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ABSTRACT: We prove that if a finite lattice L has order dimension at most d, then the homology of the order
complex of its proper part L° vanishes in dimensions d — 1 and higher. In case L can be embedded as a join-
sublattice in N® then L° actually has the homotopy type of a simplicial complex with d vertices.

1. Introduction.

The order dimension OrderDim(P) of a finite partially ordered set (poset for short) P is
defined to be the smallest positive integer d such that P is isomorphic to an induced subposet of
a Cartesian product of d linear orders. OrderDim(P) turns out to be a very subtle and hard-to-
compute invariant of P, with an extensive literature (see [Tr]).

Topological invariants of posets have also been studied extensively in the past few decades (see
[Bj] for some references). Here the basic object of study is the order complez of P, the abstract
simplicial complex having the elements of P as its vertex set, and the linearly ordered subsets of
P as its simplices. In what follows, we will abuse notation by making no distinction between the
poset P, its order complex, and the topological space which is the geometric realization of this
order complex. Given a finite simplicial complex X, define its homological dimension HomDim(X)
as follows:

HomDim(X) := min{e : H;(X; k) = 0 for all i > e, and for all fields k}

where here H; (X; k) refers to reduced simplicial homology of X with coeflicients in k. In contrast
to usual conventions, we set H_;(X; k) = k for arbitrary X. We remark that simplicial homology
is effectively computable [Mu, Chap. 1 §11], and hence so is HomDim(X).

Our main result, Theorem 1, connects these two points of view in the case where the poset is
a lattice, i.e. any two elements have a meet (greatest lower bound) and a join (least upper bound).
There is some indication that the theory of order dimension may be better behaved for posets
which are lattices than for arbitrary posets (see e.g. [Tr, p. 69]). Our result gives a new lower
bound for the order dimension of a finite lattice L, based on the topology of its proper part L°,
that is, the poset obtained by removing the bottom element 0 and top element 1 from L.

Theorem 1. For a finite lattice L,
OrderDim(L) > HomDim(L®) + 2.

The proof of Theorem 1 uses a lemma which is of interest on its own. The lemma gives a
much stronger conclusion in the special case that the lattice L can be embedded into N¢ not just
as an induced subposet, but as a join-sublattice.

Lemma 2. Let L be a join-sublattice of N¢. Then L° has the homotopy type of a simplicial
complex with at most d vertices.

To place Theorem 1 in context, we compare it with a result from the literature. The fact that
the face lattice L of a d-dimensional convex polytope has OrderDim(L) > d + 1 was first proven
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by Reuter [Re]. This is immediate from Theorem 1, since the proper part of the face lattice of a
d-dimensional polytope triangulates a (d — 1)-sphere. More generally, we have the following:

Corollary 3. Let L be the poset of faces of a regular ceIIAcompIex whose geometric realization is
a d-dimensional pseudomanifold without boundary, with O representing the empty face § and an
artificial top element 1 adjoined. If L is a lattice, then OrderDim(L) > d + 2.

Proof.

In a d-dimensional pseudomanifold M without boundary, the formal sum of all the d-faces gives a
non-trivial d-dimensional homology cycle with Z/2 coefficients {Mu, p. 262], so HomDim(M) = d.
On the other hand, for a regular cell complex M, the poset of proper faces triangulates the
barycentric subdivision of M. Therefore, HomDim(L°) = HomDim(M) = d. Apply Theorem 1. m

Note that the hypotheses of Corollary 3 are satisfied, for example, by the face poset L of any
triangulated manifold. »

We also note that the assumption that L is a lattice cannot be removed from Theorem 1,
Lemma 2 or Corollary 3, as illustrated by the following example. Let P be the poset on 2n
elements z1,y1,...,%n,yn with order relations x;,y; <p x;,y; whenever ¢ < j. Then P is the
poset of non-empty faces in a well-known cell decomposition of the (n — 1)-sphere, and hence
HomDim(P) = n — 1. However it is easy to check that OrderDim(P) = 2. Nevertheless, one can
obtain lower bounds on OrderDim(P) for general posets P by studying the intersection lattice of
a covering of P by order ideals. We do note make this explicit here, since the bounds seem to be
too week to yield any interesting consequence.

As a historical point, Lemma 2 is related to some work on minimal free resolutions of monomial
ideals in polynomial rings [GPW], and in fact this work motivated its discovery, and subsequently
Theorem 1. In [GPW], it is shown that for join-sublattices L of N¢, the homology of L° measures,
in a certain sense, the syzygies of a particular multidegree in a minimal resolution of a monomial
ideal related to L. The Hilbert syzygy theorem can then be used to deduce the homological
consequence of Lemma 2. Later the authors found out that Theorem 1 had been conjectured in
handwritten notes [BEKZ] around 1986.

2. Proofs of Theorem 1, Lemma 2.
We recall here the statement of Lemma 2.

Lemma 2. Let L be a join-sublattice of N¢. Then L° has the homotopy type of a simplicial
complex with at most d vertices.

Proof.

By assumption a typical element of L is a d-tuple n = (ny,...,nq), and the join operation in L
is componentwise maximum. We define an order-preserving map f : L° — B® where BY is the
Boolean algebra of subsets of {1,2,...,d} as follows: If t = (t1,...,tq) is the top element of L, then
for a typical element n in L°, let f(n) = {i : n; = ¢;}. It is easy to see that f is order-preserving,
and in fact join-preserving, i.e. f(nVvn') = f(n)U f(n'). The latter fact implies that f induces a
homotopy equivalence onto its image f(L°) C B¢, using Quillen’s Fiber Lemma [Bj, (10.5)]: Given
any subset S in the image f(L°), the inverse image f~!(B%s) has a greatest element, namely the
join of all of its elements taken in L. Here B 5 denotes the set of all elements T of B? such that
TCS. -

As a consequence, we need only to analyze the homotopy type of the image f(L°), which
is either contractible or the proper part of a join-sublattice in B?. Applying the order anti-
automorphism S — [d] — S of the Boolean algebra, we may instead assume it is the proper part of
a meet-sublattice K of B¢.



For the meet-sublattice K of B%, let Ak be the order ideal in B¢ generated by the coatoms in
K. This Ak is a simplicial complex with at most d vertices. Then K is a meet-sublattice of the
lattice of faces of Ax such that all maximal faces of Ax are contained in K. This implies that an
element A of the face lattice of Ax is a meet of ‘maximal faces if and only if A € K and A is the
meet of coatoms in K. Thus the lattices of elements that are the meet of coatoms coincide for K
and the face lattice of Ax. By [Bj, (10.12)], the proper part of a lattice is homotopy equivalent
to the proper part of the sublattice of elements that are the meet of coatoms. Thus the proper
parts of the face lattice of Ax and K are homotopy equivalent. The fact that the order complex
of the proper part of the face lattice of a simplicial complex is homeomorphic to the complex itself
completes the proof. m

Proof of Theorem 1.

We prove the assertion by induction on the number of atoms of L. If there is no atom then the
proper part L° of L is empty and L is a two-element chain whose order dimension is 1. On the
other hand the homology of L° is concentrated in dimension —1.

Assume that the number of atoms of L is greater than 0. We can assume without loss of
generality that L is an atomic lattice, i.e. every element in the lattice is the join of atoms of L, if
we replace L by the join-sublattice Lasom generated by its atoms. Latom is a sublattice of L having
the same set of atoms, with OrderDim(Latom) < OrderDim(L), and again by [Bj, (10.12)], L° is
homotopy equivalent to its proper part Lgy,m,.

For our second reduction, we may now assume that L is atomic. For d := OrderDim(L}), there
exists an embedding i : L'<> N¢ as an induced subposet of N9, We will now proceed to alter the
embedding ¢ into a new embedding j having the following property:

(%) For every z in L, the element j(z) is the join in N¢ of the j(a) for atoms a <z in L.

Note that for the least element 0 of L this condition is vacuous. Define the map j: L — N¢ by

atoms a
ey

where “\/” denotes the join operation in N¢. To check that j is still an embedding, it suffices to
show both that j is order-preserving (which is clear), and that j(z) < j(y) implies £ < y. To see
the latter, note that any atom a <  satisfies

i(a) <ne j(2) < 3(Y) <ne i(y),

where the last inequality above follows from the fact that i(a) <y« i(y) for any a <p y because i
was order-preserving. Since i was an embedding as an induced subposet, we conclude a < y for
any atom a <y z, and this implies ¢ < y since L is atomic. By definition of j, the image j(L)
satisfies the property (*).

We may now assume that the atomic lattice L is a subposet of N4 for which the inclusion map
L — N4 satisfies (*). Let K be the subposet of N¢ that is obtained from L by adding all elements
of N¢ that are the join in N of atoms of L. Then K is a easily seen to be a join-sublattice of
N¢ which contains L as an induced subposet. In particular, Lemma 2 applies and demonstrates
HomDim(K®) < d — 2. Note that a subcomplex of the (d — 1)-simplex is either contractible or of
dimension at most d — 2. In either case all homology in dimension d — 1 or higher vanishes.

Consider the long exact sequence in homology for the pair (K°, L°), in which we suppress the
arbitrary coefficient ring for ease of notation:

e — ﬁi(KO,LO) - ﬁi_l(Lo) - ﬁi_l(Ko) — ..
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Since H;(K°) = 0 for i > d — 1, it suffices to show that Hi(K°,L°) = 0 for ¢ > d. We will show
this by induction on |K \ LJ.

If |[K \ L| = 0 then H;(K°,L°) = 0 for all i. Assume |K \ L| > 1. Let  be a minimal element
of K\ L. We claim that M := LU {z} is a lattice which has the same set of atoms as L, and
satisfies the same hypotheses as L did (atomic, embedded in N¢, with property (*)). The other
properties are immediate once we check that M is a lattice. Assume not, i.e., assume there exist
two elements u,v in M with two distinct minimal upper bounds p,q. Since L was a lattice, we
may assume without loss of generality that either z = p or £ = u. If 2 = p, then the element
4 Ve v has

uVnev <ne¢ g, p(= )

and by minimality of z in K \ L, it must lie in L (and hence in M). This contradicts the fact that
p, g were minimal upper bounds for u,v in M. If £ = u, then since z lies in K, we can choose
some uj,uz in L with 43 Vne ug = u(= z). But then u;, u2, v would have the two minimal upper
bounds p, q in L, contradicting the fact that L is a lattice.

Therefore M satisfies the same hypotheses as L, so by induction we may assume that

Hi(K°,M°)=0 for i>d.

Our final goal will be to show fIi(M °,L°) = 0for ¢ > d. Once this is achieved, the theorem follows
from the long exact sequence of the triple (K°, M°, L°)

oo = Hy(M°,L°) - H;(K°,L°) —» Hi(K°,M°) — ---

which implies H;(K°, L°) = 0 for i > d.

For any pair of finite simplicial complexes (X,Y’) with ¥ a subcomplex of X, one can form the
quotient space X/Y, which identifies Y with a single point, and one has H;(X/Y) = Hi(X,Y).
Recall that we identify a partially ordered set with its order complex, so we can consider the
quotient M°/L°, and it then suffices to show H;(M°/L°) = 0 for i > d. We claim that the space
M°/L° is homotopy equivalent to the suspension of the join of L%, := {y € L° | y < z} and
L%, :={y € L° | y > z}. To see this, note that the quotient M°/L° can be identified with the
image of the link of z in L° suspended over the two points z and L° in M°/L°, and the link of
in L° is the join of L2 and L% ;. We now have two cases:

o Assume L2 is non-empty. Let y, 2z be two elements in LS .. Then by construction all atoms of
L below z are also below y and 2. Since elements of L are the join of the atoms below them it
follows that the meet of y and z in L is above z. But this implies that L2 has a minimal element
— the meet of all elements of L, in L. But then L2, is contractible and thus so is M°/L°.

e Assume L, is empty. Then M°/L° is the suspension of LZ,. Again L, is the proper part
of an atomic lattice embedded in N¢ with property (*). By atomicity of L, z is not the largest
element of L, so there must be an atom of L not below z. Hence by the first induction on the
number of atoms, it follows that H;(L%,) = 0 for all ¢ > d — 1. But then the homology of M°/L°
vanishes in dimension d and higher by the suspension isomorphism.

In either case we deduce that the homology of M°/L° vanishes in dimension d and higher, as
desired. This completes the proof of both induction steps. =
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