THE GENERALIZED BAUES PROBLEM

VICTOR REINER

1. INTRODUCTION

The generalized Baues problem, or GBP for short, first appears in a paper of
Billera, Kapranov, and Sturmfels [13, §3], and relates to the theory of fiber polytopes
introduced by Billera and Sturmfels [14]. The GBP is a question in combinatorial
topology; it asks whether a certain partially ordered set, w1th its ( .
has the homotopy type of a sphere of a certain dimension.

The goal of this survey is to review the motivation for fiber polytopes and the
GBP, and discuss recent progress on the GBP and the open questions remaining.
Some recommended summary sources on this subject are the introductory chapters
in the doctoral theses of Rambau and Richter-Gebert [60, 63], Lecture 9 in Ziqgl%r:;;

book [83], and Sturmfels’ paper [77]. We have also included in ibiliograp
some references which we will not discussed in the text but are still relevan e
GBP.

Before diving into the general setting of fiber polytopes and the GBP, it is
worthwhile to ponder three motivating classes of examples.

Triangulations.

Let A denote a finite set of points in R. A triangulation of A is, roughly speak-
ing, a polyhedtal subdivision of the convex hull of A into simplices, each having the
property that their vertices lie in A. Note that not every point of A need appear as
a vertex of one of the simplices in the triangulation. The set of all triangulations
of A is in general a difficult object to compute, but one that arises in many appli-
cations (see [44]). One approach to the study and computation of triangulations
is to consider an extra structure on them, namely the connections between them
by certain moves called bistellar operations (or perestroikas or modifications). For
triangulations of A in R?, typical bistellar operations are shown in Figure 1, where
points of A that are not being used as a vertex in the triangulation are shown
dotted. Figure 2 (borrowed from [44)) depicts the set of all triangulations of a
particular configuration of six points in K2, and the bistellar moves which connect
them. We remark that the precise coordinates of the points of A are important
in determining which triangulations and bistellar operations are possible, since we
are talking about triangulations using straight geometric simplices. This is different
from the point of view in the theory of triangulated planar maps (see e.g. [32, §2.9])
and also different from the bistellar equivalences of triangulations of PL-manifolds
as considered by Pachner [53]. <

The most well-studied example of triangulations occurs when A is the vertex set
of a convex n-gon in R2. It is well-known that the number of triangulations is the
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FiGure 1. Typical bistellar operations/ perestroikas/ modifica-
tions in [R2.

Catalan number —L= (**!) (see e.g. [73, §3.1] for this and for bijections between
triangulations and other standard objects counted by the Catalan number). This is
essentially the only non-trivial example of an infinite family of point configurations
whose number of triangluations is known (although see Conjecture 23). The only
possible bistellar operations in this case are the diagonal flips from Figure 1, and
it is easy to see that any two triangulations can be connected by a sequence of
such flips. There is a well-known bijection between triangulations of an n-gon and
associative bracketings of a product ajas---a,—1, and under this identification,
bistellar operations correspond to “rebracketings”. From this point of view, the
graph of triangulations of an n-gon and diagonal flips was perhaps first studied in
the 1940’s by Tamari [79] and later in collaboration with others [29, 35, 36, 80].
These authors distinguished a direction on each rebracketing and defined a poset on
the triangulations having these directed edges as its cover relations. They were able
to show that this Tamari poset is a lattice [29, 35]. Its Hasse diagram is depicted
in Figure 3 for n = 6, for a choice of a particular convex 6-gon whose vertices lie
on a parabola.

These authors seem also to have been aware (without proof) that this graph
appears to be the 1-skeleton of a cellular (n — 4)-sphere, and proved results about
how its “facial” structure interacts with the Tamari lattice structure. Meanwhile,
similar issues of associativity appeared in the early 1960’s in Stasheff’s work [74]
on homotopy associativity. Stasheff vindicated this apparent sphericity by showing
that the set of all polygonal subdivisions of an n-gon indexes the cells in a regular
cell complez [17, (12.3)] homeomorphic to the (n — 4)-sphere. Note that in this way
of thinking, a diagonal flip bistellar operation corresponds to a polygonal subdivi-
sion whose maximal cells are all triangles except for one quadrangle (containing the
flipping diagonal), and less refined subdivisions of the n-gon correspond to higher
dimensional cells in the sphere. In an unpublished work (see [37, p. 120]), Milnor
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produced a set of vertex coordinates for the vertices of this (n —4)-sphere which em-
bed it as the boundary complex of an (n — 3)-dimensional polytope. Unfortunately,
the existence of this polytopal embedding seems to have been unknown in the com-
binatorial geometry community, and was rediscovered in the mid 1980’s after Perles
posed the problem of whether this complex was polytopal (see [41]). Independently,
Haiman [33] and Lee [41] and constructed this polytope, which Haiman dubbed the
associahedron. In the work of Gelfand, Kapranov, Zelevinksy et al [39, 31] it is
sometimes called the Stasheff polytope. A recent preprint of Kapranov and Saito
(38] documents its occurrence in other suprising geometric contexts.

FIGURE 2. All triangulations ?nd bistellar operations for a set A
of 6 points in R2.  Poralle { 5if,c v Triam CRES
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Ficure 3. Triangulations of a convex 6-gon: the associahedron.

The associahedron also makes its appearance in computer science, where trian-
gulations of an n-gon show up in the equivalent guise of binary trees, and bistellar
operations correspond to an operation on binary trees called rotation. Here Sleator,
Tarjan and Thurston [70] were able to determine the diameter of the 1-skeleton of
the associahedron (it is at most 2n — 10 for n > 13 and is exactly 2n — 10 for
infinitely many values of n). In a series of papers, Pallo [54, 55, 56, 57] studied
computational aspects of this 1-skeleton and in particular computed the Mébius
Junction (see [71, §3.7]) of the Tamari lattice.
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In one of Lee’s constructions of the associahedron, he employs the method of
Gale diagrams [41, §4], and around the same time, Gelfand, Kapranov and Zelevin-
sky were using these methods for studying triangulations as part of their theory
of A-discriminants, A-resultants, and A-determinants (see [31] and the references
therein). Briefly, the principal .A-determinant is a polynomial E4 in a variable set
{ca}aca indexed by A, which vanishes whenever the sparse d-variate polynomial

inxy,...,%4
f:= }:cax“

hasaroot (z1,... ,Z,) in common with all of the derived polyomials z; 8%7%, ey md%.
Their work showed that the Newton polytope of E 4, that is, the set of exponent vec-
tors in Z* of the non-zero monomials occurring in E 4, is an (n—d—1)—dimensional
polytope whose extreme vertices correspond to a subset of the triangulations of A
called the regular (and later called coherent) triangulations. A triangulation T' of
A is coherent if there exists a choice of heights a, in R for each a € A which in-
duces T in the following fashion: after “lifting” the points a in R? to the points
. 1(a,05) € R*! and taking the convex hull to formula a polytopes Py, the “lower” -
\f ., C& 'lf@cets of P, (i.e. those facets whose normal vector has negative (d + 1)-coordinate)
( A v project to the maximal simplices of T' under the projection R+ 5 RE. Figure
P 4 (borrowed from [60]) illustrates a coherent triangulation of a set A in R? along
% with a choice of heights o which induces it. After seeing the definition, it is perhaps
— not obvious that one can have incoherent triangulations! However, the standard
\\\Sexamples already occur in Figure 2, namely the two triangulations shown below.
o ., "It is a non-trivial exercise to check the impossibility of assigning six heights to
- g ( . r puw o4 these points in such a way as to induce either of these triangulations. In general,
\, checking whether a triangulation is coherent involves checking whether there exists
a solution to a certain system of linear inequalities in the heights a,, where the
coefficients in the inequalities depend upon the coordinates of the points in A [44,
?C, i SIUP IR VG §1'3]'
J ' Gelfand, Kapranov and Zelevinsky called the Newton polytope of E4 the sec-
| vs o s o QV " i " ondary polytope £(A). Knowing that the vertices of £(A) correspond to the co-
e U Y L0 herent triangulations of A, it is perhaps not surprising that the higher dimensional
/ faces of X(A) correspond to coherent subdivisions, that is, subdivisions into poly-
topes which are not necessarily simplices, but induced in a similar fashion by a
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2 A k P % ' Theorem 1. [31, Chapter 7, Theorem 2.4] The faces of the secondary polytope
’ I X(A) are indezed by the coherent subdivisions of A, and inclusion of faces of £(A)
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In particular, they showed that every bistellar operation between coherent tri-
angulations corresponds to a coherent subdivision and hence forms an edge in the
secondary polytope £(.A). This has a strong consequence: it implies that the sub-
graph of coherent triangulations and bistellar operations is connected (and even
(n — d — 1)-vertex-connected in the graph-theoretic sense by Balinski’s Theorem
[83, 3.5]). Polytopality of £(.A4) also has nice implications for computing the partic-
ular coherent triangulation induced by a choice of heights a,, such as the Delaunay
triangulation of A arising in computational geometry applications (see [27]).
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FIGURE 4. A coherent triangulation induced by a choice of heights.

FiGURE 5. The two incoherent triangulations from Figure 2.

We remark that in the case where A is the set of vertices of a convex n-gon, every
subdivision is coherent, and hence the secondary polytope X(A) is the associahedron
encountered earlier.

The fact that the subgraph of coherent triangulations and bistellar operations
is highly connected and forms the 1-skeleton of a cellular (even polytopal) sphere
raises the following basic question:

Question 2.
Is the graph of all triangulations of .4 and their bistellar operations connected?

A glance at Figure 2 illustrates that even in small cases where there are inco-
herent triangulations, the graph still appears to be connected. We can provide
some motivation for the Generalized Baues Problem by performing the following
mental exercise while staring at Figure 2. First picture the planar subgraph of co-
herent triangulations, by ignoring the two vertices corresponding to the incoherent
triangulations in Figure 2 (call them T} and 75). When one imagines this planar
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FIGURE 6. The rhombic tilings of an octagon.

subgraph as a 2-dimensional spherical cell complex, that is the boundary of the
3-dim secondary polytope X(.A), the union of the neighbors of T; and T form the
vertices of a hexagonal cell. Now “inflate” this hexagonal cell on the 2-sphere into
a cubical 3-dimensional cell with the extra two vertices corresponding to T, T5.
This gives a 3-dimensional cell complex which is still homotopy equivalent (but not
homeomorphic) to a 2-sphere.

Roughly speaking, The Baues question in this context asks whether this behavior
is general- Do the incoherent triangulations and subdivisions of 4 attach themselves
to the spherical boundary of £(A) in such a way as to not change its homotopy

type?

Zonotopal tilings.

Consider Figure 6, similar to [14, Figure 1], depicting the tilings of a centrally
symmetric octagon having unit side lengths by unit rhombi. As in the case of trian-
gulations of a point set, we have drawn in edges between the tilings corresponding
to certain natural operations connecting them, illustrated in Figure 7. Similarly,
the graph whose vertices are the tilings of a 10-gon and whose edges are these
operations is depicted in Figure 8.

These operations have been given various names in the literature, depending
upon the context in which the tilings arise. In the crystalline physics literature
[21, 50}, where the set of tilings is a model for the possible states of a crystalline
solid, these moves are called elementary flips or localized phasons. Rather than



8 VICTOR REINER

FIGURE 7. A typical cube-flip/ mutation/ triangle-switch/
1-move/ braid-relation/ Yang-Baxter-relation/ elementary-flip/
localized-phason.

FIGURE 8. The graph of tilings of decagon (cf. [84, Figure 3]).

considering tilings of an 2n-gon, an equivalent (and useful) viewpoint comes from
consideration of arrangements of pseudolines (see [18, Chapter 6] for definition,
background and references). An arrangement of n affine pseudolines in the plane
labelled 1,2,...,n counterclockwise gives rise to a rhombic tiling of a centrally
symmetric 2n-gon which is “dual” to the line arrangement in the sense of planar
maps; see Figure 9.
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1

FIGURE 9. A configuration of affine pseudolines and its associated tiling

In the pseudoline picture, the move depicted in Figure 7 corresponds to moving
one pseudoline locally across the nearby crossing point of two other pseudolines;
such moves are often called mutations or triangle-switches or 1-moves. When one
thinks of such a pseudoline arrangement as a degenerate braid diagram recording a
reduced decomposition of a permutation (see [18, §6.4]), such moves are sometimes
called braid relations or Yang-Bagter relations. I T

Rather than restricting our attention to tilings of centrally symmetric polygons,
we can more generally consider the set of zonotopal subdivisions of a zonotope. A
zonotope Z in R? is the Minkowski sum of a set V of line segments in R?, and
a zonotopal subdivision of Z is, roughly speaking, a subdivision of Z into smaller
zonotopes, each a translate of a zonotope generated by a subset of the V', and which
intersect pairwise along common faces (possibly empty). The subdivision is cubical
if it is as refined as possible, that is each smaller zonotope in the subdivision is a
translate of a cube generated by a linearly independent subset of V. In the case
where Z is a centrally symmetric 2n-gon, V is a set of n line segments whose slopes
match the slopes of the polygon edges. Cubical tilings in this case coincide with
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the rhombic tilings depicted earlier, and the “cube-flip” moves which formed the
edges in the graphs of Figures 6 and 8 correspond to zonotopal subdivisions of Z
in which all of the smaller zonotopes are cubes except for one which is hexagonal.

Note that the graph of tilings in Figure 6 is circular, and the graph of tilings in
Figure 8 appears to be planar and possibly even polytopal. This reflects the fact
that for centrally symmetric octagons and decagons, all zonotopal subdivisions are
coherent in a sense which will be described below. A special case of Billera and
Sturmfels fiber polytope construction [14, §5] states that the subset of coherent
zonotopal subdivisions of a d-dimensional zonotope having n generators index the
faces an (n—d)-dimensional polytope (which happens to itself be a zonotope). Thus
the graphs in Figures 6 and 8 are the 1-skeleta of these fiber zonotopes.

Coherence of a zonotopal subdivision is defined similarly to coherence of a trian-
gulation. A zonotopal subdivision T of a zonotope Z in R¢ having generating line
segments V' is coherent if there exists a choice of segments V in R+ which project
down to V' under the forgetful projection R**! — R? and induce T in the following
fashion: the “upper facets” of the zonotope Z generated by V project to the maxi-
mal simplices of 7' under the map R?*t! — R?. An example is shown in Figure 10.
Again, it is not obvious that incoherent zonotopal subdivisions can exist, hut it can
be shown that, for example, that the tiling of a 12-gon depicted co-
herent for certain choices of the slopes of edges in the 12-gon. As with ¢oliérence of
triangulations, checking coherence of a particular tiling is a problem of existence of
a solution to a system of linear inequalities, and the system of inequalities in this
case strongly depends upon the slopes of the segments V' (although not upon the
length of these segments). Again as in the case of triangulations, the fact that the
graph of coherent tilings and cube-flips is the 1-skeleton of a polytope has strong
consequences for its connectivity. This raises the analogous question to Question 2

Question 3.
Is the graph of all cubical tilings of a zonotope and their cube-flips connected?

One can also view coherence of 2-dimensional tilings in terms of pseudolines and
straight lines. A coherent tiling is one whose pseudoline arrangement is isomorphic
to a (straight) line arrangement in which each line has slope perpendicular to the
slope of the edge in the polygon to which it corresponds (that is, to the edge of
the polygon labelled with the same number in Figure 9). Some of this viewpoint
is explained in the instructions for the delightful puzzle Hezae-Grid [34], which
supplies foam rubber versions of the rhombic tiles occurring in Figure 9, and asks
the consumer to assemble them into a tiling of a zonotopal 12-gon!

In studying tilings and zonotopal subdivisions of higher dimensional zonotopes,
the oriented matroid point of view has become indispensable (see [18, §2.2]). The
Bohne-Dress Theorem [20, 64] states that zonotopal subdivisions of Z biject with
the single-element liftings of the realized oriented matroid M associated with the
generating segments V, or using oriented matroid duality, to the single-element ez-
tensions of the dual oriented matroid M* (see [18, §7.1]). From this point of view,
the subset of coherent zonotopal subdivisions of Z corresponds to the coherent lift-
ings of V [14, §5]. If one views realized oriented matroids and their liftings in terms
of sphere and pseudosphere arrangements, then the notion of a coherent lifting
was explored in the work of Bayer and Brandt (8] on discriminantal arrangements,
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FIGURE 10. A coherent tiling T', induced by lifting into R® the
generating segments V' of the 2-dimensional zonotope Z, then pro-
jecting the upper facets of the resulting 3-dimensional zonotope VA
back into the plane.

generalizing earlier work of Manin and Schechtman [49]. The discriminantal ar-
rangement associated to Z in [8] is nothing more than the hyperplane arrangement
which is the polar dual of the fiber zonotope associated to Z in [14].

Monotone paths

Let P be a polytope in R?, and f a linear functional in (R?)* that achieves its
minimum and maximum values uniquely on P, say at two vertices Umin,VUmaz- A
path from v, t0 Umas in the 1-skeleton of the boundary of P will be called f-
monotone if every step in the path is along an edge which strictly increases the value
of f (as in the paths produced by the simplex algorithm for linear programming- see
[83, Lecture 3.2]). We wish to consider the structure of the set of all f-monotone
paths. Note that these paths are exactly the subject of Ziegler’s strict monotone
Hirsch conjecture [83, Conjecture 3.9]:
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FIGURE 11. Monotone paths in the 3-cube. Edges pointing in the
original three coordinate directions have been labelled 1,2, 3, and

then monotone paths are labelled by the sequence of directions of
the steps

Conjecture 4. If P has n facets, then there always ezists an f-monotone path
Jrom vpin t0 Upmaee of length at most n — d.

This is stronger than the usual Hirsch conjecture, and it is hoped that further
understanding of f-monotone paths may eventually shed light on this notoriously
difficult question.

Just as in the case of triangulations of A or tilings of a zonotope Z, there is
a natural set of moves which connect f-monotone paths: if two paths agree in
most of their steps and differ only by following opposite paths around some 2-
dimensional face of P, we say that the two paths differ by a polygon move. Figure
11 illustrates the graph of f-monotone paths and polygon moves where P is the
3-cube [0,1]® C R® and f(z1,23,73) = 1 + T2 + Z3.

In general if P is the n-cube [0,1]* C R* and f(x) = Y i, =i, the f-montone
paths biject with permutations of {1,2,...,n}: one obtains a permutation by
recording which coordinate axis is parallel to each step of the path in sequence,
as in Figure 11. The polygon moves across square faces of the n-cube then cor-
respond to adjacent transpositions of the permutations, and the whole graph is
isomorphic to the 1-skeleton of the well-known permutohedron [83, Example 0.10].
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FIGURE 12. Monotone paths in a cyclic 3-polytope with 5-vertices

What happens for other polytopes P and functionals f? Figure 12 shows the
graph of f-monotone paths in a (cyclic) 3-polytope with 5 vertices in R® which is
the convex hull of the points {(¢,#2,#3) : t = —=2,-1,0,1,2}, and f(z1,72,73) = 21.
Although this graph is connected, it is perhaps disappointing that it is not circular
as in the case of Figure 11. Once again, geometry comes to the rescue in singling
out a well-behaved subset of f-monotone paths. Say that an f-monotone path v
on P is coherent if there exists some linear functional g € (R?) which induces -y in
the following way: each point of v is the g-maximal point among all those points
of P with the same f value, or in other words, - is the union over all points z
in f(P) C R of the g-maximal points in the fibers f~!(z). With this definition,
the monotone path in the middle of the graph in Figure 12 is incoherent. To see
this, assume there is some functional g inducing this monotone path, and identify
g as the dot product with some fixed vector. Then this vector must point roughly
toward the front (the visible side) of the polytope P in order to induce the right
portion of the path, but also point toward the back (the invisible side) in order
to induce the left portion of the path; contradiction. The remaining six paths in
Figure 12 are easily seen to be coherent (by imagining appropriate functionals g)
and the subgraph on the corresponding six vertices is indeed circular.

In general, it follows as a special case of the fiber polytope construction [14, §7]
that the graph of f-monotone paths in a polytope P is the 1-skeleton of a polytope
called the monotone path polytope. Higher dimensional faces of the monotone path
polytope correspond to objects called coherent cellular strings on P with respect to
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FIGURE 13. An incoherent cellular string.

f. A cellular string on P with respect to f is a sequence (F1,... , F,) of boundary
faces of P with the property that vpyn € Fi,Umer € Fr and for each i the f-
maximizing face of F; is the f-minimizing face of F; ;. A cellular string (F1,... , F,)
is coherent if there exists some functional g € (R?)* such that union J]_, F; equals
the union over all points z in f(P) of the g-maximal points in the fibers f~1(z).

As an exercise to get a feeling for how the set of all cellular strings fit into the
graph of f-monotone paths, and to further motivate the Baues problem, we invite
the reader to try the following labelling exercise. Label each edge in the graph
of Figure 12 by a cellular string containing mostly 1-faces along with exactly one
triangular 2-face corresponding to the polygon move for that edge. Having done
this, there is only one oth@llular string, consisting of two triangles and
pictured in Figure 13. This Cetlular string should label a square 2-cell attached
to the four leftmost vertices and edges in Figure 12 (see also the middle picture
in Figure 14). Notice that the resulting 2-dimensional cell complex is homotopy
equivalent to the circular subgraph indexed by coherent cellular strings. This raises
the following question.

Question 5.
For a polytope P and functional f, is the graph of cellular strings and their polygon
moves connected? Is it part of a complex homotopy equivalent to a (d — 1)-sphere?

This question includes the original question asked by Baues [7] as a special case-
see [60, §1.2] for a nice sketch of the ideas involved. Specifically, Baues asked if
the poset of cellular strings on the permutohedron with respect to a generic linear
functional f has the homotopy type of a sphere (after endowing the poset with a
certain topology- see Section 2). As we will see in Section 4, this original problem
was resolved positively for cellular strings more generally, both by the work of
Bjorner [16] and by Billera, Kapranov, and Sturmfels [13].

2. FIBER POLYTOPES AND THE BAUES PROBLEM

The theory of fiber polytopes [14] provides a common framework in which to
discuss triangulations, tilings, and monotone paths, and also a common notion of
coherence for these objects. The fiber polytope Z(P = Q), is a polytope naturally
associated to any linear projection of polytopes # : P — Q. Let P be a d'-
dimensional polytope in R¥ , Q a d-dimensional polytope in R¢ and 7 : R¥ — R¢
a linear map with 7(P) = Q. A polytopal subdivision of Q is a polytopal complex
which subdivides Q. A polytopal subdivision of Q is w-induced if

(i) it is of the form {n(F') : F € F} for some specified collection F of faces of P

having all #(F') distinct, and
(i) #w(F) C n(F') implies F = F' Nn~!(x(F)), and in particular F C F'.
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It is possible that different collections F of faces of P project to the same subdivision
{m(F) : F € F} of Q, so we distinguish these subdivisions by labelling them with
the family F. We partially order the m-induced subdivisions of @ by F1 < Fa
if and only if |JF1 € UZF2. The resulting partially ordered set is denoted by
w(P5Q) and called the Baues poset. The minimal elements in this poset are the
tight subdivisions, that is those for which F' and m(F’) have the same dimension for
all Fin F.

We claim that 7m-induced subdivisions of  generalize triangulations, tilings, and
monotone paths. This is perhaps easiest to see for monotone paths and cellular
strings. Given a polytope P and functional f, let Q be the 1-dimensional polytope
f(P) in R'. Then a cellular string (F1,...,Fr) on P with respect to f gives a
family F = {F;},_, satisfying the definition for a m-induced subdivision of Q.
Tight 7-induced subdivisions of @ correspond to monotone paths in P.

For triangulations and tilings, there is a concealed projection of polytopes lurking
in the background. Given a point set A in R?¢ with cardinality n, let @ denotes
its convex hull. There is a natural surjection 7 : A»~! — @ from a simplex A™!
having n vertices, which sends each vertex of the simplex to one of the points of A.
Given a triangulation, or more generally a subdivision of A, each polytope in the
subdivision is the projection of some face F of the simplex, and the collection F of
these faces gives a m-induced polytopal subdivision of Q. What we have just said is
not quite precise, since it is possible for different faces of the simplex to project to
the same polytope inside Q. To remedy this, we revise our original naive definition
of a subdivision of A; subdivisions of A should be defined to be a collection of pairs

{(Qa, Ax)} where

o A, are subsets of A,

e each @, is the convex hull of A, and is d-dimensional,

¢ the union of the Q, covers @,

e for any a, B, the intersection of Qq«, Qg is a face F' (possibly empty) of each,
and A, NF=AgnF.

Then the collection F = {F,} of faces of the simplex spanned by the vertices
corresponding to the A, satisfies the definition of a 7-induced subdvision of Q.
Tight m-induced subdivisions of @ correspond to triangulations of .A. Furthermore,
the Baues poset corresponds to the natural refinement ordering on subdivisions of
A: {(Qa,Aa)} < {(Qf,AB)} if and only if for every a there exists some B with
Ay C Aj (and hence also Qa C Qp)-

Given a zonotope Z in RY generated by n line segments V, without loss of
generality we may assume that these segments all have one endpoint at the origin,
and we can think of them as vectors pointing in a certain direction rather than
segments. There is then a natural surjection 7 : I — Z of the n-cube I in R?
onto Z which sends the standard basis vectors in R™ onto the vectors V. Given a
cubical tiling, or more generally a zonotopal subdivision of Z, each zonotope in the
subdivision is the projection of some face F' of the cube, and the collection F of
these faces gives a m-induced polytopal subdivision of Q. Just as in the previous
paragraph, what we have just said is not quite precise, since it is possible for different
faces of the cube to project to the same zonotope inside Z. However, one can
again remedy this by revising the naive notion of a zonotopal subdivision- one nice
approach by Richter-Gebert and Ziegler uses the equivalent notions of strong and
weak zonotopal tilings (see [64, Definitions 1.3, 1.4]). Tight 7-induced subdivisions
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then correspond to cubical tilings of Z, and the Baues poset corresponds to a
natural refinement ordering on zonotopal subdivisions. As was remarked in Section
1, the Bohne-Dress Theorem shows that the zonotopal subdivisions, or equivalently
m-induced subdivisions of Z, are the same as single-element liftings of the realized
oriented matroid M corresponding to the vectors V. It is furthermore true that the
Baues poset corresponds to the usual weak map ordering [18, §7.2] on single-element
liftings of M, or equivalently on the single-element extensions of the dual AM*.

Returning to our general set-up of a projection 7 : P — @), we wish to define
when a m-induced subdivision is w-coherent, generalizing the notion of coherence
for triangulations, tilings, and monotone paths. There is more than one way to do
this, and we start with the original definition from [14]. Choose a linear functional
g € (R¥)*. For each point ¢ in Q, the fiber n~1(q) is a convex polytope which has
a unique face F; on which the value of f is minimized. This face lies in the relative
interior of a unique face F, of P and the collection of faces F = {Fj},cq projects
under 7 to a subdivision of (). Subdivisions of ¢ which arise from a functional g in
this fashion are called w-coherent. Note that this definition of w-coherence clearly
generalizes our earlier notion of coherence for cellular strings on P.

In (83, §9.1], Ziegler defines m-coherent subdivisions in the following equivalent
fashion. Having chosen the functional g € (R¥ )* as above, form the graph of the
linear map # : P — R%! given by p — (7(p), g(p)). The image of this map is
a polytope Q in R*! which maps onto Q under the forgetful map R+! — R,
Therefore, the set of lower faces of Q (those faces whose normal cone contains a
vector with negative last coordinate) form a polytopal subdivision of Q. We identify
this subdivision of @ with the family of faces F = {F} in P which are the inverse
images under # of the lower faces of Q. Under this identification, it is not hard to
check that the subdivision of @ is exactly the same as the m-coherent subdivision
induced by g, described _m_prewous paragraph. A glance at the definitions
shows that this seco ' m-coherence generalizes the ones we gave for
coherent subdivisions of a pomt set A and for coherent zonotopal subdivisions of a
zonotope Z.

Let weon(P > Q) denote the subposet of the Baues poset w(P 5 Q) consisting
of the m-coherent subdivisions of . The beautiful result of Billera and Sturmfels
which explains all of our pretty polytopal pictures is the following;:

Theorem 6. [14, Theorem 3.1] Let P be a d'-polytope, Q a d-polytope, and = :
P — Q a linear surjection. Then the poset weon(P = Q) is the face poset of a
(d' — d)-polytope Z(P 5 Q).

In particular, the tight w-coherent subdivisions of Q correspond to the vertices of
(PS5 Q).

The (d' — d)-polytope (P 5> Q) is called the fiber polytope of the surjection .
It generalizes the secondary polytopes X(A), fiber zonotopes, and monotone path
polytopes encountered in Section 1. A striking feature of (P 5 Q) is that it can
be constructed as the “Minkowski average” over points ¢ € Q (in a well-defined
sense; see [14, §2]) of all of the polytopal fibers 7~1(q).

As a consequence of Theorem 6, if one removes the top element 1 from Weon(P 5
@), corresponding to the improper 7-coherent subdivision F = {P}, one obtains
the face poset of a polytopal (d' — d — 1)-sphere, that is the boundary of Z(P 5
Q). The generalized Baues problem asks roughly how close the whole Baues poset
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wP 5 Q) - 1 is to this sphere. Before phrasing the problem precisely, we must
first give the poset w(P 5 Q) — 1 a topology. The standard way to do this is to
consider its order complez, the abstract simplicial complex of chains in the poset
[17, (9.3)]. We will abuse notation and use the name of any poset also to refer to
the topological space which is the geometric realization of its order complex.

We can now state the Generalized Baues Problem, in at least two forms, one
stronger than the other.

Question 7. (Weak GBP)
Is weon(P & Q) — 1 homotopy equivalent to a (d' — d — 1)-sphere ?

Question 8. (Strong GBP)
Is the inclusion

weoh(P5 Q) -1 o wP3HQ)-1
a strong deformation retraction?

The strong GBP captures the sense we had from Figures 2 and 12 that the
incoherent subdivisions were nothing more than “warts” attached to the spheri-
cal subcomplex indexed by the coherent subdivisions, and that these warts could
be easily retracted onto this subcomplex. We should beware however that these
pictures of small examples can be deceptive. In particular, we mention a vague
meta-conjecture that has several examples of empirical evidence (see [2], [43], and
[3, Remark 3.6)):

Vague meta-conjecture: In most “naturally occurring” infinite families of poly-
tope surjections P, — @, for which either

e dim(Q) — oo, or

e dim(P) — dim(Q) — oo,
the fraction of the number of w-coherent subdivisions out of the total number of
w-induced subdivisions approaches 0.

In other words, the warts take over eventually.

Besides the weak and strong versions, one can imagine other intermediate ver-
sions of the GBP. For example, one might ask whether the inclusion referred to
in the strong GBP induces only a homotopy equivalence, rather than the stronger
property of being a deformation retraction. We will resist naming these other ver-
sions, since they seem not to have been addressed in the literature.

Knowing that weon (P = @) is the poset of faces of a (polytopal) cell complex, the
reader may be disappointed that we have not defined the entire Baues poset w(P 5
Q) to be the poset of faces in some cell complex, since it appears to be so in all of our
small examples. For example, Figure 14 shows the order complex of w(P 5Q) - i
for the example in Figure 12, which turns out to be the barycentric subdivision of
the cell complex one would have liked to call “the Baues complex”. Whenever such
a cell complex exists, then of course, the order complex of w(P 5Q) - i will be
its barycentric subdivision, and hence be homeomorphic. Unfortunately, such a
cell complex does not exist in general; relatively small examples show that lower
intervals in w(P 5 Q) — 1 need not be homeomorphic to spheres, which is the
necessary condition for a poset to be the poset of faces of a regular cell complex
(17, (12.5)].
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FIGURE 14. (a) Monotone paths as in Figure 12. (b) A cell com-
plex which happens to have w(P 5 Q) — 1 as its poset of faces.
(c) The order complex of w(P 5 Q) — 1

3. RELATIONS TO OTHER PROBLEMS

Having stated the GBP, we can now explain how it relates to some of our previ-
ous questions, and to other problems in discrete geometry and topological combi-
natorics.

Connectivity questions

Questions 2, 3, 5 are clearly related to the GBP, and appear at first glance to
be weaker, in that they only ask for connectivity of a certain graph rather than
homotopy sphericity of a complex. However, a positive answer to the strong GBP
does not quite imply a positive answer to either of these questions. There are
at least two difficulties with this conclusion, which we will now attempt to make
precise.

For an element of a finite poset, let its rank be the length of the shortest saturated
chain below it in the poset, so that minimal elements have rank 0. Let A,, B, denote
the elements at rank 0 and rank 1 respectively in the Baues poset w(P 5 Q), and let
G be the graph on the union 4, UB;, obtained by restricting the Hasse diagram for
w(P 5 Q) to this union of bottom two ranks. Given a point set A, let G4 denote
its graph of triangulations and bistellar operations. Similarly, for a zonotope Z, let
Gz be its graph of cubical tilings and cube-flips, and for a polytope P with a linear
functional f, let Gp s be the graph of monotone paths and polygon moves.

The first difficulty we encounter is the relation between the graphs G4,Gz,Gp ¢
and the graph G. It is tempting to say that the barycentric subdivision of G4,G z,
or Gpy is the same as G, for the appropriate map =, since these barycentric
subdivisions will certainly be edge-subgraphs of G,. However, it is not known that
these graphs coincide. In the case of zonotopes Z, it is known that every zonotopal
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(b)

FIGURE 15. (a) A tetrahedron P with a non-generic functional
f for which vertices 2,3 have the same f-value. (b) The bound-
ary complex of the fiber polytope (P = @), whose face poset
coincides with the poset of all cellular strings (all are coherent).
Note that the cellular string F = {1,123, 23, 234, 4} labelling the
bottom edge of this complex does not correspond to a polygon
move.

subdivision can refined to a cubical tiling [18, Corollary 7.7.9], and in the case of
a polytope P and functional f, one can check directly that every cellular string
can be refined to a monotone path. Therefore A, really does correspond to the
set of cubical tilings or monotone paths in these spec1a1 cases. However, in the
case of a point set A, it is not kng
_a triangulation, so that A could conceivably contain subdivisions which are not
tnangulatlons' Beyond this, one still has the question of whether the elements B,
at rank 1 always correspond to bistellar operations, cube-flips, and polygon moves,
respectively. However, under certain genericity assumptions (for triangulations: the
points of A lie in general position in R?; for monotone paths: the functional f is not
constant along any edge of P) it is easy to check that union A, U B, is exactly the
graph of bistellar moves or polygon moves respectively. Note that this is certainly
false for the case of cellular strings when we make no genericity assumption, as
illustrated by the example in Figure 15.
We summarize our lack of knowledge here:

Question 9.
/
(a) Can every subdivision of a point set be refined to a triangulation?
(b) Are the elements of rank 1 in the subdivision poset for A always bistellar
operations?
(c) Are the elements of rank 1 in the poset of zonotopal tilings of a zonotope
always cube-flips?

1 be_refined to

Lo

7
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The second difficulty arises from the fact that even in cases where the GBP has a
positive answer, connectivity of w(P = Q) does not necessarily imply connectivity
of the graph G, since the 1-skeleton of w(P - Q) (or rather its order complex)
contains some vertices corresponding to poset elements with ranks higher than 0, 1.
On the other hand, one would like to be able to apply the following easily verified
lemma to w(P 5 Q):

Lemma 10. Let X be a poset with a top element 1, and assume that X has the
property that every strict principal order ideal X, = {z' € X : ' < z} s
connected if it is non-empty.

Then the graph obtained by restricting X to its elements at rank O and 1 is
connected.

Of course the GBP only implies the hypotheses of this lemma, are satisfied with
X = w(P 5 Q) for the strict principal order ideal X <i- But there is some hope
that if one could prove the weak GBP in some case, then one can also prove ho-
motopy spericity for the rest of the order ideals X .., and hence use the lemma.
Under the genericity assumptions which were mentioned above for triangulations
and monotone paths, one can check that these principal order ideals are Cartesian
products of Baues posets for smaller polytopes, and hence their connectivity follows
from positive answers to the GBP for these smaller polytopes. In particula;
.positive answer for the strong GBP for monotone paths [13] (to be discussed in the
next section) MMG&%der the assumption
that the functional f is generic. Without such genericity assumptions, the structure
of t,,h&ee»pz.i\ig:ipal order ideals may be more complicated. A specific study of these

o)

Cprinicipal order ideals in the case of triangulations of a point set .4 was initiated
by Santos [68].

Flip deficiency.

While we are discussing Questions 2, 3, and 5, it is appropriate to mention
questions about the number of bistellar neighbors of a triangulation, the number
of cube-flip neighbors of a tiling, and the number of polygon-move neighbors of
a monotone path. In the general setting of 7 : P — Q, every tight m-coherent
subdivision of Q represents a vertex of the (d' — d)-polytope (P 5 @), and
therefore will have at least d' — d neighboring tight w-coherent subdivisions lying
along the edges of the polytope. On the other hand, 7-induced subdivisions which
are not w-coherent may have fewer neighbors, in which case we will say that the
subdivision in question has flip deficiency. If the subdivision has no neighbors
we say that it is isolated, which of course gives a negative answer to the GBP if
d —d > 1 in that case. Note that the example with all coherent cellular strings
in Figure 15 shows that for monotone paths, we must either be careful to restrict
ourselves to the case of a generic functional f, or else redefine what is meant by a
“polygon-move” in talking about flip-deficiency.

Flip deficiency has been very well-explored for cubical tilings of zonotopes in
the guise of counting simplicial regions of hyperplane arrangements or mutations in
oriented matroids- see [63, Introduction §3] for a nice summary. For triangulations,
flip-deficiency has been explored only more recently (see [45, 66]). For monotone
paths, the question of flip deficiency appears not to have been considered much at
all.
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A related question concerns the level of connectivity of the graphs G4,Gz,Gp ¢
of triangulations and bistellar moves, tilings and cube-flips, monotone paths and
polygon moves respectively. For each of these graphs, the edge-subgraph on the
coherent elements is the 1-skeleton of (d’' — d)-polytope and hence is (d' — d)-vertez-
connected in the graph-theoretic sense by Balinski’s Theorem [83, §3.5]). One
can ask whether the entire graphs G 4,Gz,Gp share the same level of vertex-
connectivity, which is stronger than saying that every vertex has at least (d' — d)
neighbors. So far this question has only been resolved negatively in some cases
where flip-deficiency exists. No non-trivial cases where the graph is (d’' — d)-vertex-
connected have been proved.

Extension spaces, MacPhersonians and OM-Grassmannians.
Let Z be a d-dimensional zonotope generated by a set of n vectors V. As
mentioned in Section 1, one can associate to V its oriented matroid M. The

the Bohne-Dress Theorem [20, 64] then implies that the Baues poset w(P 5 Q) is
_isomorphic to the extension poset £ (cm, consisting of all single-element extensions

of the dual orierted matroid M* ordered by weak maps. The following Ertension
Space Conjecture [18, §7.2] appears not to be attributable to any single source:

Conjecture 11. For a realizable oriented matroid N, the order complex of the
extension poset E(N) — 1 is homotopy equivalent to a (rank(N) — 1)-sphere.

Hence the extension space conjecture is equivalent to the special case of the weak
GBP dealing with zonotopal subdivisions. We will discuss positive cases of this
conjecture (mostly due to Sturmfels and Ziegler [78]) in Section 4, but we mention
that the results of Mnév and Richter-Gebert [51] show that one cannot remove the
assumption that N is realizable. They cleverly construct non-realizable oriented
matroids N of rank 4 for which £(N) — 1 is disconnected!

The extension space £(N) is also closely related to certain combinatorial mod-
els of Grassmannians called OM-Grassmannians (see [63, Introduction §4], [60,
§1.2), [52] for fuller discussions.) Briefly, given an oriented matroid M, the OM-
Grassmannian G (M) is the poset of rank k oriented matroids which are strong
images [18, §7.7] of M, ordered by weak maps. If M has rank d, the order complex
of G (M) is intended as a combinatorial model for the Grassmannian of k-planes in

R?. The following is conjectured by MacPherson, Mnéy iegler [63, Conjecture
4.2]

Conjecture 12. When M is a realizable oriented matroid of rank d, Gy (M) is
homotopy equivalent to the Grassmannian of k-planes in R?.

In the special case where M is the Boolean or free oriented matroid on d elements,
Gy (M) is called the MacPhersonian MacP(d, k), due to its occurrence in the work
of Gelfand and MacPherson [30, 48] on combinatorial formulas for characteristic
classes. It was proven by Babson [4] (see [52]) that Conjecture 12 is true for k < 2,
and that MacP(d,3) is homotopy equivalent to the appropriate Grasmmannian.

The relation to extension spaces and the Baues problem is that G4—; (M) is a
double cover of the extension poset £(M), in the sense that there is a two-to-one
order-preserving map £(M) — Gy4-1 (M). As a consequence, one can view the
conjecture that G4—; (M) is homotopy equivalent to the Grassmannian of (d — 1)-
planes in R? (or (d— 1)-dimensional real projective space) as a projectivized version
of the Extension Space Conjecture. This also implies that the positive results of

;
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Sturmfels and Ziegler [78] on the Extension Space Conjecture 11 give some special
cases of Conjecture 12.

4. POSITIVE RESULTS

In this section we review results which give a positive answer to the weak or
strong GBP. The methods used tend to segregate into the three paradigms de-
scribed below, where we have indicated the references whose proofs exemplify these
paradigms:

Retraction: A proof of the strong GBP, by exhibiting an explicit homotopy retracting
Weoh(P 5 Q) onto weon(P = Q)
([13, Theorem 2.3], [62, Theorem 1.4], [3, Theorem 1.2]),

Homotopies: A proof of the weak GBP by a short chain of homotopy equivalences leading
from between weon (P — Q) and some poset that is well-known to have spher-
ical homotopy type.

({16, Theorem 2], [26, Theorem 1.2]),

Deletion-Contraction: An inductive proof of the weak GBP using (sometimes implicitly) the notion
of deletion-contraction from matroid theory
({13, Theorem 1.2], {78, Theorem 1.2], [25, Theorem 3], [61, Theorem 1.1]).

Recall the general set-up: we consider a linear surjection of polytopes = : P —
Q with P,Q being d',d-dimensional, respectively, and with P having n vertices.
We divide our discussion of positive results into the following categories: d = 1
(monotone paths), d' —d = 2 (low codimension), P =cube (zonotopal tilings),
n —d =1 or P =simplex (triangulations), cyclic polytopes.

d = 1: monotone paths

The original paper of Billera, Kapranov and Sturmfels [13] that posed the GBP
proves both the weak and strong GBP for monotone paths and cellular strings,
under our usual genericity assumption that f is nonconstant along each edge of
P (although Rambau and Ziegler [62] claim that their proofs can be adapted to
remove this assumption). Interestingly, there are two proofs given in {13], one which
follows the retraction paradigm in proving the strong GBP (their Theorem 2.3) and
one which uses (implicitly) the deletion-contraction paradigm (their Theorem 1.2)
to prove the weak GBP.

Thi settes the origual robleanof Baues [1, Conjcture 7.4], which i the specal
case in w ich-the polytope P is a permutohedron and f is a generic functional. The
_weak GBP"Tor of#ellular strings on zonotopes (as in Baues’ special case) also follows
Biorner [16, Theorem 2], which is a good example of the homotopies
paradigm. Bjorner observes that cellular strings on a zonotope Z are the same
as what he calls the essential chains in the poset of regions [22] of the hyperplane
arrangement which is the polar dual [83, §7.3] to Z. An essential chain in a poset
is a chain in which every step corresponds to a non-contractible (open) interval,
and he shows that the subposet of essential chains order by refinement is homotopy
equivalent to the entire order complex of all chains in the poset. For the poset of
regions of a hyperplane arrangement, the homotopy type is known to be spherical
by work of Edelman and Walker [23]. Interestingly, Bjorner actually proves his
result not just for zonotopes or realized oriented matroids, but for an arbitrary
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oriented matroid, where the notion of a cellular string and the poset of regions still
make sense.

d —d < 2: low codimension.

In very low codimension there is not much to say. If d—d’ = 0 then P = ) and the
only w-induced subdivision of @ is the improper one. In the case d' — d = 1, there
are exactly two proper m-induced subdivisions of @, one coming from the “top”
faces of P with respect to the projection m, the other coming from the “bottom”
faces. Both of these subdivisions are coherent, and hence weon(P = Q), w(P = Q)
are both 0-spheres.

In the case d' — d < 2, the fiber polytope L(P 5 Q) is a polygon, and hence
weon(P 5 Q) is its boundary circle. Rambau and Ziegler used the retraction
paradigm to prove the strong GBP in this case.

P =cube: zonotopal tilings.

We saw in Section 2 that the case when P is an d'-cube corresponds to the case of
zonotopal subdivisions and tilings of the zonotope Z = Q = n(P). Furthermore, if
M denotes the oriented matroid associated to the generating segments V of Z, then
we saw that the Baues poset is the same as the poset of single-element extensions
E(M*) for the dual oriented matroid M*, and the weak GBP is the same as the
Extension Space Conjecture (Conjecture 11) for M*.

The extension space conjecture was investigated by Sturmfels and Ziegler [78],
who proved most of the strongest positive results at present. They showed that an
inductively defined technical hypothesis called strong Fuclideanness on the oriented
matroid M implies that the extension space conjecture holds, using the deletion-
contraction paradigm. They then showed that an oriented matroid on n elements
with rank r is strongly Euclidean under various hypotheses: if r < 3, or n —
r < 2, or when M is the alternating oriented matroid C™" that comes from a
cyclic arrangement of vectors [18, §9.4]. Since oriented matroid duality exchanges
r for n — r and keeps n fixed, and since the alternating oriented matroids satisfy
(C™™)* = ™"~ T, their results imply the weak GBP when P is a d’-cube and
Q = Z is a d-dimensional zonotope under the following conditions:

o d —d<3, or
e d<2 or
e Z is a cyclic zonotope.

It was also shown by Bailey [6] that the hypothesis of strong Euclideanness holds
for M* when M is the oriented matroid associated to a d-dimensional zonotope
having d+1 generic generating segments, but with arbitrary multiple copies of each
segment. Hence the weak GBP also holds for tilings of such zonotopes. We remark
that for d = 2, the cubical tilings of these zonotopes (hexagons) were enumerated
by MacMahon [47, Vol II, §X] in 1899.

Before closing our discussion of the Baues problem for tilings, we would like to
mention an important result of Santos which shows that the GBP for zonotopal
tilings is a special case of the GBP for triangulations. To any realized oriented
matroid M one can associate a polytope A(M) known as its Lawrence polytope
[9], [18, §9.3], [67, Chapter 4] using the technique of Gale transforms. The face
lattice of the polytope A(M) encodes all the information of the oriented matroid
M, and is useful for transferring matroid constructions and examples into the world
of polytopes.
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Theorem 13. [67, Theorem 4.14] Let Z be zonotope with associated oriented ma-
troid M. There is a natural bijection between the subdivisions of A(M) and the
zonotopal subdivisions of Z (=single-element liftings of M) which induces an iso-
morphism between the associated Baues posets.

Consequently, a negative answer to the GBP for zonotopal tilings produces a
negative answer for triangulations. We remark that the Lawrence construction
applies more generally to oriented matroids M which are not necessarily realizable,
yielding a matroid polytope A(M) [18, §9.1] rather than a polytope. Santos’ result
also applies in this situation, where one defines the triangulation of a matroid
polytope via his definition of a triangulation of an oriented matroid. This definition
unifies previous notions of such triangulations that had been proposed by Billera
and Munson [12] and Anderson [1].

n—d =1 or P =simplez: triangulations.

When n — d' = 1 the polytope P must be an n-dimensional simplex A™~! and
then we have seen that the Baues poset is the poset of subdivisions of the point set
A, where A is the image under 7 of the vertices of A®~!. This case, which deals
with triangulations and subdivisions of point sets, is the one which has perhaps
received the most attention.

When the dimension d of A’s ambient space is very small, as with the case of
tilings there is not much to say. For d < 1 every subdivision is coherent, and
the secondary (or fiber) polytope X(.A) is a Cartesian product of simplices whose
dimensions are given by the multiplicities of the points in 4.

For d = 2, things start to get interesting. The fact that the graph of trian-
gulations and bistellar operations is connected follows from work of Lawson [40],
who gave an algorithm which starts with any triangulation and moves it toward a
particular coherent triangulation called the Delaunay triangulation. Edelsbrunner
and Shah [27] observed that a generalization of this flipping procedure works to
move any coherent triangulation to the particular coherent triangulation which is
induced by a some chosen set of heights. In fact, this procedure amounts to nothing
more than linear programming on the secondary polytope L(A).

It is claimed at the end of [13] that one can positively answer the GBP for A in
R?, and this was justified under the extra assumption that the points lie in general
position by Edelman and Reiner [25] using the deletion-contraction paradigm. The
question of flip-deficiency for A in R?was resolved by deLoera, Santos and Urrutia
[45], who gave a clever counting argument for why every triangulation has at least
|4] — 3 bistellar neighbors.

For A in R® and higher dimensions, our ignorance of bistellar connectivity and
the GBP for triangulations is astounding. Question 2 is completely open. The only
non-trivial general result here to guide us is by deLoera, Santos and Urrutia [45]
who used a similar counting argument as in the d = 2 case to show that for A in
R® in general position and convez position (i.e. no point of A is in the convex hull
of the rest) there can be no flip deficiency. They also show that the assumptions of
convex position and d = 3 are crucial, by exhibiting an example having only 4 flips
consisting of 9 points in general position in R® with one of the points interior, and
ar; example having only 4 flips consisting of 10 points in convex general position in
R*.
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There are relatively few families of polytopes in higher dimensions whose tri-
angulations have been well-studied, other than the cyclic polytopes which will be
discussed in the next heading. We briefly discuss some of these other families here.
Triangulations of the d-cube which use few maximal simplices are desirable for
the purposes of fixed point algorithms [81]. Therefore one would be interested in al- ) x
gorithms which enumerate the triangulations, such as deLoera’s program PUNTOS — [ (CS¢ L.g™ ¢
[44] which enumerates all the triangulations lying in the same connected component \
of the graph of bistellar operations as the coherent triangulations. Unfortunately,
deLoera [44, Theorem 2.3.20] has shown that incoherent triangulations of the d-
cube exist for d > 4, so it is not known whether one can produce all triangulations JF Clign go (o, omc ok
of the cube by this method. 1 A
Cartesian products of simplices A™ x A™ were conjectured to have only coherent \’ drodocts (,.-f Sep G
triangulations (see [83, Problem 5.3]). This is true when m or n is equal to 1,
as the secondary polytope in this case is known to be the permutohedron [31, p. D T (OW?- (Jc_w
243] (in fact A! x A™ happens to be the Lawrence polytope associated to the , '
zonotope generated by n line segments in K!). However deLoera [44, Theorem | 5 / (99 ()>
2.2.17] showed that there are incoherent triangulations whenever m,n > 3, and /
Sturmfels [76, Theorem 10.15] showed that they exist when m = 2 and n > 5. A 1573 - 2 é’—\
close study of the secondary polytope ¥(A™ x A") and its facets was initiated by
Billera and Babson [5], whose point of departure was the fact that a typical fiber of
the map A(M+D(n+1)=1 _, Am » A" ig 3 transportation polytope, i.e. the polytope
of nonnegative (m + 1) x (n + 1) matrices with some prescribed row and column
sums.
Another interesting family of polytopes are the (k, n)-hypersimplices A(k,n) de-
fined by Gelfand and MacPherson [30] as the convex hull of all sums of k distinct
standard basis vectors e;; + - - - + ¢;, in R™. Particular triangulations of the second
hypersimplex A(2,n) were studied by deLoera, Thomas and Sturmfels [46], and by
Gelfand, Kapranov, and Zelevinsky (see [44, §2.5]). The triangulation of A(2,n)
described in [46] turns out to be related to a triangulation of the slice of the cube  ~ ; o i
[0,1]¢ lying between 3;%; = I and y_; 2; = 2 described by Stanley [72]. CrTedh
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Cyclic polytopes C(n,d).

The cyclic polytope C(n,d) is defined to be the convex hull of any n distinct
points on the d-dimensional moment curve {(¢,t2,... ,t?);t € R}. Cyclic polytopes
play an important role in polytope theory because of the Upper Bound Theorem of
McMullen [83, §8.4]: for any i, the cyclic polytope C(n,d) achieves the maximum
number of i-dimensional faces possible for a d-dimensional polytope with n vertices.
Although the definition of C(n,d) implicitly depends upon the parameters t; <
-++ < t, which are the z;-coordinates of the points chosen on the moment curve,
much of the combinatorial structure of C(n,d) (including its face lattice, and its
set of triangulations and subdivisions) does not depend upon this choice. Therefore
we will omit the reference to these parameters except when necessary.

Note that the moment curve in R? maps to the moment curve in R under the
natural surjection 7 : R¥ — R¢ which forgets the last d’ — d coordinates. This
equips the cyclic polytopes with natural maps = : C(n,d') = C(n,d). Much has
been said recently about the fiber polytopes and Baues problem associated with
these natural maps, which include as special cases the study of triangulations of
C(n,d) when d' = n — 1, and the monotone paths on C(n,d') with respect to the
functional f(x) = x; when d = 1.
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In [3], the authors determine when the fiber polytope £(C(n,d’) = C(n,d)) is
canonical in either of the following two ways:

e all m-induced subdivisions of C(n,d) are coherent ( this happens only when
d—d <2,orn—d =1and d =2, excepting a few sporadic cases), or

¢ not all are coherent but the subset of w-coherent subdivisions does not depend
upon the choice of parameters t; < --- < t,, ( this happens exactly if d = 1
andd —d,n—d > 2).

This paper also give a positive answer to the strong GBP for C(n,n—2) — C(n,2)
using the retraction paradigm. In fact, they prove more generally that the strong
GBP has positive answer for 7 : P — () whenever P is a polytope with exactly 2
more vertices than its dimension, and the point configuration .A which is the image
of the vertices of P under n has only coherent subdivisions.

The remaining results about cyclic polytopes deal exclusively with the case of
triangulations, that is n — d’ = 1. The philosophy here has been to try and gen-
eralize as many things as possible from the case d = 2, where the cyclic polytope
C(n,2) is a convex polygon as in Figure 3. For d = 2 we know almost everything
about its triangulations and subdivisions, as was described in Section 1. All these
subdivisions of C(n,2) are coherent, so the poset of subdivisions is the face poset
of the secondary polytope X(A), the (n — 3)-dimensonal associahedron. The 1-
skeleton of the associahedron is the Hasse diagram for the Tamari poset, and this
poset turns out to be a lattice.

In contrast to the d = 2 case, not every triangulation of C(n,d) is coherent for
d > 3 (starting with C(9, 3),C(9,4),C(9,5); see {3]). On the other hand, Rambau
and Santos [61] prove that triangulations of C(n,d) have the somewhat weaker
property that they are always lifting triangulations (see [67, Definition 3.4}, [18,
p. 410]). On the other hand, triangulations of C(n,d) can have flip-deficiency
[61]. Rambau [58] also proves the interesting fact that triangulations of C(n,d) are
always shellable (see [17, §11.1]) as simplicial complexes.

In a somewhat cryptic paper, Kapranov and Voevodsky [39] suggested a gen-
eralization of the Tamari poset on triangulations of C(n,2) to a partial order on
triangulations of C(n,d), which they called the higher Stasheff orders, and which
were studied by Edelman and Reiner [24] under the name of higher Stasheff- Tamari
orders. Actually, [24] defines two possible such orders which are related to each
other, and it is not quite clear (but presumably true) that one of these orders is
the same as that considered in [39]. In [24] it was proved for d < 3 that these two
partial orders coincide and both are lattices, and also that for d < 5 the graph
of bistellar operations on triangulations of C(n,d) is connected. This last result
was greatly improved by Rambau [58], who showed that the graph is connected
for all d, and even further improved by Rambau and Santos [61] who give a posi-
tive answer to the weak GBP using the deletion-contraction paradigm. Previously
Edelman, Rambau and Reiner [26] had used the lattice structure on the poset of
triangulations and the homotopy paradigm to positively answer the weak GBP for
triangulations of C'(n,d) with d < 3. In that same paper, the authors show that for
arbitrary d, both higher Stasheff-Tamari orders on the set of triangulations have
proper parts which are homotopy equivalent to (d — 4)-spheres.
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5. NEGATIVE RESULTS

Recall from the previous section that we had a positive answer to the strong
GBP by Billera, Kapranov, and Sturmfels [13] for d = 1, and by Rambau and
Ziegler [62] for d' —d < 2. Together these imply that a negative answer to the weak
GBP would require a surjection 7 : P = @ with d' > 2 and d' — d > 3 so that
d > 5. In the same paper as their positive result, Rambau and Ziegler cleverly
construct such a counterexample 7 : P — () with the minimum possible dimensions
d' = 5,d = 2. In fact, they show that the Baues poset w(P = Q) in this case is not
homotopy equivalent to a 2-sphere by showing that it has an isolated element: a
m-coherent subdivision of Q which lies below no other element of the poset! Their
counterexample is also quite small and uncomplicated, in the sense that the number
of n vertices of P is only 10, and the point configuration .4 in R? which is the image
of these 10 vertices under = is relatively simple: it consists of a triangle with each
corner vertex tripled, along with one interior point of the triangle. They also give
a perturbed version of this same example in which the point configuration A lies in
general position in R?, and the Baues poset is again disconnected (although it does
not have any isolated points). These counterexamples can also be used to produce
negative answers to the weak GBP for all d',d withd > 2 and d' —d > 3.

In light of this counterexample, attention has shifted to the motivating special
cases of the GBP dealing with triangulations of point sets .4 and zonotopal tilings
of a zonotope Z. Here no counterexamples have been found. The closest thing
to a counterexample was provided by the previously mentioned work of Mnév and
Richter-Gebert [51]. They produce (by two different methods) examples of rank 4
oriented matroids M whose extension posets £(M) contain isolated points. These
examples do not give a counterexample to the Extension Space Conjecture or to
the weak GBP because the oriented matroids in question are not realizable, that is
they do not come from a zonotope Z. However, they do settle in the negative an
earlier extension space conjecture which did not assume realizability of M.

We should also view the instances of flip deficiency for triangulations found in
[45] as negative results, even though they are far from settling the GBP.

We summarize the main open cases of the (weak) GBP here:

Question 14.

1. Is the poset of zonotopal subdivisions of a d-dimensional zonotope with d’
generators homotopy equivalent to a (d' — d — 1)-dimensional sphere?

2. Is the poset of subdivisions of a point set .4 in R homotopy equivalent to a
(JA| = d — 2)-dimensional sphere?

As was mentioned earlier, the work of Santos [67] shows that the first question is
a special case of the second, and therefore a counterexample for the first would also
settle the second, as well as the Extension Space Conjecture 11 and Conjecture 12.

6. THE QUESTIONS, PROBLEMS, CONJECTURES

Most people in the area agree that the major open problems related to the GBP
are Questions 2, 3, 14. In this section, we collect some other problems and questions,
some of which address more specifically the expected frontier between the cases of
7 : P — @ for which the GBP has positive and negative answer. In some cases, we
go out on a limb by offering our predictions, but we warn the reader that many of



28 VICTOR REINER

these opinions are not based on very much data, and are only the opinion of this
author.

We begin by conjecturing the frontier for triangulations, partly inspired by the
positive and negative results of deLoera, Santos, and Urrutia [45].

Conjecture 15. Let A be a point configuration in R® with d < 2, ord = 3 and in
convez position, or |A| —d < 4. Then

(a) The strong GBP has positive answer for subdivisions of A, (without the gen-
eral position assumption needed in [25]).

(b) Furthermore, the graph of triangulations and bistellar operations is (|A| —
d — 1)-vertez-connected, so in particular every triangulation of A has at least
|A| — d — 1 bistellar neighbors.

(c) On the other side, there exists a point configuration tn conver position in R
and also one not in conver positition in R3, each of which has an isolated
triangulation which refines no other subdivision.

In fact, it would be nice to have a simpler proof of the weak GBP for A4 in R?,
even assuming general position, or perhaps a proof of the strong GBP by retraction.
Although the idea of the deletion-contraction in [25] is relatively simple, the details
are somewhat technical.

For zonotopal tilings, one wonders whether the non-realizable oriented matroid
counterexamples of Mnév and Richter-Gebert [51] can be made realizable.

Question 16. Does there erists a zonotope with a cubical tiling that refines no
other zonotopal tiling?

We suspect that the answer to this is “Yes”, but admittedly with little basis.

For monotone paths we know that the strong GBP has a positive answer, so the
interesting question remaining is about connectivity via polygon moves. As we saw
in Figure 15, one cannot expect good behavior without a genericity assumption.

Conjecture 17. For a d-dimensional polytope P and a generic functional f, (f is
not constant on any edge of P) the graph of f-monotone paths and polygon moves
is (d — 1)-vertez-connected.

In particular, every f-monotone path has at least d — 1 neighbors in the graph
Gp s of polygon moves.

We next discuss several conjectures related to cyclic polytopes and the natural
maps 7 : C(n,d') - C(n,d) between them. The recent positive results of Rambau
and Santos [61] on triangulations of cyclic polytopes, and [3, Corollary 6.3] relating
to 7 : C(n,n —2) = C(n,2) prompt the following conjecture:

Conjecture 18. The strong GBP has positive answer for w : C(n,d’) = C(n,d).

We mention related a conjecture which would settle the case = : C(n,d') —
C(n,2), and is motivated by [3, Theorem 1.2].

Conjecture 19. The strong GBP has positive answer for 7 : P — Q if Q lies in
R? and all vertices of P project under  to the boundary of Q.

Note that this conjecture would explain the importance of the interior point of
present in the Rambau-Ziegler counterexample [62].

The proof of the weak GBP for triangulations of cyclic polytopes in [61] uses the
deletion-contraction paradigm. We next discuss some other conjectural approaches
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to this result, involving the relation of cyclic polytopes to cyclic zonotopes and
alternating matroids [18, §9.4].

For any point configuration A in R¢, the dual point configuration or Gale trans-
form A* lives in R4/-4-1_ A single element extension of the oriented matroid M
corresponding to .4* gives rise to a subdivision of .4 called a lifting subdivision, and
hence gives a map from the extension poset £(M) to the poset of subdivisions of A.
In the case where A is the set of vertices of a cyclic polytope C(n,d), A* is a cyclic
arrangement of vectors [83, Problem 6.13] so that M is the alternating matroid
C™n—4-1 Therefore the results of [78] imply that £(M) is homotopy equivalent
to an (n — d — 2)-sphere. Furthermore, [61] shows that every subdivision of C(n,d)
is a lifting subdivision, so that this map is surjective.

Conjecture 20. When A is the set of vertices of a cyclic polytope C(n,d), the map
described in the previous paragraph is a homotopy equivalence from the extension
space E(M) to the poset of subdivisions.

A different approach relates the triangulations of cyclic polytopes to cyclic hy-
perplane arrangements and the work of Manin and Schechtman [49], Ziegler [84],
and Kapranov and Voevodsky [39] on cyclic hyperplane arrangements and zonotopes
and the higher Bruhat orders.

Let Z(n,d) be the d-dimensional cyclic zonotope with n generating segments in
the directions {(1,t;,t2,...,t471)}2, for any n distinct values of the parameters
t1 < ... < tn. The higher Bruhat orders B(n,d) were defined in [49], and may
be thought of as a natural poset structure on the cubical tilings of Z(n,d). For
d =1, B(n,1) is the the weak Bruhat order [18, §2.3(b)] on the symmetric group.
Ziegler [84] observed that there were actually two natural and related (but different!)
definitions for higher Bruhat orders, which he called B(n,d) and Bc(n,d). Among
other things, he showed that the homotopy type of the second of these posets
Bc(n,d) was spherical. Rambau [59] later showed that B(n,d) also has spherical
homotopy typer

As wad\(menrioned j# Section 4 Kapranov and Voevodsky [39] define a partial
order on tri ns of C(n,d), and in [24], the authors consider two such related
partial orders S (n, d) and S»2(n, d), generalizing the Tamari poset on triangulations
of C(n,2). It is not quite clear, although presumably true, that the order S;(n,d)
coincides with the order defined in [39]. In [26], it is shown that both posets S;(n, d)
and S2(n,d) have spherical homotopy type. Kapranov and Voevodsky also define
an order-preserving map B{(n,d) — S1(n + 2,d + 1), and a similar map was given
two definitions by Rambau in [58]. Rambau shows that his two definitions give the
same map, but it is not clear that his map is the same as the one in [39]. Ford =1,
this map coincides with a map from permutations to triangulations of an n-gon
studied by Bjorner and Wachs [19, §9].

Conjecture 21. The maps B(n,d) = S1(n+2,d+1) defined by Kapranov- Voevodsky
and Rambau are the same, and induce a homotopy equivalence between the proper
parts of these posets (True for d =1 [19, §9]).

The fact that these poset have homotopy equivalent proper parts already follows
from the sphericity results previously mentioned. What does this have to do with
the GBP? It is easy to see that for any zonotopal subdivision of Z(n,d), the set
of all cubical tilings which refine it forms an interval in either B(n,d) or Bc(n,d).
This gives a very natural order-preserving map from the Baues poset w(I™ —
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Z(n,d)) to the poset of proper intervals in B(n,d) or Bc(n,d). Similarly, for any
subdivision of C(n,d), the set of triangulations which refine it forms an interval in
either Si(n,d) or Sy(n,d), giving an order-preserving map from the Baues poset
w(A™"! = C(n,d)) to the poset of proper intervals in S;(n,d) or Sz(n, d).

Conjecture 22. 1. The image of the map from w(I™ — Z(n,d)) to the poset
of proper intervals in either B(n,d) or Bc(n,d) is ezactly the set of non-
contractible (oepn) intervals (True for d =1 [19, §9]).

2. The image of the map from w(A™1 = C(n,d)) to the poset of proper intervals
in either Si(n,d) or Sa(n,d) is ezactly the set of non-contractible intervals
(True for d < 3 (26, Lemma 6.3)).

The previous conjecture would have two nice consequences:
(i) It would completely describe the homotopy type of all intervals (and hence

compute the Mobius function) in the posets B(n,d), Bc (n,d) and S1(n, d), S2(n, d).

The intervals which are the images of the above maps are always isomorphic
to Cartesian products of posets B(n',d), Bc(n',d) or Si(n',d), Sa(n',d) for
smaller values n’ < n, and hence by the known sphericity results, are also
homotopy spherical.

(ii) It would imply that w(I® — Z(n,d)) is homotopy equivalent to the suspension
of the proper part of B(n,d) or Bc(n,d), and similarly w(A™! — C(n,d))
is homotopy equivalent to the suspension of the proper part of S;(n,d) or
Sa(n,d). This uses the fact observed by Walker [82] that the poset of proper
intervals in a bounded poset P is homeomorphic to the suspension of the
proper part of P, and the fact that the poset of proper noncontractible inter-
vals in P is a deformation retract of the poset of all proper intervals in P [26,
Lemma 6.5].

Note that if Conjectures 21 and 22 hold, one could then string together three
homotopy equivalences relating the Baues posets for triangulations of C(n,d) to
the one for zonotopal tilings of Z(n,d):

w(I™ = Z(n,d)) = Susp(B(n,d) -0, 1)
= Susp(sl (n +2,d+ 1) - 07 i)
=A™ 5 C(n+2,d+1))

Here the middle map is the suspension of the Kapranov-Voevodsky-Rambau map
described above. Note that by results previously cited, each of the spaces occurring
here is known to be homotopy equivalent to a (n — d — 1)-sphere.

Another challenging problem is to count the number of triangulations of C(n, d)-
see [3, Table 4] for some data, produced by deLoera’s program PUNTOS [44] and by
software of Rambau dedicated to this task. As was said in the introduction, almost
the only non-trivial known formula is the Catalan number -1-(**~*) counting
triangulations of the n-gon C(n, 2). We also have the following mostly trivial results:

¢ C(n,1) has 2"~2 triangulations,
C(d + 1,d) has 1 triangulation,
¢ C(d + 2,d) has 2 triangulations, and
C(d + 3,d) has d + 3 triangulations by the results of [42].
Santos [69] recently provided (and partly proved) the following non-trivial conjec-
ture, based on the known data:
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Conjecture 23. Let ay be the number of triangulations of C(d + 4,d). Then the
second difference aq — 2a4—1 + a4—2 has the following form:

ok — 20251 + G2k = 2% (proven by Santos)
Q241 — 2a9k + Qog—1 = ok+1 4 gok-1,

Note that Santos’ conjecture easily leads to a closed formula for the number of
triangulations of C(n, d).

In addition to the previous specific conjectures, we would also like to describe
some more general problems related to the GBP.

The first of these relates to the concept of an iterated fiber polytope introduced
by Billera and Sturmfels [15]. Given a tower P -5 Q % R of linear surjections of
polytopes, it was shown in [14] that the map 7 induces a surjection of the fiber
polytopes

m:3(P R) - 2(Q 5 R).
They called the fiber polytope of this surjection the iterated fiber polytope
2P5Q5R).

It is also clear how one can iterate the construction to define higher iterated fiber
polytopes if one has longer towers of projections.

Question 24. Study the iterated fiber polytopes for subsequences of the tower of
natural projections

A1 =C(n,n—1) = C(n,n—2) = --- = C(n,2) = C(n,1)

between cyclic polytopes. Are there any cases (like those classified in [3] for C(n,d') —
C(n,d)) where the structure of the iterated fiber polytope does not depend upon the
choice of points on the moment curve defining C(n,d)?

Another line of inquiry is suggested by the first part of Conjecture 22. Ziegler
[84] considers the higher Bruhat orders B(n,d), Bc (n, d) as posets of uniform erten-
sions of the affine oriented matroid corresponding to a cyclic hyperplane arrange-
ment of hyperplanes. More generally, he introduces these uniform extension posets
UM, g),Uc (M, g) for any affine oriented matroid (M, g). The map considered in
Conjecture 22 can be generalized to a map from the extension poset £(M) to the
set of proper intervals in Uc (M, g): send a single element extension of M to the
set of uniform extensions which lie below it in £(M).

Question 25. Study the map from the extension space £(M) to the poset of inter-
vals in U(M, g). Are there any nice classes of affine oriented matroids where the
image of the map is exactly the set of non-contractible proper intervals?

As was the case in Conjecture 22, whenever the above question has a positive
answer, the map in question induces a homotopy equivalence between £(M) and
the suspension of the proper part of (M, g). The examples of Mnév and Richter-
Gebert [51] show that £(M) does not always have spherical homotopy type, but
it is still possible that such a homotopy equivalence may exist even in cases where
sphericity fails.

Our last (??) question relates to Stembridge’s ¢ = —1 phenomenon (see [75])
occurring in the context of cubical tilings of zonotopes. A zonotope Z is a centrally-
symmetric polytope, and hence the antipodal map induces a natural involution w
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on its set of cubicial tilings. Say that a tiling of Z is centrally symmetric if it is
fixed by this involution w. Consider also the graph Gz of cubical tilings and cube-
flips on Z. This graph will always be bipartite, due to the fact that cubical tilings
are the same as uniform single-element liftings, which can be specified by a. circuit
signature [18, §7.1]- the bipartition roughly speaking comes from the parity of the
number of +’s in this circuit signature. Say that the ¢ = —1 phenomenon holds for
Z if the number of centrally symmetric tilings of Z is the same as the difference in
cardinality of the two sides of the bipartition of Gz.

Stembridge observed in [75] that known formulas counting symmetry classes of
plane partitions implied the ¢ = —1 phenomenon for zonotopal hexagons in the
plane (with multiple copies of the 3 line segements which generate the hexagon as
a zonotope), and further examples involving certain zonotopal octagons were found
by Elnitsky [28] and Bailey [6]. However, one can check that the phenomenon does
not hold for all zonotopes Z, as there are already examples of zonotopal octagons
for which it fails.

Question 26. For which zonotopes Z does the ¢ = —1 phenomenon hold?
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