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VISIBILITY COMPLEXES AND THE BAUES
PROBLEM FOR TRIANGULATIONS IN THE PLANE

PauL H. EDELMAN
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University of Minnesota

ABSTRACT. We give a positive answer for the special case of the Generalized Baues
Problem which asks whether the complex of triangulations of a point set A in general
position in the plane has the homotopy type of a sphere. In the process, we are led to
define the visibility complex for a simplicial complex whose vertices lie in A, and prove
that this visibility complex has the same homotopy type as P. The main technique
is a variant of deletion-contraction from matroid theory, along with a new method
for proving homotopy equivalence of posets which we call the nerve-flag paradigm.

I. Introduction.

The subject of triangulations of a point set A in R? has undergone a recent surge
of interest, partly due to the theory of secondary polytopes and A-discriminants and
resultants defined by Gelfand, Kapranov, and Zelevinsky [GKZ], and also due to a
problem raised by Baues [Ba] in homotopy theory. These two developments were
unified by Billera and Sturmfels in their work on fiber polytopes [BS], and led Billera
et. al [BKS], to formulate the Generalized Baues Problem (GBP) associated to a
surjection of convex polytopes P — @. Given two polytopes P and @ and an
affine surjection P — @, the problem asks whether a certain complex of polygonal
decompositions of @ induced by the faces of P has the same homotopy type as the
subcomplex of coherent decompositions, which are defined geometrically. This sub-
complex is known to be isomorphic to the boundary complex of a convex polytope
(the fiber polytope £(P,Q)) and hence is spherical.

The answer to the GBP is known to be positive when dim(Q) = 1 [Bj1], [BKS],
and when dim(P) —dim(Q) < 2 [RZ], however counterexamples were given recently
by Rambau and Ziegler [RZ] with dim(Q) > 2 and dim(P) — dim(Q) > 3 (see this
reference for a more complete discussion of the GBP). The most interesting cases
of the GBP are those where P is either an n-cube or an n-simplex, since a positive
answer in these instances would resolve the weaker question of whether all cubical
subdivisions of a zonotope Z are connected by mutations, or all triangulations of
a point set A are connected by bistellar operations, respectively. See [BS] for a
discussion of this connection. For P an n-cube the answer to the GBP is known to be
positive for dim(Q) < 2 [SZ]. For P an n-simplex, it follows from the work of Lawson
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2 PAUL H. EDELMAN VICTOR REINER

[La] that all triangulations of A in R? are connected by bistellar operations, which
shows that the complex considered in this case of the GBP is at least connected. For
vertices in general position in R? the bistellar operations are of two types, a diagonal
flip or the insertion/removal of a vertex from the interior of a triangle. These are
illustrated in Figure 1. We note that Lawson considered only triangulations which
use all vertices in A so that only diagonal flips were relevant.

DS A/

FIGURE 1

In this paper, we will give a positive answer to the GBP for triangulations of A
in general position in R2. In fact, we prove something stronger. For an arbitrary
simplicial complex P embedded in R? and using only vertices in A, we will show
that there is a complex generalizing the complex considered by the GBP, and that
when A is in general position in R2, this complex is contractible (Theorems 2 and
3). Our method is a variant of the deletion-contraction technique from matroid
theory, in combination with a topological analysis. An interesting by-product of
the analysis is that it requires us to understand the homotopy type of a simplicial
complex which we call the visibility complez for the pair (P,.A), an extension of
the visibility graph considered in the computational geometry literature [OR1]. We
prove that this visibility complex has the same homotopy type as P (Theorem 1).

Perhaps a further word or two is in order about the motivation for these re-
sults. The work of [GKZ] shows that there is a large and well-behaved subset of
triangulations of A called the regular triangulations. The graph whose vertices are
these triangulations and whose edges correspond to bistellar operations forms the
1-skeleton of the (|.A| — 3)-dimensional secondary polytope. It follows from Balin-
ski’s theorem ([Zi,§3.5]) that this graph is (].4| — 3)-connected. The question asked
by the Baues problem is a question of connectivity for these triangulations, not
in the graph-theoretic but in the topological sense, and so may be viewed as the
topological analogue of results about graph connectivity.

The paper is organized as follows. Section II gives the basic definitions and states
the main results (Theorems 1,2, and 3). Section III reduces Theorems 1 and 2 to
the case where P is a manifold with boundary. Section IV completes the proof of
Theorem 1, and Section V uses this to complete the proof of Theorem 2. Theorem
3 is then deduced as a corollary to the proof of Theorem 2.

II. Definitions and statement of results.

Let A be a finite set of points in R%. A set P in R? will be called .A-triangulable
if, roughly speaking, it has a triangulation as a simplicial complex whose vertices
are a subset of A. To be more precise, let A = {v1,...,v,} € R? and say that
P C R? is A-triangulable if A C P and there exists an abstract simplicial com-
plex A on vertex set {1,2,...,n} (not necessarily using every index as a vertex)
whose geometric realization ||A]| maps homeomorphically onto P (endowed with
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the subspace topology) under the map from ||A|| into R* which sends an abstract
vertex i to the point v;. In what follows, we will often abuse notation by drawing
no distinction among the topological space P, the homeomorphic space ||All, and
the simplicial complex A, so that we can refer to vertices, edges in P, and so on.

For a set A C A, let conv(A) denote the convex hull of the points of A. Given
an A-triangulable set P, define the visibility complex A,is(P, A) to be the abstract
simplicial complex on vertex set A whose simplices are the subsets A C A with
conv(A) C P. The visibility graph Gy;s(P, A) is the 1-skeleton (vertices and edges)
of Ayis(P, A) (cf. [OR2])

A polytopal decomposition § of the pair (P,.A) is a set of pairs {(P;, A)}r_,
satisfying the following conditions:

(1) For each i, we have A; C A and P; = conv(A;).

(2) P=Uis Pr

(3) For each i # j, the polytopes P;, P; intersect in a common proper face F' of

each (possibly the empty face, but not P; or P; itself), and A;NF = A;NF.

Note that an A-triangulable space P always has at least one polytopal decom-
position coming from its A-triangulation A, namely 6§ = {(F;, A;)} where {F}
are the mazimal faces of A, and A; is the set of vertices of P;. Furthermore, if
6 = {(P;, A;)} is a polytopal decomposition of (P, A), then any union | J, F;, is an
(Ug Pio. NA)-triangulable space: simply refine each P; in § to a triangulation which
introduces no new vertices and restrict this simplical complex to its faces lying in
U, Pi.- We will often abuse notation and refer to 0 as a polytopal decomposition
of P when the vertex set A is implicit.

Define the Baues poset Baues(P, A) to be the set of all polytopal decompositions
§ of (P, A) ordered by refinement, i.e., if

§ = {(P:, Ai) Yoo
§ = {(P}, ApYe,

then § < ¢’ means for each i = 1,2,... , k there exists some j so that P; C P/ and
A; C A;. .

We will prove the following results about the homotopy type of Ays(P,.A) and
Baues(P,.A) (when referring to the homotopy type of a poset (), we mean the
homotopy type of its order complezr A(Q); see [Bj2, (9.3)]). All of our results will
assume that A is in general position in R2, i.e., no three points of A are collinear.
It is not clear whether this assumption is necessary for any of these results, but it
will greatly simplify some of the proofs.

Theorem 1. Assume A is in general position in R?, and P is an A-triangulable
space. Then Ay;s(P, A) is homotopy equivalent to P.

We note that Theorem 1 does not hold in R® as shown by the following example.
Let 1,2,3, and 4 be vertices of a tetrahedron in R3. Let z and y be two points
outside the tetrahedron such that the line segment joining z to y intersects the
interior of the two edges 12 and 34 as shown in Figure 2. If we let the space P
be the union of the tetrahedron 1234 and the two triangles 12z and 34y, then P
is a contractible A-triangulable space where A = {1,2,3,4,z,y}. The visibility
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complex A,;s(P, A) is the complex with maximal simplices {1234, 12z, 34y, zy}
which is easily seen to be homotopy equivalent to a circle. Although this example
does not have A in general position, by thickening the edges 12 and 34 into triangles
122’ and 344’ so that the edge zy punctures both of these new triangles in their
interiors, one obtains a general position example.

FIGURE 2

Theorem 2. Assume A is in general position in R and P is an A-triangulable
space. Then Baues(P, A) is contractible.

It is easy to see that Baues(P,.A) has a unique maximal element 1 exactly when
P = conv(A). In this case Baues(P, A) is trivially contractible and the interesting
problem is to describe the homotopy type of Baues(P, A) — 1.

Theorem 3. Assume A is in general position in R2. If P = conv(A), and 1 is the
unique top element of Baues(P, A) then Baues(P, A) — 1 is homotopy equivalent to
a sphere of dimension |A| — 4.

Under the hypotheses of Theorem 3, the poset Baues(P,.A) — 1 is isomorphic to
the poset S(A™~1, P) considered in the Generalized Baues Problem [BKS, p. 554],
where here A"~ ! is a simplex with n = |.A| vertices mapping onto P by the canonical
surjection. Therefore Theorem 3 resolves the instance of the GBP where A is in
general position in R2. The case of the GBP for arbitrary point configurations A
in R?, along with the generalizations of Theorems 2 and 3 to higher dimensions are
still open.

We record here the following well-known lemma [OR1,Theorem 1.2] which is the
essence of many of our later proofs:

Lemma 4. Let C be an A-triangulable Jordan curve in the plane, i.e., C is a
polygonal embedding of the circle S' — R? using only vertices in A. Then the
closure C of the interior of C has an A-triangulation. [J

It is important to note that Lemma 4 does not generalize to three dimensions.
That is, there exists a non-convex polyhedron in three dimensions whose interior
cannot be partitioned into tetrahedra with vertices chosen from those of the poly-
hedron. See [OR1,§10.2.1] for a discussion of some examples.
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Before closing this section, we recall a few definitions from combinatorial topol-
ogy, and state a consequence of Lemma 4, which will be used frequently later.

For P an A-triangulable space, say that v in A is an interior vertez of P if it lies
in the topological interior of P, i.e., there is an open neighborhood U of v in R4
with U C P. Recall [Bj2, (9.9)] the link, star and deletion of a face F' in a simplicial
complex A are the subcomplexes defined by

linka(F)={G € A,GUF € A,GNF =g}
stara(F) = {G € A,GUF € A}
dela(F)={G € A,GNF =g}

Note that the these definitions satisfy

A = stara(F) U dela (F)
linka (F) = stara (F) Ndela(F)
stara (F) = F * linka (F)

where here F means the simplical subcomplex generated by F', and * denotes the
operation of simplicial join [Bj2, (9.5)]. Recall that the union of two subsets of
vertices in an abstract simplicial complex corresponds to the convex hull of the
union of those subsets in the geometric realization.

Lemma 5. Assume A is in general position in R2. Let P be an A-triangulable
space, E C P a one-dimensional A'-triangulated subspace for some A’ C A, and
T C A a subset of interior vertices of P which contains all the interior vertices of P
that lie in E. Then P has an A-triangulation which restricts to an A’-triangulation
of E, and uses only interior vertices of P which lie in T.

Proof. Start with any .A-triangulation A of P, and convert it to one which satisfies
the conclusions of the lemma in a sequence of steps.
Step 1. If A uses any internal vertex v of P which is not in Z, then remove v and
all triangles containing it from A. As v is interior to P, the subcomplex stara (v)
triangulates a 2-ball, and linka (v) triangulates a circle which is the boundary of
this 2-ball. Re-triangulate the interior of this 2-ball using only the vertices from
linka (v) via Lemma 4. Repeat this step until all internal vertices of P used in A
lie in Z.
Step 2. If there is a vertex of E which is not used in A, then by our assumption
of general position, v must lie in the interior of some triangle ¢ of A. If ¢ has
vertices v1,vs,vs, then remove ¢ from A and replace it with the three triangles
{v,v1,v2}, {v,v1,v3}, {v,v2,v3}. Repeat this step until A uses all vertices of E.
Step 3. If there is an edge e of E which is not used in A, let its endpoints be
v,v’. Consider the set of triangles in A which one passes through while traversing
the edge e from v to v’. By our assumption of general position, the edge e crosses
each of these triangles through the interiors of two of its edges, and the union of all
such triangles generates a subcomplex of A whose boundary consists of two paths
L4, L, from v to v/, with the two paths separated by the edge e (see Figure 3).
Therefore if we remove all triangles and edges of A crossed by e, then L Ue
and L, Ue form two polygonal Jordan curves whose interiors we can triangulate by
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FIGURE 3

Lemma 4 using only the vertices on the curves, and now e will be used in this new
triangulation. Repeat this step until all edges of F are used in A. 0

ITI. Reduction to manifold with boundary.

In this section we simultaneously reduce via a sequence of lemmas both Theorems
1 and 2 to the case where P is an A-triangulable manifold with boundary .

The first lemma allows us to assume that P (and hence A,;(P, A)) is connected.

Lemma 6. Let P be an A-triangulable set in R, with connected components
{Pz}zc:l Then

(1) Each P; is (AN P;)-triangulable.

(2) Ayis(P,A) has connected components {Ayis(P;, AN P;)}e_,.

(3) Baues(P, A) is isomorphic as a poset to the Cartesian product

H Baues(P;, AN F;)

i=1

Proof. Let A be an A-triangulation of P. Since the connected components of A
are identified with those of P, the first assertion is obvious.

To prove the second assertion, we must show that v,v’ € A lie in the same
connected component of P if and only if they lie in the same connected component
of Ayis(P, A). But this is clear, since v, v’ being connected in P implies that there
is a path in the 1-skeleton of A between them, which corresponds to a path in
Ayis(P, A), and likewise if there is a path in A,;,(P, A) between them it leads to a
path in P between them.
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To prove the third assertion, note that any decomposition § of (P, .A) is uniquely
defined by its restriction to each connected component of P. [J

The next lemma allows us to assume that the visibility graph G,s(P,.A) is bi-
connected. Recall that for a graph G, a vertex v is an articulation point if G — v
is disconnected, and a graph is biconnected if it has no articulation points. Equiv-
alently, G is biconnected if any two vertices v, v’ have two vertex-disjoint paths in
G between them. Recall also that the one-point wedge of two topological spaces X
and Y is defined to be the quotient of their disjoint union in which a point z € X
and y € Y have been identified. That is, the two spaces have been glued together
at a single point from each.

Lemma 7. Let P be a connected A-triangulable set in R®. Assume v € A is an
articulation point of G;s(P, A). Let {A;}S_, be the sets of vertices of the different
connected components of G;s(P, A) — v, and let

P, = U conv(A).

ACA;U{v}
conv(A)CP

Then

(1) Each {P;} is A; U {v}-triangulable.
(2) P is homeomorphic to the one-point wedge \/;_, P;, with wedge point v.
(3) Ayis(P, A) is homeomorphic to the one-point wedge

c

\/ Avis(-Riv -Ai U 'U),

i=1

with wedge point v.
(4) Baues(P,.A) is isomorphic as a poset to [];_, Baues(P;, A; Uv)

Proof. All four assertions follow immediately from the following observation: if
A C A has conv(A) C P, then all the points of A lie in the same biconnected
component of Gys(P,A), so A C A; Uwv for some 3. O

The next lemma allows us to assume that P has no mazimal edges, i.e., every
edge e in the triangulation of P is contained in some higher dimensional face.

Lemma 8. Let P be a connected A-triangulable set in R?2. Assume A is in general
position (no three points collinear) Gyis(P, A) is biconnected, and let e be a mazimal
edge in the triangulation A of P. Then
(1) P — e is A-triangulable.
(2) P is homotopy equivalent to the one-point wedge of the spaces P — e and a
circle S1.
(3) Ayis(P, A) is homotopy equivalent to the one-point wedge of the spaces
Ayis(P — e, A) and a circle S*.
(4) Baues(P,.A) is isomorphic as a poset to Baues(P — e, A)

Proof. The first assertion is obvious.
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The second assertion follows from the following observation: if e is a maximal
edge in a finite simplicial complex A and A — e is connected, then A is homotopy
equivalent to the one-point wedge of A — e and S'. To see this fix one endpoint v
of the edge e, and let the other endpoint v’ slide along a path connecting v to v’ in
A —e. This gives the homotopy between the two spaces. Note that in the situation
of the lemma, A — e is connected since Gyis(P,.A) is biconnected.

The third assertion will also follow from the same observation, if we can show
that the edge € in A,;;(P,.A) spanned by the endpoints v,v’ of e is maximal in
Ayis(P, A), since then we would have A, (P, A) — é = A,is(P — e, A) by our
general position assumption. If é were not maximal, then there exists some v" so
that conv(v,v’,v”) C P. Again by our general position assumption, v,v’,v"” are
not collinear, so conv(v,v’,v") is a triangle inside P which contains the edge e =
conv(v,v’). But this implies that some 2-simplex in A must contain e, contradicting
maximality of e in A.

The fourth assertion follows from the following claim: every polytopal decom-
position & = {F;, A;} of P must use the edge e as one of the P;. The reason is
that the union of the P; must cover P and hence contain e, but e is not contained
in any triangle, and there are no vertices v” collinear with v,v’ (by our general
position assumption) which could be used to subdivide e or to produce a larger
edge covering e. 0

The next lemma allows us to assume that every vertex used in the triangulation
A of P has connected link.

Lemma 9. Let P be a connected A-triangulable set in R?. Assume A is in general
position (no three points collinear) Gy;s(P, A) is biconnected, and no edge of P is
mazimal. Let v be a vertex in the triangulation A of P which has disconnected link.
Then there exists a point set A" and an A’-triangulable space P’ satisfying the same
hypotheses as P, A and furthermore:

(1) P is homotopy equivalent to the one-point wedge of the spaces P' and a
circle S.
(2) Ayis(P, A) is homotopy equivalent to the one-point wedge of the spaces
Ayis(P', A') and a circle S.
(3) Baues(P,.A) is isomorphic as a poset to Baues(P’, A").
(4) The quantity
> Bo(linka (w))

vertices w

is smaller for (P', A") than for (P, A), where By denotes rank of the re-
duced 0-homology, which is simply one less than the number of connected
components.

Proof. Construct A’ from A and P’ from P as in Figure 4. To be precise, pick a
connected component C in linka (v), and double the vertex v to create a “twin”
vertex v’ very near to v at a small but generic distance in a generic direction toward
the middle of an edge of C'. Note that one can create such a twin by our general
position assumption on A. The connected component C must contain an edge,
for if C were a single vertex {w} then the edge vw would be maximal in P. Let
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P p’! P’

FIGURE 4. The process P ~» P" ~» P’.

A’ = AU{v'}, and obtain P’ from P by replacing the subcomplex v * C in A with
v *xC.

It is clear that P’, A’ satisfy the same hypotheses as P, A. It will be helpful in
proving the rest of the assertions of the theorem to imagine an intermediate step

in this process
P ~ PII s Pl

where P” is obtained from P’ by adding an edge from v to v’ as shown in Figure 4.

To prove the first assertion, note that P, P” are obviously homotopy equivalent
(shrink v’ toward v along the edge between them), and since Gyis(P”, A") is still
biconnected, we can apply the second assertion of the previous lemma to show that
P’ is homotopy equivalent to the one-point wedge of P” with a circle.

To prove the second assertion, by the third assertion of the previous lemma,
Ayis(P", A’) is homotopy equivalent to the one-point wedge of A,;;(P’, A’) with
a circle. However, it is not quite as obvious that A.;s(P,.A), Ayis(P”, A’) are
homotopy equivalent. However this is still true, since we showed in the proof of
the previous lemma that the edge € spanned by v, v’ in A,;s(P”,.A’) is maximal,
because the edge from v to v’ was maximal in P”. Hence we can still “shrink down”
v’ toward v in A, (P, A’) along the maximal edge é, and the result is A,;5(P, A).

The third assertion is obvious.

The fourth assertion is easy, since the number of connected components of
linka (w) is unchanged for most vertices in going from P to P’, is one smaller
for v, while v’ contributes 0 to the sum for P’ since its link is connected. O

Corollary 10. In proving Theorems 1 and 2, it suffices to consider the case where
P is a connected A-triangulable 2-manifold with boundary in R2.

Proof. By Lemmas 6-9, we may assume (using induction on various quantities) that
P is connected, has no maximal edges, and has the link of every vertex connected.
We claim that this implies P is a manifold with boundary.

To see this, choose some point p € P, and we will show that it has a neighborhood
homeomorphic to either R? or the upper half-plane Ri. If p lies in the interior of
a 2-simplex in the A-triangulation A of P, then it has a neighborhood in this 2-
simplex homeomorphic to R?. If p lies in the interior of a 1-simplex of A, then
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this 1-simplex lies either in one or two 2-simplices, since P has no maximal edges.
But this then implies p has a neighborhood inside these 2-simplices homeomorphic
to either RZ or R? respectively. Lastly, if p is a O-simplex of A, then linka (v) is
a connected 1-dimensional simplicial complex, in which every vertex has degree at
most 2 (else A would not embed in R?). Therefore the link is either a path or
a circle, so p has a neighborhood homeomorphic to either Rﬁr or R?, respectively,
inside starp (v) = v * linka(v). O

In preparation for the following two sections, we establish some notation and
terminology about (P,.A) when P is a connected 2-manifold with boundary in RZ,
and A is in general position.

Since P is a 2-manifold with boundary embedded in R?, it follows that its bound-
ary is a collection {C;}%_, of A-triangulable polygonal Jordan curves (which in the
computational geometry literature are referred to simply as polygons), and there
will be one such curve C containing all the rest inside it. A vertex v in ANC is
called convez if its interior angle is less than 7. It is well-known that every polygonal
Jordan curve has at least 3 convex vertices.

IV. Proof of Theorem 1.
We recall here the statement of Theorem 1:

Theorem 1. Let A be a finite set of points in general position in R?. Then
Ayis(P, A) is homotopy equivalent to P.

The proof of Theorem 1 is essentially a deletion-contraction argument, using
induction on the cardinality |.4|. By Corollary 10, we may assume P is a 2-manifold
with boundary, and we let v be a convex vertex of C with neighbors v’ and v”. We
define three other pairs of spaces and vertex sets

(Pdela -Adel), (Pstar, Astar), (Rinka Alink)

as follows:
Pia= |J conv(4)
ACA~-v
conv(A)CP
Pstar = U conv(A)
vEACA
conv(A)CP
Pik= |J conv(4-v)
vEACA
conv(A)CP
Adel =A—-v
Astar = {'UI € A: COIIV(’U,’U’) C P}
Alink = Astar — v.

Theorem 1 will follow from these two lemmas:

Lemma 11.

(1) Pger s an Age-triangulable space.

(2) dela,;,(p.4)(v) = Ayis(Pael, Ader)-
(3) Pgael is homotopy equivalent to P.
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Lemma 12.

(1) Pink s an Ajnk-triangulable space.
(2) linkAMs(p’_A) ('U) = Amls(})linky Alink)'
(3) Pink s contractible.

To see why Theorem 1 follows from these lemmas (and for other purposes) we
will make use of the following well-known fact about simplicial complexes (see e.g.
[Bj2, Lemma 10.3]):

Lemma 13. In a simplicial complex A, if the link of a face F' is contractible, then
the deletion dela(F) is a deformation retract of A.

Using Lemma 12 assertion (2), we have that linka . (p.4)(v) = Ayis(Plink, Alink),
and Ayis(Pink, Alink) 18 homotopy equivalent to the space Pk by induction on
|A], so it is contractible by Lemma 12 assertion (3). Hence A,;s(P, A) is homotopy
equivalent to dela,,, (p,4)(v) by Lemma 13, and by Lemma 11 assertion 2 this is iso-
morphic t0 Ay;s(Pdel, Ade1). But this is homotopy equivalent to Pye by induction,
and hence to P by Lemma 11 assertion (3).

Therefore it only remains to prove Lemmas 11 and 12.

Proof of Lemma 11. We first establish some terminology. Say that = in P is visible
from v if conv(z,v) C P. For x € Py, say that v has an obstructed view of x if
x is visible from v, but {z} # conv(v,z) N Py, and similarly define v having an
unobstructed view of x.

Let E C Pyq be the set

E = {z € P4q : v has an unobstructed view of z}.

We claim that F is a union of line segments wjwsg, wows, ... , Wp—1W, in P which
form a path v' = wy,ws,...,wyp_1,w, = v” from v’ to v" (see Figure 5). This
claim follows from the following alternate description of the set E: the path FE is
the set of points z on the boundary of the polygon conv(AN ||stara (v)|]) which lie
on the sides visible from v, i.e., such that conv(v,z) N conv(A4 N ||stara (v)|]) = z.
The truth of this alternate description should be geometrically clear from Figure 5,
and we will not supply a proof, which would be tedious.

Since E is a 1-dimensional subspace of P, by Lemma 5 we can find a triangu-
lation A of P which restricts to a triangulation of E. We now claim that dela (v)
triangulates Pge. To see this note that every simplex of dela (v) lies in Pge since
it lies in P and doesn’t involve the vertex v. Conversely, we need to show every
point z of Pye lies in some simplex of dela (v). Such a point z lies in some simplex
F of A, and if v is not a vertex of F, then F is still a simplex of dela(v). If v is
a vertex of F', then conv(v, z) lies in F, so conv(v, ) must contain a point y in E,
i.e., y is the closest point of Pge to v on conv(v,z). If y = = then € E C Py,
and if y # x then the simplex F' crosses an edge of F, contradicting the fact that
A restricts to a triangulation of E.

From this claim, assertion (1) of Lemma 11 is now clear, and assertion (3) follows
from Lemma 12, since linka (v) is the contractible path ' = wy,ws, ... ,Wp_1, Wy =
v". Assertion (2) is obvious once we know that Pye is Age-triangulable. 0O
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FIGURE 5. The path FE.

Proof of Lemma 12. Rather than showing the assertions of Lemma 12 directly, note
that if we can show Pgar is an Agac-triangulable contractible space, then Lemma
12 immediately follows from Lemma 11 applied with A = Agar and P = Pyy,.
Contractibility of Pga, is obvious since it is star-shaped with respect to v.
Therefore our strategy will be to produce an A-triangulation A of P which
restricts to a triangulation of Agssr. To do this, we proceed in two steps:
Step 1. In the first step, use Lemma 5 produce a an A-triangulation A of P which
restricts to a triangulation of the 1-dimensional subspace E C P defined by

E = U conv(v, x).

vEA
conv(v,z)CP

Step 2. Now let A’ be any A-triangulation of P satisfying these two properties:

(1) Every vertex w in .4 which is visible from v in P lies inside ||stara:(v)]].
(2) The set of vertices contained in linkas(v) is minimal under inclusion among
all triangulations satisfying (1).

We know from Step 1 that one can produce a A’ satisfying (1), and hence one can
find one that also satisfies (2).

We now claim, that such a A’ has stara(v) triangulating Astar. To prove this,
note that every simplex in stara/(v) lies in Agtar by definition. Conversely, we need
to show every point = of Py, lies in some simplex of staras(v).

By definition such a point z lies in some set conv(A) C P where v € A and so
it is easy to see that = must lie in some triangle conv(v, w,w’) where w,w’ € A .
Since both w,w’ are visible from v, they lie inside |[staras(v)||. If = also lies inside
||stara: (v)|} we are done, so assume not and we will reach a contradiction.

It is easy to see (Figure 6) that if ¢ ||staras(v)||, there must be some triple
of vertices u',u,u” which are consecutive (in this order) on the path linka:(v),
and for which u € conv(v,v’,u”). But we claim then that there are no points
in A N conv(u, v, u”), since they would be visible from v but not contained in
|lstarar (v)||. Now define the 1-dimensional subspace E C P to be the union of the 1-
skeleton of ||stara:(v)|| and the edge conv(u’,4”), and let Z be the set of all internal
vertices of P which lie in the interior of some triangle of ||staras(v)||. By Lemma 5,
there is a triangulation of A” of P which restricts to a triangulation of E, and which
uses only internal vertices of P in Z. The latter condition forces that linka« (v) =
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linka/(v), so that A” also satisfies conditions (1),(2) above. It is also true that
A" contains the three triangles conv(v,u,u’), conv(v,u, u"), conv(u, u’,u"), which
we can replace by the single triangle conv(v,u’,u"), eliminating u as a vertex in
linka~ (v), and contradicting condition (2) for A”. O

FIGURE 6. Step 2 of Proof of Lemma 12

This completes the proof of Theorem 1. Before closing this section, we mention
a stronger statement which we were not able to prove. Note that for any A-
triangulable space P in R®, there is a natural surjection

¢ : || Avis(P, A)|| = P.

The map ¢ is defined by extending piece-wise linearly over each simplex in A,;5(P, .A)
the map that sends an abstract vertex v € A to the point v € R? which it represents.

Conjecture 14. For A in general position in R2, the map ¢ induces the homotopy
equivalence between A,;s(P, A) and P.

In the case that P = conv(.A), Billera and Sturmfels [BS] show that Baues(P, A)
is a combinatorial model for the “average” fiber of ¢. In our more general situation,
where P is an arbitrary A-triangulable space, one might think of Baues(P,.A) as
still being the combinatorial model of the “average” fiber of ¢. In this spirit the
question of whether ¢ induces a homotopy equivalence (Conjecture 13) and whether
Baues(P, A) is contractible (Theorem 2) seem intimately related.

V. Proof of Theorem 2.

In this section we prove Theorems 2 and 3, again using a variant of the deletion-
contraction method along with a topological analysis. We should mention that the
relation between deletion and contraction and regular triangulations of A (when
P = conv(A)) was studied by Billera, Gel’fand and Sturmfels [BGS] in the context
of secondary polytopes. Our arguments bear a strong resemblance to the proof of
Theorem 1.2 in [SZ], and to the proof of Theorem 1.2 in [BKS].

We recall here the statement of Theorem 2.
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Theorem 2. Let A be a finite set of points in general position in R2. Then
Baues(P, A) is contractible.

The proof of Theorem 2 uses two order-preserving maps which we will show
induce homotopy equivalences

Baues(P, A) 4, Bauesyis (P, A) 5 A,i5(P, A)

where Baues,is(P, A), Ayis(P, A) are posets which will be defined later. For both
of these order-preserving maps, the fact that they induce homotopy equivalences is
proven by the what we call the nerve-flag paradigm and which we describe now.
Nerve-flag paradigm:

Step 1: Define an order-preserving surjective map h : X — Y between the finite
posets X, Y.

Step 2: Consider the covering C = {C,} of X by the subposets Cy := (h~1(y)),
where for any subset X’ C X the notation (X’) means the order ideal in X gener-
ated by X'. Show that for any subset Y’ C Y, the intersection Nyecy'Cy is either
empty or contractible.

Step 3: Let AM(C) be the nerve of the cover C (see [Bj2,p. 1849)), i.e., N(C) is
the simplical complex with vertex set Y and a simplex Y’ whenever Nyey/Cy is
non-empty. Show that N (C) is actually the clique (flag) complez clique(G) for a
graph G on the vertex set Y, i.e., Y/ C Y forms a simplex in AM'(C) if and only if
every pair of elements in Y’ forms an edge in G.

Step 4: Let G’ be the comparability graph of the poset Y, i.e., G’ has vertex set
Y, and an edge between any two elements of y which are comparable in the partial
order on Y. Show that G’ is an edge-subgraph of G.

Step 5: Show that one can order the edges e;,...,e, in G — G’ so that for ¢ =
1,2,...,s there exists a vertex v; in G with the following properties:

(1) v; is not a vertex on the edge e; for j < i.

(2) v; lies below both endpoints of the edge e; in the partial order Y, and
therefore forms an edge in G’ with both of these endpoints.

(3) If some other vertex w # v; forms an edge in G with both endpoints of edge
e;, then v; forms an edge with w in G.

Lemma 15. If h : X — Y is a map of finite posets satisfying the nerve-flag
paradigm, then X is homotopy equivalent to Y .

Proof. By Step 2 and the usual Nerve Lemma [Bj2, Theorem 10.6], X is homotopy
equivalent to N (C). By Steps 3 and 4, it suffices to show that if G’ is an edge-
subgraph of G satisfying the conditions of Step 5, then their clique complexes
clique(G’), clique(G) are homotopy equivalent, since clique(G’) is the same as the
order complex A(Y).

To see this, consider the sequence of graphs Gy, Gy, ... ,Gs where Gy = G,G; =
G—{e1,...,e},Gs = G'. The conditions of Step 5 imply that fori =1,2,...,s-1,
the vertex v; of clique(G;) is a cone vertex for the subcomplex linkgjique(c;)(€i)
(where v;,e; are both considered here as faces of G;). Hence by Lemma 13 we
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conclude that clique(G;) is homotopy equivalent to delgjique(c;)(€i), which is clearly
isomorphic to clique(G;+1). The lemma then follows by induction. O

Remark: We should note that something stronger is true, namely that if h : X —
Y is a map of finite posets satisfying the nerve-flag paradigm, then h actually
induces the homotopy equivalence between them, i.e., h has a homotopy inverse.
To see this, one uses the Quillen Fiber Lemma [Bj2, Theorem 10.5] which says that
h induces a homotopy equivalence whenever the fibers h=!(Y<,) are contractible
forally € Y. When h : X — Y satisfies the nerve-flag paradigm, it is easy to check
that its restrictions

hln-1(v,) P (Y<y) = Yey

also satisfy the nerve-flag paradigm, and hence the fibers h‘l(Y_<_y) are homotopy
equivalent to their images Y<,. But Y<, is always contractible since it has a top
element y, hence the fibers are contractible and Quillen’s Lemma applies.

As shown in Section III it suffices to prove Theorem 2 when P is a 2-manifold
with boundary, and we may use induction on |4|. We let v,v’,v” and C have the
same meaning as in the beginning of §4. Our immediate goal is to define the first
of the two maps which satisfy the nerve-flag paradigm.

Let v, v” be points chosen close enough to v on the rays vv’, vv” respectively, so
that the triangle conv(v,v’,v”) lies in P and contains no other points of A. Define
the vertex figure P of P at v to be the line segment conv(v’,v”). When P = conv(A)
this notion of vertex figure coincides with the classical notion of the vertex figure of
v on the boundary of the polygon P (see [Gr, page 49]). Also define the contraction
A to be the collection of points {w} on the line segment P obtained by taking each
point w € A visible from v, and intersecting the line segment conv(v, w) with P.
Note that because of our general position assumption on A4, all the points {@W}y,e4
are distinct. Clearly P is an A-triangulable space. Therefore we have the notion of
its Baues poset Baues(P, A).

Define a map

f : Baues(P, .A) — Baues(P, A)

as follows: given § = {(P;, A;)} € Baues(P, A), let f(6) = {(B, A) : v € B},
where A; = {w : w € A;} and P; is the line segment conv(A4;). We wish to verify
that f satisfies each of the steps in the nerve-flag paradigm, and identify its image.
It is trivial to check this map is order-preserving, so Step 1 is satisfied.

Let Bauesms(P A) be the subposet of Baues(P,.A) consisting of those § =
{(P;, A;)} in which each line segment P; occurring satisfies

conv(A; Uv) C P,

where A; is the set {w}g o It is easy to see that this subposet is an order ideal

in Baues(P, A), and it follows immediately from the definition of the map f that
its image lies in Baues,;s(P,.A). It is not quite as obvious that this is ezactly the
image of f:
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Lemma 16. The image of f : Baues(P, A) — Baues(P,.A) is Baues,is(P,.A).

Proof. We must show that for any
8 = {(PB;, A)}r_, € Baues,is(P, A),

there is some § € Baues(P, A) with f(§) = ¢§'. For each i = 1,2,...,k, let A;
be the set {w} . and P; = conv(A;). This yields a set {(P;, Ai)}r;, and we
wish to extend this set by more polygons {(P;, A;)}_, 41 to obtain a polytopal
decomposition § = {(P;, A;)},_; of P. If this can be done, then clearly f() =4’
To do this, we need only show that P has an A-triangulation A in which stara (v)
is a triangulation of Ule P;, since then the maximal simplices in dela (v) will give
us the remaining {(P;, A;)}}_; 41 that are needed to make up 4. Applying Lemma
5 in the situation where F is the union of the boundary edges of the polygons P;
and Z is the set of all interior vertices of P provides such a triangulation A O

Having identified the image of f, we now proceed to verify that f satisfies Steps
2-5 of the nerve-flag paradigm. Consider the covering C of Baues(P, .A) by the sub-
posets Cyy := (f1(y)), for y € Bauesy;s(P, A). We establish some notation which
will prove useful. An element y € Bauesyi;(P,.A) is a polytopal decomposition
{(P;, A;)}._,, which gives rise to a set {(P;,.A;)}\_, of polygons P; and vertex sets
A; in P as in the proof of Lemma 16. Associate to y

¢ the 1-dimensional complex E, which is the union of all boundary edges of
the P;,

e the set of vertices Z,, which is the union of all internal vertices of .4 which
lie in some A;,

o the set of vertices S, consisting of all internal vertices of A that share an
edge with v in the boundary of some F;.

Lemma 17. The following are equivalent for a subset Y C Bauesy;,(P,.A):

(1)
NyeyCy # .

(2) For ally,y’ €Y, we have that
CyNCy # 2.
(3) For ally,y’ €Y, we have that
S,U S, CT,NI,
and E, U Ey contains no pair of edges with intersecting interiors.

(4)

Uyey Sy € NyevZy

and Uycy By contains no pair of edges with intersecting interiors.
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Proof. The implications (1) = (2) and (3) = (4) are trivial.

For the rest, we observe that by definition of Cy, a polytopal decomposition of
P is in Cy if and only if it restricts to a polytopal decomposition of E, and uses
only internal vertices from Z,.

To deduce the implication (2) = (3), assume there is some polytopal decompo-
sition in Cy, N Cy, which would have to restrict to a polytopal decomposition of
E, UE,s and use only internal vertices in Z, N Z,s. But this implies E}, U E, can’t
have any pair of edges with intersecting interiors, and that Sy, Sy, must both lie
T,NI, since they are internal vertices which lie on endpoints of edges in E, U E,.

To deduce the implication (4) = (1), apply Lemma 5 with £ = Uycy E, and
I = NyeyT, to obtain a triangulation in NyeyCy. O

Lemma 18. For any subset Y C Bauesy;s(P, A) the intersection Nycy Cy is either
empty or else a finite Cartesian product of posets

H Baues(P,, Aq)

with Ay C A for each a.

Proof. Assume that ¥ C Bauesvis(?, :1) has Nyey Cy non-empty, and let £ =
Uyey Ey. Let {P,} be the topological closures of the connected components of
P — E, and let A, = P, NZ. By the proof of the previous lemma, any polytopal
decomposition in Ny ey Cy restricts to a decomposition of each P,, and is completely
determined by these restrictions. Refine any such polytopal decomposition to a
triangulation A. Then for each a, P, is an A,-triangulable space since A restricts
to an A,-triangulation of P,. This gives a poset isomorphism

Nyey Cy — H Baues(Py, Aqy)-

O

Note that since Theorem 2 is true by induction on |.4| for each Baues(P,, As),
and a Cartesian product of contractible posets is contractible, Lemmas 17 and 18
verify that f satisfies Steps 2 and 3 of the nerve-flag paradigm. Lemma 17 also
allows us to describe the graph G for which the nerve N(C) is clique(G): two
elements y,y’ € Baues,;s(P, .A) share an edge in G if and only if E, U E,, contains
no pair of edges with intersecting interiors, and S, U Sy C I, NI,

To verify Step 4, given y < y’ in Baues,is(P, A), note that S, C S, and Z,, C T,
so that

SyUSy =8, CT,=Z,NIy,

and it is easy to check that E, U E,s can have no pair of edges with intersecting
interiors. Therefore every edge of the comparability graph G’ of Baues,;; (P, A) is
also an edge in G.

To verify Step 5, we will make use of the well-known fact (see [BKS, Example
3.1]) that the poset Baues(P,.A) is actually a lattice, in fact the lattice of faces
of an (JA] — 2)-cube whose vertices correspond to the interior vertices of P. As a
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consequence, the order ideal Baues,;s(P,.A) is a meet-semilattice, i.e., there is a
greatest lower bound y A 3’ for any y,y’. Now given y,y’ forming an edge e; of
G — G, let v; be the vertex corresponding to the poset element y Ay’, which clearly
lies below both ¥, 4’ in Baues,;;(P,A). One can check that

Syny' = Sy U Sy
Iyny =y NIy
Eyny C E,UE,y.

Given any other element w € Baues,;s(P, A) that forms an edge of G with both
y,y', we conclude that

SwUS,USy CI,NT, NI,

and hence

Furthermore, E 5, U E,, can contain no pair of edges with intersecting interiors
since Ey U Ey U By, doesn’t. Hence v; = y Ay’ forms an edge of G with w, as
desired. Lastly, it is possible to order the edges ej,...,e; in G — G’ so that v; is
not an endpoint of e; for j < ¢ as follows: If e; has endpoints {y;,y;} then choose
the indexing so that

YIAYL, Y2 A Y, ...

is a linear extension of the partial order dual to Bauesy;s(P, A), i.e., yi Ay: > y; NY;
implies 7 < j. This implies that if v; is an endpoint of e; = {y;, y;}, then y; Ay =
v; > y; Ays, 801 < j.

This completes the verification that f satisfies the nerve-flag paradigm, and
hence f induces a homotopy equivalence Baues(P,.4) — Baues,i;(P, A) by Lemma
15.

Our next goal is define the second map to which we will apply the nerve-flag
paradigm. Define a map

g : Baues,;,(P, A) — 24

as follows: if 6 = {(B;, A;)}%_; € Baues,s(P, .A) then there is a unique line segment
P, containing the vertex v’ € P, and we set

g0 ={we A:we Aj,w#'}.

It is easy to check this map is order-preserving, if we order 2 by inclusion of sets.

Let (13, ./I) denote the pair obtained from (P, .A) by doing the (Pink, Alink) con-
struction with respect to v. Then, let (P, .4) denote the pair obtained from (P, A)
by doing the (151ink, filink) construction with respect to v’ (since one can easily check
that v’ must be a convex vertex of the boundary curve of P.) Notice that the sets
A which are in the image of g must have the property that conv(4A U {v,v'}) C P.
Therefore the image of the map g lies in the visibility complex A, (P, A) (thought
of as its poset of faces). In fact, this characterizes the image:
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Lemma 19. The image of g is Ayis(P, A).

Proof. By the previous remarks, we need to show that any set A C A — {v,v'}
for which conv(A U {v,v'}) C P is in the image of g. Tracing this back through
the definition of g, we need to show there is a 6’ € Baues(P,.A) having conv(A)
as one of its line segments, which is equivalent by Lemma 16 to showing there is a
d € Baues(P, A) having conv(AU {v,v’}) as one of its polygons. If we let E be the
boundary complex of conv(A U {v,v'}) and T the set of all internal vertices of A,
then Lemma 5 produces an A-triangulation A of P which restricts to a triangulation
of conv(AU {v,v'}). “ Erasing” all the vertices and edges of A which intersect the
interior of conv(A U {v,v'}) gives a polytopal decomposition § that does what we
want. [0

Since P comes from applying the P ~» Bjnx construction, it is contractible by
Lemma 11, and hence Avis(p, ./i) is contractible by Theorem 1. Therefore the
contractibility of Baues,;s (P, A) will follow if we can show that g satisfies Steps 2-5
of the nerve-flag paradigm. As before, we make use of induction on the cardinality
|A|, i.e., assume that Baues,;,(P’, A’) is contractible for all A’-triangulated spaces
P’ which have a vertex v where the vertex-figure P’ makes sense and |A| < |A|.

Consider the covering C of Baues,;s(P, A) by the subposets C4 := (g~1(A4)), for
A a face of Am-s(fD, ./i) Linearly order A by saying w < w' if W lies between v’ and
w’ on the line segment P. For any subset A C A4, let max(A) denote the maximum
element of A in this linear order.

Lemma 20. The following are equivalent for a collection'Y of faces of Ayis (P, fl)

(1)
NaeyCa # @.

(2) For all A,A' €Y, we have that
CanCy # 2.

(3) Forall A, A" €Y, we have that either max(A) € A’ or max(A’) € A.
(4) It is possible to linearly order the sets A; in'Y so that for alli < j, we have
max(A,;) € Aj.

Proof. The implications (1) = (2) and (3) = (4) are trivial.

For the rest, we observe that by definition of C4, a polytopal decomposition
6 = {(B;, A;) in Baues,;s(P, A) will lie in C4 if and only if max(A) occurs as the
endpoint of one of the line segments P;, and all the other vertices in U;.4; lying
between v’ and max(A) must be elements of A.

To deduce the implication (2) = (3), assume there is some polytopal decompo-
sition in C4 N C4r, and assume without loss of generality that max(A4) < max(A4’)
in the linear order. But then the previous description of C4 implies max(A) € A'.

To deduce the implication (4) = (1), let § be the triangulation of P which uses
exactly the internal vertices {max(A)}acy. This triangulation is an element of

ﬂAeyCA.
0
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Lemma 21. For any collection Y of faces of Ayis(P, A) the intersection Nacy Cy
is either empty or else a finite Cartesian product of posets

H Bauesys (P_a, Aa)

where for each a, Py is an Ag-triangulated space for which the vertez-figure Py
makes sense, and A, C A.

Proof. Assume that N4cy C4 non-empty, and let E be the set of vertices {max(A4)}acy-
Let {P,} be the line segments which are the topological closures of the connected
components of P — E. For each « let A, be the intersection of the elements of

A as A ranges over those sets in Y for which P, lies between max(A4) and v’. By
the proof of the previous lemma, any polytopal decomposition in N4cy C4 restricts

to a decomposition of each P,, and is completely determined by these restric-
tions. Furthermore, one can check that for each o, P, is the vertex-figure of an
Aq-triangulable space P,. This gives a poset isomorphism

NacyCa — H Bauesyis(Pa, Aa)-

«

O

Note that since each Baues,;;(Ps,.44) is contractible by induction on |.4|, Lem-
mas 20 and 21 verify that g satisfies Steps 2 and 3 of the nerve-flag paradigm.
Lemma 20 also allows us to describe the graph G for which the nerve N'(C) is
clique(G): two elements A, A’ in the poset of faces of A, (P,.A) share an edge in
G if and only if either max(A) € A’ or max(4’) € A.

To verify Step 4, given A < A’ in the poset of faces of Ayi,(P, A), we certainly
have max(A) € A’ since A C A’. Therefore every edge of the comparability graph
G’ of Baues,i;(P,.A) is also an edge in G.

To verify Step 5, given A, A’ forming an edge e; of G — G, let v; be the vertex
corresponding to the face AN A’, so clearly v; is lies below both A, A’ in the poset
of faces of Avis(f’, fl) Given any other face B of Am-s(fD, .Ai) that forms an edge of
G with both A, A’, we must check that B forms an edge of G with AN A’. To do
this, we may assume without loss of generality that max(A) € A, and check two
cases depending upon whether max(B) < max(A) or max(B) > max(A). In the
former case, we must have max(B) € A, A’ and hence max(B) € AN A’, so we are
done. In the latter case, max(A) € A’, B and hence max(A N A’) = max(A4) € B,
so we are again done.

Lastly, it is possible to order the edges e;,...,e, in G — G’ so that v; is not an
endpoint of e; for j < 4 as follows: If e; has endpoints {A4;, A]} then choose the
indexing so that

4101 A4 > [Ap 0 4] > -
This implies that if v; is an endpoint of e; = {A;, A%}, then A;NA; = v; € {4;, 45},
so |A; N Aj] > |A; N Aj| which implies ¢ < j.

This completes the verification that g satisfies the nerve-flag paradigm, and hence
induces a homotopy equivalence Bauesyis (P, A) — Ayis(P,.A) by Lemma 15. Since
Ayis (15, ft) is contractible, the proof of Theorem 2 is now complete.

From the proof of Theorem 2 we now deduce Theorem 3.
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Theorem 3. Assume A is in general position in R*. If P = conv(A), then
Baues(P, A) has a unique top element 1, and Baues(P, A)—1 is homotopy equivalent
to a sphere of dimension |A| — 4.

Proof. When P is convex, i.e., P = conv(.4), the map f : Baues(P, A) — Baues(P, A)
is a surjection since Baues(P,.4) = Baues,;s(P,.4). Furthermore, the top element
1 in Baues(P, A) is the polytopal decomposition {(P,A)}, having a single polygon,
and this is the unique pre-image of the top element 1 of Baues(P, A) consisting of
the single pair {(P,A)}. Therefore Baues(P, A) — 1 surjects onto Baues(P, A) — 1.
Furthermore, this restricted map also satisfies the nerve-flag paradigm since f did,
and hence induces a homotopy equivalence. But Baues(P, A) — 1 is the face poset

of the boundary of an (JA| — 2)-cube, and hence triangulates a (|.4] — 3)-sphere.
Since |A| = |A| — 1, Theorem 3 follows. O
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