d

Proof For the proof of (i), let T € $;(n,d) for even d with f(T) = 0n_14. Assume that
T #0, 4- Recall that any such element T in §; (n,d) can be connected to 0. 4 by asequence
of decreasing flips (see Theorem 2.1). The map f is order-preservmg (see Theorem 2.2);
thus every element in such a sequence is mapped by fto Op—1 4- Because of Lemma 4.2, we
may therefore assume that T differs from On,d by exactly one increasing flip corresponding
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to a (d + 1)-simplex S. The simplex S must contain both n — 1 and n because otherwise it

A

would give rise to a (non-trivial) flip from 0,_; 4 to f(T) in contradiction to f(T) = Op_1 4.
The only flip in (A),,’d containing 7 — 1 and n corresponds, however, to the (d 4 1)-simplex
S={l,n—d,...,n}. The fact that Sy is an upper facet of S, thus is contained in the
triangulation resulting from this flip, gives a contradiction. Thus, claim (i) is proved.

The proofs of the remaining statements are analogous with

{n—d—1,n—d,...,n} decreasing flip in 1, for (i),
§S={{n—d-1,n—d,...,n} increasing flip in (A),,wd for (iii),
{l,n—d,...,n} decreasing flip in in’d for (iv).

5. LEMMAS FOR 5 (n,d)

This section is devoted to proving an analogous set of lemmas to the ones in the previ-
ous section, in order to guarantee the assumptions of the Suspension Lemma for 5(n,d).
Again, in the following n > d + 2.

Lemma 5.1. The following maps are order-preserving.
. SZ(n’d) - 52('1_17‘1')7
S T +— T\n:=delr(n)Udely, (n—1)*{n—1}
. { Sn-1d) — %K(nd),
i

— T Ust d(n);

= S(n.d),
= lkp(n—1)* {n}Ustin,d({n— 1,n}).

= N

~

) { Sn—1,d
R

Proof. That i and j are order-preserving is easily seen by considering the following facts:
both maps embed a triangulation of C(n— 1,d) into C(n,d); i copies the original trian-
gulation, j renames n — 1 to n. This does not change any height relations of piecewise
linear sections to each other. Then both maps add a set of simplices which does not depend
upon 7. These are consequently at the same height for all triangulations. Thus, all height
relations are maintained.

We now prove the assertion concerning f. We use the fact that the map f : S(n,d) —
S(n— 1,d) has the following geometric interpretation: given a triangulation T of C(n,d),
imagine a homotopy that “slides” the vertex n down the moment curve toward the vertex
n—1, so that at t = 0 one has the triangulation T(0) = T of the original cyclic polytope
C(n,d), and at t = 1 some of the simplices of T'(1) (namely those containing both n — 1
and n) have become degenerate (volume zero). If one eliminates these degenerate simplices
from T(1) and relabels the vertex n by n — 1 in the remaining simplices, one obtains the
triangulation f(T) of C(n — 1,d).
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To prove that f is order-preserving, assume T <, T, and we will show that f(T) <,
f(T"). Fix apoint x € C(n—1,d), and for 0 <z < L, let T(¢) (x) 441, T' () (x) g+1 be the (d +
1)%-coordinates of the image of x under the parametrized characteristic sections T'(¢), T'(z) :
C(n,d) — C(n,d+1). Since T <, T’, we have

T'(t) (%) a4t — T () (¥)g41 20 for 0 <z < 1.

However T'(t)(x)g41 — T(t)(x) 44 is clearly a continuous function of ¢, so the same in-
equality holds for t = 1. Hence

F(T)(®) g1 =T ®)as1 < T (D) (®)ar1 = F(T) (x)d+1
which shows that f(T) <, f(T")

Lemma5.2. LetT <T' € S(n,d)and Sy :=(n—d,...,n).

() Ifd is even and Sq is in T then Sy is also in T'.
(ii) Ifd is odd and Sy is in T' then Sy is alsoin T.

Proof. The assertion follows from exactly the same argument as given in the proof of
Lemma 4.2. O

Lemma 5.3. Forall T € $(n,d) we have i(f(T)) <, T <, j(f(T)).

Proof. This follows from Lemma 4.3 and the fact that T <; T’ always implies T <, T’
(see [4]). O

Lemma 5.4, Let T be in 52(71 d)and Sy:={n—d,...,n}.

(i) Letd be even, f(T)=0,_14 andSo & T. ThenT Ond
(i1) Let d be even, f(T )—1,, 1.4 and So € T. ThenT—l,,d
(iii) Letd be odd, f(T) =0,—14, and So € T. Then T = O,,d
(iv) Letd be odd, f(T) = ln—l,d’ and So ¢ T. Then T = 1n,d

Proof. This statement is independent of the partial order S (n,d) or $(n,d) under consid-
eration. Thus the proof of Lemma 4.4 is valid here as well. O

6. THE GENERALIZED BAUES PROBLEM FOR C(n,d) WITH d < 3

The goal of this section is to prove a new special case of the generalized Baues problem,
but we must first recall the definition of the Baues poset Baues(C(n,d)). A polytopal
decomposition & of C(n,d) is a collection {V} of vertex subsets Vo C [n] satisfying

e Foralla, |Vo| >d+ 1.
e Any two cyclic subpolytopes C(Vy,d),C(Vp,d) intersect in a common face (possibly
empty).



ON SUBDIVISION POSETS OF CYCLIC POLYTOPES 15

e The union of the cyclic subpolytopes C(Vy,d) covers C(n,d), i. e.,
Uc Va,d) = C(n,d)

Say that a polytopal decompositlon is proper if it is not the trivial decomposition {[n]}.

The Baues poset Baues(C(n,d)) is the set of all proper polytopal decompositions or-
dered by refinement, i. e., 8 = {Vy} < & = {V,y} if for every Vy € 8 there exists a Vyy € &'
with Vo C V.. One can check that this agrees with the poset considered in the Generalized
Baues Problem [1] for the case of subdivisions of a cyclic polytope. Theorem 1.2 now
reads as follows.

Theorem 6.1. For d < 3 the poset Baues(C(n,d)) is homotopy equivalent to a sphere of
dimensionn—d — 2.

As was said in the introduction, our method will be to show that Baues(C(n,d)) is ho-
motopy equivalent to the suspension susp(5(n,d)). We begin by defining a map ¢ from
Baues(C(n,d)) to intervals in S;(n,d). An element d of Baues(C(n,d)) is a polytopal
subdivision of C(n,d), so let ¢(8) be the set of all triangulations of C(n,d) which refine it.

Lemma 6.2. For any 3 in Baues(C(n,d)),
o the set 0(8) is a non-empty interval in S;(n,d).
e 0(d) is not the improper interval consisting of all 5 (n,d).
e § < & in Baues(C(n,d)) implies (8) C ¢(&).
o O is injective, i. e., O(8) = ¢(d') implies 6 = §'.

Proof. Since 8 is a polytopal subdivision of C(n,d), and subsets V of the vertices of C(n,d)
span cyclic subpolytopes C(V,d), we know that § gives a decomposition

=|JC(Vo,d)

for some vertex sets V, in which the C(Vy, d) all have disjoint interiors. If we let O, 1¢ de-
note the bottom and top triangulations of C(Vy,d), then one can form two triangulations T
and T’ respectively, by refining 0 according to 0 and 14 respectively on each subpolytope
C(Vqy,d). It is then clear from the definition of $(n,d) that ¢(8) = [T, T’]. This proves the
first assertion of the lemma.

To prove the second assertion, note that since 8 is a non-trivial polytopal subdivision
of C(n,d), it must use at least one (d — 1)-simplex ¢ spanned by the vertices of C(n,d)
which lies interior to C(n,d), and therefore this simplex ¢ would lie in every triangulation
in 0(3). If 0(3) were all of $,(n,d), then in particular this would imply that the bottom and
top triangulations 0, 1 have this simplex ¢ in common. But one can easily check from the
explicit description of the triangulations 0,1 given in [4] or [5] that they have no interior
(d — 1)-simplices in common.

To see the third assertion, note & < & means that d refines & as a polytopal subdivision,
so any triangulation T which refines & will also refine &', and hence ¢(3) C ¢(8).
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To see the fourth assertion, it suffices to show that & is completely determined by ¢(9),
in the sense that the set of (d — 1)-simplices of 0 is the intersection of all the sets of
(d — 1)-simplices of its triangulation refinements. Certainly the (d — 1)-simplices of 6
are contained in this intersection. This intersection cannot be larger because for each o,
(using the notation of the first paragraph), the two triangulations 0, 1o share no common
(d — 1)-simplices interior to C(Vy,d). d

We next recall and introduce some notions about lattices. Given a lattice L with bottom
and top elements 0, 1, an element of L which covers 0 (resp. is covered by 1) is called an
atom (coatom), resp. The lattice L is atomic (resp. coatomic) if the join of all the atoms is i
(resp. the meet of all the coatoms is 0). Any interval [x,y] in a lattice is a lattice itself, and
will be called atomic or coatomic if it satisfies the previous conditions. An interval [x,y]
will be called proper if it is not the whole lattice L = [0, 1]. Recall that the proper part of
L is the subposet L := L\ {0, 1}.

We now define three interval posets as certain collections of intervals in L ordered by
inclusion of intervals:

° @(L) — all non-empty intervals in L,
e Int(L) — all non-empty, proper intervals in L,
e Intyomic(L) — all non-empty, proper, atomic intervals in L.

Similarly one can define Intcogromic (L)

In [9] it was shown that Int(L) is canonically homeomorphic to L, and that Int(L) is
canonically homeomorphic to susp(L), i. €., the suspension of the proper part of L. One
can view Lemma 6.4 below as asserting an analogous statement, up to homotopy, for
Intatomic (L) .

We recall (Theorem 2.5) that for d < 3 $(n,d) is a lattice, and note that Lemma 6.2
shows that ¢ defines an injective, order-preserving map Baues(C(n,d)) — Int($(n,d)).

Lemma 6.3. Ford < 3, the image of & : Baues(C(n,d)) — IntS;(n,d) is exactly Intcogomic (S (n,d)).

Proof. To see that ¢(8) is always a coatomic interval in $(n,d), we use the notation from
the proof of Lemma 6.2, and note the following isomorphism of posets:

0(8) = [T, 7' = [ ][0, Ia].

Since each interval [0, 14] is isomorphic to 5 (n’,d) for some n’ < n, the coatomicity
of ¢(8) would follow if we knew that 5,(n,d) is a coatomic lattice for d < 3. But if
S»(n.d) were not coatomic then its proper part 5 (n,d) would be contractible (see, e. g.,[3,
Theorem 10.14)), contradicting Theorem 2.6 above.

It remains then to show that every coatomic interval in $,(n,d) is of the form ¢(06) for
some & in Baues(C(n,d)). For d = 1, this is trivial since the cyclic polytope C(n, 1) is
simply a line segment with n — 2 interior subdivision points. Triangulations of C(n, 1) are
specified by their subset of interior vertices and 5 (n,d) is a Boolean algebra B,_», so that
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every interval is coatomic, and it is easy to see that every interval is ¢(3) for some 0 in
Baues(C(n,d)). '

For d = 2,3 the fact that every coatomic interval in S (n,d) is of the form ¢(3) requires
some argument. Assume we have such a coatomic interval [T,T’], and we will show how
to construct its preimage 8. Form a graph G whose vertices are the d-simplices ¢ in the
triangulation T”, and whose edges correspond to a pair of d-simplices 6,6’ which share a
(d — 1)-simplex T that is not a simplex in 7. Let { Gy } be the various connected components
of G, and define Vj, to be the set of all vertices of C(n,d) which lie in a simplex of Go. We
wish to prove two claims about these graphs:

e If 5,0’ are simplices of T’ which correspond to an edge of G, then their union is a
cyclic subpolytope C(d + 2,d) which supports a bistellar operation corresponding to
a covering relation between 7’ and some coatom of the interval [T, 7).

e For each o, the connected component G is a path, and the set of d-simplices G
corresponding to G, gives exactly the maximal simplices of the top triangulation 1o
of the cyclic subpolytope C(Vq,d).

Assuming these two claims for the moment, we show how to finish the proof. The second
claim implies that the decomposition C(n,d) = {Jo C(Va,d) defines a polytopal subdivision
8. Furthermore, as in the first paragraph of this proof, we know that ¢(9) is equal to some
coatomic interval [Tg, T{], where T, T’ refine & and the restriction to C(Vy,d) of T,T" looks
like O, 14 respectively. By the second claim, this means that 7/ = T{. By both claims
together, every coatom of the interval [T5,T5] is also a coatom of [T,7"] (i. e., all of the
former coatoms lie above T'), and hence by coatomicity of [T,T’] we must have T = Tj.
Therefore [T,T'] = ¢(3) as desired.

To show the first claim, assume ©,¢’ are simplices of T’ which correspond to an edge
of G, so there intersection is a (d — 1)-simplex T which is not in T. Assume for the sake
of contradiction that the union U ¢’ does not support a bistellar operation as asserted in
the claim. Then every coatom T"” of [T,T'] will have 7T in its submersion set sub(%] (T")

(see Proposition 2.3). Since the meet operation in S;(n,d) corresponds to intersection of
submersion sets, coatomicity of [T, T’] implies that sub[%] (T) would also contain T. But

then the fact that T is not a (d — 1)-simplex of T would imply that
e if d = 2 then T = {i, j} must be “foiled” by some other T’ = {k,/} in subpg, (T) which
2

satisfies i < k < j < [ (see Proposition 2.4).
e if d = 3 then T = {i, j,k} must be “foiled” by one of its edges, say {i, j}, intertwining
another triple " = {x,y,z} in subM(T) in the sense that x < i <y < j < z (see
2

Proposition 2.4)
However in both of these cases, T would also lie in subrg, (T') since T < T' in S(n,d),

and hence would “foil” T from being a (d — 1)-simplex of 7. Contradiction.
To show the second claim, note that the first claim implies very stringent requirements
on what 6,6’ can look like whenever they correspond to an edge in G:
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o ifd=2,06={ij,l},0 ={jk, I} forsomei< j<k<l/ and

o ifd=3,06=/{ij,km} o ={iklm}forsomei<j<k<l<m.
It is easy to check that these requirements, combined with the fact that a (d — 1)-simplex T
can lie in at most two d-simplices of 7, implies that the degree of any vertex in a connected
component G, can be at most 2. In fact, Gy is constrained to look like the following path
of d-simplices:

e ford =2,
{vivavr }, vavave b, {vavave by oo {vemavr—ivr }
e ford =3,
{vivavave}, {vivavave }, {vivavsvr}, .. {Vivecave—ivr }
where v; < --- < v, are the vertices V of Gg wriAtten increasing order. In both cases this
description matches exactly the top triangulation 14 of C(Vq,d). d

Once the image of ¢ has been established, Theorem 6.1 follows by combining

e Lemma 6.4 below,

e the above-mentioned fact that the proper interval poset Int(L) is homeomorphic to
susp(L), and

e Theorem 2.6 or Theorem 1.1.

Lemma 6.4. Let L be any finite lattice. Then Intgomic(L) (or Intcoaromic (L)) is homotopy
equivalent to Int(L).

Lemma 6.4 follows from a more general lemma, which we think is of independent in-
terest. We are indebted to P. Webb for the statement and proof of this lemma.

Lemma 6.5. Let P be a poset with 0,1. If {[x;,:]}=, is any finite collection of intervals
with the open intervals (x;,y;) contractible for all i, then the inclusion

IntP\{[x;, ] }/=; — IntP
induces a homotopy equivalence.

Lemma 6.4 then follows from Lemma 6.5 by letting P = L and letting {[x;,y:]}/-; be
the non-coatomic intervals of L. These non-coatomic intervals satisfy the hypothesis of the
lemma by [3, Theorem 10.14].

Lemma 6.5 follows immediately from the following two sublemmas:

Sublemma 6.6. [2] In a poset Q, if {q;}_, is a finite subset with Qg contractible for all
i, then the inclusion

O\{gitiz1 — 0

induces a homotopy equivalence.
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Proof. Re-index the elements {g;}/_, in such a way that g; > g; in Q implies i < j. Then

(O\{q1;---,9i-1})<q; = O<g;

is contractible for all i, so an application of Quillen’s Fiber Lemma [3, Theorem 10.5]
proves the homotopy equivalence by induction on i. a

We can apply Sublemma 6.6 with Q = IntP to prove Lemma 6.5 once we have estab-
lished

Sublemma 6.7. In a poset P with 0,1, if an open interval (x,y) is contractible, then
(IntP) <[] is contractible.

Proof. Note that
(IntP) bl = Int[x, y].

But Int[x,y] is homeomorphic to the suspension susp(x,y) by [9], and hence contractible
since (x,y) was assumed contractible. a

7. OPEN PROBLEMS

The following are some remarks and remaining open problems about triangulations of
cyclic polytopes which we consider interesting.
1. The proof of Theorem 6.1 relied heavily on the fact established in [4] that S(n,d)
is a lattice for d < 3. Unfortunately, computer calculations have shown that 5(9,4)
and $,(10,5) are not lattices, rendering this lattice-theoretic method of proof invalid
for d > 4 (and resolving negatively Conjecture 2.13 of [4]). However we would still
conjecture the following:

Conjecture 7.1. The image of ¢ : Baues(C(n,d)) — IntSy(n,d) is exactly the sub-
poset consisting of those closed intervals in S(n,d) whose open interval is not con-
tractible.

As in Section 6, this conjecture would resolve in the affirmative the Baues problem
for triangulations of all cyclic polytopes. It is easy to see that one direction in this
conjecture is true, namely that any interval in the image of ¢ is isomorphic to a Carte-
sian product of posets isomorphic to $(nq,d) for various ng, and hence has proper
part homotopy equivalent to a sphere. Consequently, the above conjecture also has as
a corollary the calculation of the homotopy type and Mobius function for all (open)
intervals in $(n,d).
2. Do the partial orders S;(n,d), $(n,d) coincide?
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