ON SOME INSTANCES OF THE GENERALIZED BAUES
PROBLEM

VICTOR REINER

ABSTRACT. We present an approach applicable to certain instances of the gen-
eralized Baues problem of Billera, Kapranov, and Sturmfels. This approach
involves two applications of Alexander/Spanier-Whitehead duality. We use
this to show that the weak generalized Baues problem has a positive answer
for the surjective map of cyclic polytopes C(n,d) — C(n,2) if n < 2d and
d > 10.

1. INTRODUCTION

The generalized Baues problem (GBP) of Billera, Kapranov, and Sturmfels [3,
§3] asks whether a certain poset associated to an affine surjection 7 : P — Q of
polytopes has the homotopy type of a sphere, when the poset is endowed with a
standard topology. Although that it is known that this question has a negative
answer in general, there are many interesting special cases for which the answer is
known or conjectured to be positive. For motivation and a survey of general results
on the GBP, see [15].

The purpose of this paper is to outline an approach to the GBP under certain
conditions on the polytope P and the map =. We apply this approach to positively
answer the GBP in the case of the natural surjection of a cyclic polytope C(n,d)
onto the cyclic polygon C(n,2) if n < 2d and d > 10. The approach uses Alexander
(or more strongly, Spanier-Whitehead) duality twice, in order to work with posets
that may be more tractable than the original. This approach was partly inspired
by the somewhat special result on the GBP obtained in [1, Theorem 1.2]. It is
also extremely similar to a double-usage of Alexander duality occurring in work of
Stanley [18, Lemma 2.8] in a somewhat different context.

2. THE APPROACH

We first introduce subdivisions and the Baues poset w(P5Q). Let 7 : P — Q
be an affine surjection of polytopes P, Q, of dimensions d', d respectively. Denote
by V the vertex set of P, and say V has cardinality n. Let A be the point set 7(V),
and we assume for ease of exposition that 4 also has cardinality n, that is, no two
vertices of P have the same image under ; this assumption is not essential for our
results. Note that ) is the convex hull conv(A).

A subdivision of A is a collection of pairs {(As, Qa)} where

e A, are subsets of A,
e each @, is the convex hull of A, and is d-dimensional,
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¢ the union of the QQ, covers @,
e for any a, 3, the intersection of Qq4, Qg is a face F' (possibly empty) of each,
and A, NF =AgNF
The set of subdivisions of A is ordered by refinement in the following fashion:
{(Qar Aa)} < {(Qp,A})} if and only if for every a there exists some B with A, C
A (and hence also Qo C Q). We will denote by w(A) the poset of subdivisions
of A ordered by refinement.

Certain subdivisions of A called coherent subdivisions are singled out by a geo-
metric property which we will not explain here; see [9, Chapter 7] or [11]. However,
we will use the following fundamental theorem of Gelfand, Kapranov, and Zelevin-
sky [9, Chapter 7, Theorem 2.4] about the subset of coherent subdivisions, which
partly explains their importance:

Theorem 1. The subposet of coherent subdivisions inside w(A) is isomorphic to
the poset of faces of an (n—d—1)-dimensional convez polytope, called the secondary
polytope L(A).

In particular, w(A) contains a top element 1 corresponding to the very coarse
subdivision {(Q,A)}.

Our approach to the GBP will only apply in situations where all subdivisions of
A are coherent. This is a serious restriction, although there are examples known to
have this property- see [11]. In particular, when A is the set of vertices of a convex
polygon in the plane, all of its subdivisions are coherent.

In this paper, when we talk about the topology of a poset, we are implicitly
identifying the poset with the geometric realization of its order complez, that is
the simplicial complex of chains in the poset [5, §9]. With this understanding,
if we assume that all subdivisions of A are coherent, then the poset w(A) — 1
triangulates the sphere S"~=2. This follows because w(A) — 1 is the face poset
of the boundary complex of the (n — d — 1)-dimensional secondary polytope %(A),
and hence triangulates the barycentric subdivision of this complex.

A subdivision of A is m-induced if each of the sets A, has the property that
the corresponding subset V, C V is the set of vertices of a boundary face of P.
The Baues poset w(P-5Q) is defined to be the subposet of w(.A) consisting of the
m-induced subdivisions of A. With this defined, we can now phrase the GBP:

Question 2. (The generalized Baues problem) [3, §3]
Is the Baues poset w(P5Q) homotopy equivalent to the sphere S*—4-1¢

This problem has been resolved positively in many special cases, in particular
when d = 1 [3] or when d’' — d < 2 [14], but has a negative answer in general [14];
see [15] for a survey of these results.

For our approach to the GBP, in addition to the Baues poset w(P5Q) will
consider its complement X (P5Q) := w(A) — w(P5Q) — 1. Identifying a face of P
with the set of its vertices, we let Faces(P) denote the poset of proper non-empty
faces of P, considered as an induced subposet of the Boolean algebra 2. We will
also consider its complementary subposet Nonfaces(P) := 2V — F(P) — {V}.

For two topological spaces X,Y, we will write X =Y, X = Y, and X Y
resp. to mean that X is homeomorphic, homotopy equivalent, or stably homotopy
equivalent to Y, respectively. Recall that X 2 Y means there exists some nonneg-
ative integer p such that their p-fold suspensions are homotopy equivalent, that
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is, Susp” X =& Susp”Y. In particular, when X 2 Y they share the same integral
homology groups in each dimension, due to the homotopy invariance of homology
groups and the suspension isomorphism H;(X,Z) = H;.1(SuspX,Z).

The following lemma is the crux of our approach to the GBP.

Lemma 3. Using the notations already established, assume that 7 : P — () satisfy
the two hypotheses that

e all subdivisions of A are coherent, and
e X(P5Q) ~ Nonfaces(P).
Then .
w(P5Q) = S¥4-1,
Proof. Recall [17] Spanier-Whitehead duality asserts that for every subcomplex

X of a CW-sphere §™, there is a another CW-complex D,, X having the same
homotopy type as S™ — X, and the stable homotopy type of D, X is determined

by the stable homotopy type of X. In other words, if 4 & B, then D, A & D,B.
Recall also that when a poset A triangulates S™, any subposet X C A has the
property that the order complexes of X, A — X are deformation retracts of each

others complements within S™ [6, Lemma 4.7.27]. Hence D, X & A — X in this
situation. With this in mind, we have the following chain of stably homotopy
equivalences, which are explained below:

W(P5HQ) & Dn_a-2X(P5Q)
D,,_4-sNonfaces(P)
Dp—q—2D,_sFaces(P)

d-1
Dn—d—2Dn—2S
Sn—d'——2

Qo Ao W=

Qe

Dn-—d—2

é Sd'—d—-l

The first line is an application of Spanier-Whitehead duality to the subspaces
wP5HQ),X(P5Q) — w(A)—1=8s7"92
where we have used Phe assumption that all subdivisions of A are coherent to
conclude that w(A) —1 = §"~9~2. The second line comes from our assumption that
X (P5Q) ~ Nonfaces(P). The third is another application of Spanier-Whitehead
duality, this time to
Faces(P), Nonfaces(P) <« 2Y —{@,V}=8§""2
The fourth comes from the fact that Faces(P) triangulates the boundary of P, a d'-

dimensional polytope. The last two lines follow from the fact that D,,S¥ & §m—k=1,
O

Remark 4.
The conclusion of Lemma 3 is stronger than the assertion which follows from a
double usage of Alexander duality, namely that w(P-3Q) has the same integral

homology groups as S4'~d=1 Hyt is weaker than the desired conclusion of the GBP,
i.e. that w(P5Q) ~ S4—4-1,
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However, it is not as weak as it might seem at first glance, as we now explain.
First, since the GBP is known to hold whenever d' — d < 2 [14], we may assume
that d’ — d > 3, and hence S9! is simply-connected. The following well-known
lemma, whose proof we include for completeness, says that when the conclusion of
Lemma 3 holds, we only need to check whether the fundamental group of w(P5Q)
is trivial:

Lemma 5. Let X be a CW-complex with X A Sk for some k > 2, and with X
simply connected. Then X ~ S*.

Proof. Since X ~ S*. we know that X has the same integral homology groups as Sk.
Since X and S¥ are simply-connected, the Hurewicz Theorem [16, p. 397] says that
they have the same homotopy groups. In particular, mx(X) = m (S*) = Z, so there
is a map f : S¥* - X whose homotopy class corresponds under these isomorphisms
to 1 € Z. It follows from the definition of the Hurewicz homomorphism that f
induces an isomorphism between the k-dimensional homology groups of S* and
X. Since both X,S* have all other homology groups trivial, an application of a
Whitehead theorem [16, p. 399] says that f induces an isomorphism between all
the homotopy groups of S* and X. But then since X is a CW-complex, another
Whitehead theorem [16, p. 405] implies that f induces a homotopy equivalence
between S* and X. O

3. APPLYING THE MAIN LEMMA

In order to apply Lemma 3, we need tools to compare the homotopy type of the
posets Nonfaces(P) and X (P3Q). Our approach will be to find good coverings of
spaces homotopy equivalent to these posets, and then compare the nerves of these
covers. For the remainder of the paper, we will assume that

e P is a simplicial polytope, i.e. that its boundary faces are all simplices, and

e A has only coherent subdivisions.

Because of our assumption that P is simplicial, the poset Nonfaces(P) forms
an order filter in the Boolean algebra 2V, and hence is dual or oppposite to the
face poset of a simplicial complex A. We can therefore replace Nonfaces(P) by A
up to homeomorphism. Every minimal nonface N of P corresponds to a maximal
face Fy of A, and we let F = {Fx} be the covering of A by these maximal
faces. This is a good covering in the sense that any intersection Ni_, F, is either
empty or contractible, and note that the latter happens if and only if U N;
V. Hence by the usual Nerve Lemma [5, (10.6)] one can replace Nonfaces(P) by
the nerve(F) up to homotopy equivalence. We summarize our conclusions in the
following proposition:

Proposition 6. Assuming P is simplicial, Nonfaces(P) =~ nerve(F). Here nerve(F)
has vertices indexed by the minimal non-faces of P, and a face for each collection
Ny, ..., N, of minimal faces with U_ N; C V.

Remark 7.

One might ask whether the assumption that P is simplicial is important in the
previous covering/nerve construction. Even without assuming that P is simplicial,
one can cover the order complex of the poset Nonfaces(P) by the order complexes
of the subposets Py where Py is the set of non-faces of P which contain N, and
N ranges over the minimal non-faces of P. On the other hand, this turns out not
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to always be a good cover. For example, let P be a triangular prism whose two
triangular faces have vertices labelled a, b, c and a’, b, ¢’ in the obvious way, so that
a,a’ span an edge, as do b, b’ and ¢, ¢’. Then the minimal non-faces N; = ab’, N, =
a'b have the property that Pu,, Py, are each contractible, but they intersect in
a poset with only two incomparable elements {aa'bb'c,aa’bb’c’} which is neither
contractible nor empty.

We wish to also replace X (P5>Q) by something homotopy equivalent, and to do
this, we need to review the notion of the secondary fan associated to 4. Without
loss of generality, assume the points of A affinely span R?. Identify 4 with a
(d + 1) x n matrix whose columns give the coordinates of the points in .4 with an
extra (d+ 1)% coordinate equal to 1 appended to each. Any matrix (n—d—1) xn
matrix 4* whose row space coincides the nullspace of A is called a Gale transform of
A, and we regard A* as a configuration of n points in R*~¢~! which are its columns.
If a is a point given by some column of the matrix A, let a* be the point given by
the corresponding column of A*. Given a subset A* C A*, let cone(A*) denote the
set of nonnegative linear combinations of the element in a*. The secondary fan of
A is the common refinement of all cones cone(A*) for A* C A*. It turns out that
the secondary fan is the normal fan to the secondary polytope X(.A).

Theorem 8. [2] The poset of coherent subdivisions of A is dual (or opposite) to the
the poset of non-zero cones in the secondary fan of A. Specifically, a coherent subdi-
vision uses a pair (A, Q) with A = {a,, ... ,a,} C A if and only if the corresponding
cone of the secondary fan lies in the relative interior of cone(A* — {a},... ,a’}).

As a consequence, in the case of interest for us when all subdivisions of A are
coherent, the poset of subdivisions of A is the face poset of a regular cell complex
homeomorphic to S*~¢~2, namely the decomposition of the unit sphere in R*~%¢-!
by the cones of the secondary fan of A. Call this cell complex K, and let K’ be
the subspace which is the union of all cells of K indexed by elements in X (P5Q).
Although K’ need not in general be a subcomplex of K, by [1, Lemma ?] it is
homotopy equivalent to X (P5Q).

We wish to find a good cover of K'. For any minimal non-face N of P, let Ky
be the union of all cells of K indexed by subdivisions {(Aq,@a)} of A which use
some A, containing N. Then we have a covering £ = {Kn} of K’ by letting N
range over the minimal non-faces of P.

Proposition 9. Assuming P is simplicial and all subdivisions of A are coherent,
X(P5Q) ~ nerve(£). Here nerve(€) has vertices indexved by the minimal non-
faces of P. A collection Ny,...,N, of minimal faces spans a face of nerve(€) if
and only if there exists a single proper subdivision {(Aq, Qq} of A having some A,,
containing N; for each i.

Proof. We already have seen that we can replace X (PQ) by the space K’ up
to homotopy equivalence. So it suffices to check that £ is a good covering of K'.
It is easy to check from the correspondence between coherent subdivisions and
cones given in Theorem 8 that each K corresponds to a convex union of cones in
the secondary fan. Therefore, any intersection Ni_, K, corresponds to a convex
union of cones (possibly the 0 cone), and hence is either empty or contractible as a
subspace of the spherical complex K.

The last assertion in the Proposition follows from the last assertion in Theorem
8. O
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By Lemmas 6, 9 we can compare the nerves of the two covers £, F in place of
comparing the homotopy types of Nonfaces(P) and X (P5Q).

Proposition 10. With the above notation, there is an inclusion of simplicial com-
plexes
i:nerve(F) < nerve(E)

Proof. Both nerves have vertex sets indexed by the minimal non-faces of P. Assume
Ni,...,N, are minimal non-faces which span a face of nerve(F), that is N :=
UT_, N; C V. Then there always exist proper subdivisions of .A whose restriction to
conv(N) contains only the pair (N, conv(XN)), that is leaving conv(N) completely
unsubdivided. For example, one can use the pulling construction of Lee [11] on the
remaining vertices V — N. Therefore Ny,..., N, span a face of nerve(£). O

Finally, we apply these results in a concrete situation, relating to cyclic polytopes.
The cyclic polytope C(n,d) is the convex hull of any n points on the moment curve
{(t,#2,...,t9)} in RY. Although this polytope depends upon the choice of the
z;-coordinates t; < ... < t, of the points on the moment curve, much of the
combinatorics of these polytopes does not depend upon this choice. In particular,
Gale’s Evenness Criterion [19, Theorem 0.7] describes the face lattice of C(n,d)
independent of this choice.

The map 7 : R¥ — R? which forgets the last d' —d coordinates clearly restricts to
a surjection 7 : C(n,d') = C(n,d), and one can show that the set of subdivisions of
C(n,d) and also the subset of 7-induced subdivisions are independent of the choice
of the t;. Subdivisions and the GBP for these maps between cyclic polytopes have
been studied a great deal in the recent past [1, 7, 12, 8, 13], and in [15, Conjecture
19] we conjectured the that the weak GBP always has a positive answer for these
maps 7 : C(n,d’) = C(n,d). This is known to be true in the following cases:

e d=1[3]

o d—d<2[14]
e n=d +1[13]
en=d+2andd=2][1]

We will consider the case where d = 2 (and rename d’' by d for ease of nota-
tion), i.e. 7 : C(n,d) = C(n,2). Note that P = C(n,d) is always a simplicial
polytope, and it is well-known [10, 11] that all triangulations of Q@ = C(n,2) are
coherent. Therefore our approach will apply whenever we can say something about
the inclusion ¢ : C'(n,d) <= C(n,2).

Lemma 11. Keeping the same notation as above, for the map © : C(n,d) —
C(n,2), whenever n < 2d, the map i : nerve(F) < nerve(€) is an isomorphism.

Proof. Let C(n,d) have vertex set [n] := {1,2,...,n}, where ¢ denotes the vertex
(1,t;,4%,... ,t%). We give the proof only when d is even, since the description of
the minimal non-faces of C(n,d) is slightly simpler in this case. The case when d
is odd is similar. One can check using Gale’s Evenness Criterion that if d is even,
the subsets of [n] which index minimal non-faces of C(n,d) are exactly the subsets
of cardinality % + 1 which contain no two consecutive residues modulo n.

We already know that 7 is an injective simplicial map, so we need only show it is
surjective. In other words, we must show that if Nj,... , N, are minimal non-faces
of C(n,d) whose projections into C(n,2) each lie inside some polygon of a fixed
proper subdivision S, and if Ul_; N; = [n], then n > 2d.
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Because S is a proper subdivision of the convex n-gon C(n,2), we can find two
subpolygons @1, Q2 used in S, each of whose boundaries contain only one interior
edge of the polygon. Since U/_; N; = [n], for each j = 1,2, the polygon Q; must
contain a collection of projections of the N; which cover almost all of its vertices,
missing at most two vertices of ); (namely the two vertices on the boundary edge
of @; which forms an interior edge of C(n,2)). By the description of minimal
non-faces of C(n,d) given in the first paragraph, this implies each of @1, ()2 must
have at least d + 1 vertices, so (J must have at least 2d vertices. In other words,
n > 2d. O

From Lemma 3 we immediately deduce the following.
Corollary 12. w(C(n,d)>C(n,2) % S4-3 whenever n < 2d. O

Remark 13.

It is possible to do a finer analysis in Lemma 11 and get the same conclusion in the
corollary whenever n < 2d + 2, but it is not clear that this is worth the effort. One
mostly wants to know that the conclusion holds for n less than approximately 2d.

In light of Corollary 12 and Lemma 5, we are particularly interested in knowing
when w(P5Q) is simply connected.

Lemma 14. w(C(n,d)>C(n,2)) is simply connected whenever d > 10.

Proof. We begin by observing that whenever P is simplicial and A has only coherent
subdivisions, the Baues poset w(P5Q) is actually the face poset of a regular cell
complex. To see this, recall from Theorem 1 that the poset w(A) of all subdivisions
of A is the face poset of the secondary polytope X(A), which is a regular cell
complex. One can then check using Theorem 8 that since P is simplicial, the
subposet w(P5Q) is an order ideal in w(.A), and hence indexes the cells of some
regular cell subcomplex L of the secondary polytope X(A).

Recall also that the fundamental group of a regular cell complex can be computed
in terms of its 2-skeleton alone. Therefore it suffices for us to show that when d > 10,
the 2-skeleton of the cell complex L is simply connected.

In fact, we claim that L has the same 2-skeleton as (. A) when d > 10, due to the
neighborliness of cyclic polytopes. Recall that Gale’s Evenness Criterion implies
C(n,d) is a | d/2]-neighborly polytope [19, Corollary 0.8], meaning that every subset
of its vertices having cardinality |d/2] or less spans a boundary face. We recall [10]
the description of 0-cells, 1-cells, 2-cells in ¥(.A) (the associahedron), and analyze
when they are m-induced from the surjection 7 : C(n,d) — C{n, 2):

e 0-cells of (A) correspond to triangulations of C(n,2), and since these sub-
divisions are made up of polygons with at most 3 vertices, they will all be
m-induced if d > 6.

e 1l-cells of £(.A4) correspond to subdivisions of C(n,2) having mostly triangles
and exactly one quadrangle, so they will all be 7-induced if d > 8.

e 2-cells of 3(A) correspond to subdivisions of C(n, 2) having mostly triangles,
and either two quadrangles or one pentagon, so they will all be w-induced if
d > 10.

We therefore conclude that when d > 10, the fundamental group of
w(C(n,d)5C(n,?2) coincides with that of ¥(.4) = S**, which is simply connected
sincen > d > 10. O
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From the previous result, Corollary 12, and Lemma 5 we immediately deduce

Corollary 15. The weak GBP has a positive answer for = : C(n,d) = C(n,2)
when n < 2d and d > 10.

4. QUESTIONS

1. Can one do a more detailed analysis of the 2-skeleton of w(C(n,d)=>C(n,2)
and weaken the hypothesis that d > 10 in Lemma 147

2. Can one show that the inclusion of nerves as in Lemma 11 is sometimes a
homotopy equivalence when it is not an isomorphsim, thereby weakening the
hypothesis that n < 2d in Lemma 117

3. One might think of applying our method to the projections 7 : C(n,d') —
C(n,d) when d > 2. It was shown in [1] that the only other non-trivial
special cases where Q = C(n,d) has only coherent subdivisions are (n,d) =
{(7,3),(8,3),(8,4)}. Bearing in mind that the GBP in this situation is already
settled positively in the cases d = 1 or d' —d < 2 or n = d' + 1, this means
that there is only one remaining case with d > 3 where our method might
apply, namely 7 : C(8,6) — C(8,3). However, it turns out that this case is
also covered by [1, Theorem 1.2], hence there seems to be nothing new to be
proved for projections of cyclic polytopes by this method when d > 2.

4. As a step in the proof of Lemma 3 we observed that

Nonfaces(P) & Dn_2§d'—1 2 gn-d'-2
This suggests the following stronger question:

Question 16. For any d-dimensional polytope P with n vertices, is the poset
Nonfaces(P) homotopy equivalent to S"~4~2, not just stably homotopy equiv-
alent?

We suspect that the answer is “Yes”, and the geometry of Gale diagrams [19,
Lecture 6] can be used to prove this, but have not been able to carry this out.
We also suspect that the answer is “No” if instead we only look at the poset
of non-faces in some regular cell complex homeomorphic to S47!, rather than
the non-faces of of a convex polytope.
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