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ABSTRACT. We give a positive answer for the special cageé of the Generalized Baues
Problem which asks whether the complex ofxt‘rﬂi‘angula,tions‘\ of a point set A in general
position in the plane has the homotopy type of a sphere. In the process, we are led
to define the wvisibility complex for a simplicial complex whose vertices lie in A, and
prove that this visibility complex has the same homotopy type as P. The main
technique is a variant of deletion-contraction from matroid theory.

I. Introduction.

The subject of triangulations of a point set A in R? has undergone a recent surge
of interest, partly due to the theory of secondary polytopes and A-discriminants and
resultants defined by Gelfand, Kapranov, and Zelevinsky [GKZ], and also due to a
problem raised by Baues [Ba] in homotopy theory. These two developments were
unified by Billera and Sturmfels in their work on fiber polytopes [BS], and led Billera
et. al [BKS], to formulate the Generalized Baues Problem (GBP) associated to a
surjection of convex polytopes P — Q. Given two polytopes P and @ and an
affine surjection P — (@, the problem asks whether a certain complex of polygonal
decompositions of @@ induced by the faces of P has the same homotopy type as the
subcomplex of coherent decompositions, which are defined geometrically. This sub-
complex is known to be isomorphic to the boundary complex of a convex polytope
(the fiber polytope L(P,Q)) and hence is spherical.

The answer to the GBP is known to be positive when dim(Q) = 1 [Bj1], [BKS],
and when dim(P)—dim(Q) < 2 [RZ], however counterexamples were given recently
by Rambau and Ziegler [RZ] with dim(Q) > 2 and dim(P) — dim(Q) > 3 (see this
reference for a more complete discussion of the GBP). The most interesting cases
of the GBP are those where P is either an n-cube or an n-simplex, since a positive
answer in these instances would resolve the weaker question of whether all cubical
subdivisions of a zonotope Z are connected by mutations, or all triangulations of
a point set A are connected by bistellar operations, respectively. For P an n-cube
the answer to the GBP is known to be positive for dim(Q) < 2 [SZ]. For P an n-
simplex, it was proven that all triangulations of A in R? are connected by bistellar
operations by Lawson [La|, which shows that the complex considered in this case
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of the GBP is at least connected. In this paper, we will give a positive answer to
the GBP for triangulations of A in general position in R?.

In fact, we prove something stronger. For an arbitrary simplicial complex P
embedded in R? and using only vertices in A, we will show that there is a complex
generalizing the complex considered by the GBP, and that when A is in general
position in R?, this complex is contractible (Theorems 2 and 3). Our method j
variant of the deletion-contraction technique from matroid theory, 1n combination

with Quillen’s Fiber Lemma. An interesting by-product of the analysis 1s that it
requires us to understand the homotopy type of a simplicial complex which we call
the visibility complez for the pair (P, A). We prove that this visibility complex has

the same homotopy type as P (Theorem 1).

The paper is organized as follows. Section II gives the basic definitions and states
the main results (Theorems 1,2, and 3). Section III reduces Theorems 1 and 2 to
the case where P is a manifold with boundary. Section IV completes the proof of
Theorem 1, and Section V uses this to complete the proof of Theorem 2. Theorem
3 is then deduced as a corollary to the proof of Theorem 2.

II. Definitions and statement of results.

Let A be a finite set of points in R%. A set P in R? will be called A-triangulable
if, roughly speaking, it has a triangulation as a simplicial complex whose vertices
are a subset of A. To be more precise, let A = {vy,...,v,} C R? and say that
P C R%is A-triangulable if A C P and there exists an abstract simplicial com-
plex A on vertex set {1,2,...,n} (not necessarily using every index as a vertex)
whose geometric realization ||A|| maps homeomorphically onto P (endowed with
the subspace topology) under the map from ||A|| into R¢ which sends an abstract
vertex ¢ to the point v;. In what follows, we will often abuse notation by drawing
no distinction among the topological space P, the homeomorphic space |A||, and
the simplicial complex A, so that we can refer to vertices, edges in P, and so on.

For a set A C A, let conv(A) denote the convex hull of the points of A. Given
an A-triangulable set P, define the visibility complex A,is(P, A) to be the abstract
simplicial complex on vertex set A whose simplices are the subsets 4 C A with
conv(A) C P. The visibility graph G,;s(P, A) is the 1-skeleton (vertices and edges)
of Ayis(P, A) (cf. [OR2])

A polytopal decomposition & of the pair (P, A) is a set of pairs {(P;, A;)}F
satisfying the following conditions:

(1) For each ¢, we have A; C A and P; = conv(A4;).

(2) P=UL, P:

(3) For each 7 # j, the polytopes P;, P; intersect in a common proper face F of
each (possibly the empty face, but not P; or P itself), and 4;NF = A;NF.

Note that an A-triangulable space P always has at least one polytopal decom-
position coming from its A-triangulation A, namely § = {(P;, A;)} where {F;}
are the mazimal faces of A, and A; is the set of vertices of P;. Furthermore, if
6 = {(Pi,Ai)} is a polytopal decomposition of P, then any union |J, P;, is an
(Uq Pi, N A)-triangulable space: simply refine each P; in § to a triangulation which
introduces no new vertices and restrict this simplical complex to its faces lying in

Ua Pza -
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Define the decomposition poset Dec(P,.A) to be the set of all polytopal decom-
positions § of (P, A) ordered by refinement, i.e., if

6= {(PZ’A)HC 1
= {(P}, Aj)} 5

then § < §' means for each i = 1,2,... , k there exists some j so that P; C P] and C{/(V"(K . "'(“

We v;;ill prove the following results about the homotopy type of A,;s(P, A) and
Dec(P, A) (when referring to the homotopy type of a poset @, we mean the ho'—mf
motopy of its order complex A(Q), see [Bj2, (9.3)]). All of our results will assume
that A is in general position in R?, i.e. no three points of A are collinear. It is
not clear whether this assumption is necessary for any of these results, but it will

greatly simplify some of the proofs.

Theorem 1. Assume A is in general position in R?, and P is an A-triangulable

space. Then Ay;s(P, A) is homotopy equivalent to P. 4=~ I\L\ ce o ';“\"5

Theorem 2. Assume A is in general position in R? and P is an A-triangulable
space. Then Dec(P,A) ts contractible.

Theorem 3. Assume A is in general position in R% If P = conv(A), then
Dec(P, A) has a unique top element 1, and Dec(P, A) — 1 is homotopy equivalent
to a sphere of dimension |A| — 3.

When P = conv(A), this poset Dec(P, A)—1 is isomorphic to the poset S(A™1, P)
considered in the Generalized Baues Problem [BKS, p. 554], where here A" ! is a
simplex with n = |A| vertices mapping onto P by the canonical surjection.

Because we will need it frequently, we record here the following well-known

lemma [OR1,Theorem 1.2]:

Lemma 4. Let C be an A-triangulable Jordan curve in the plane, i.e., C is a
polygonal embedding of the circle S* — R? using only vertices in A. Then the
closure C of the interior of C' has an A-triangulation. [

It is important to note that Lemma 4 does not generalize to three dimensions.
That is, there exists a non-convex polyhedron in three dimensions whose interior
cannot be partitioned into tetrahedra with vertices chosen from those of the poly-
hedron. See [OR1,§10.2.1] for a discussion of some examples.

III. Reduction to manifold with boundary.
In this section we simultaneously reduce both Theorems 1 and 2 to the case
where P is an A-triangulable manifold with boundary by a sequence of lemmas.
The first lemma allows us to assume that P (and hence A,;;( P, A)) is connected.

Lemma 5. Let P be an A-triangulable set in R?, with connected components
{P;}5_,. Then

(1) Each P; is (AN P;)-triangulable.

(2) Ayis(P, A) has connected components {Ayis(Pi, AN P;) Y6,
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(3) Dec(P,.A) is 1somorphic as a poset to the Cartesian product 65/ ) u% ( -4

[[ Pec(Pi, A P

i=1

Proof. Let A be an A-triangulation of P. Since the connected components of A
are identified with those of P, the first assertion is obvious.

To prove the second assertion, we must show that v,v’ € A lie in the same
connected component of P if and only if they lie in the same connected component
of A,;s(P, A). But this is clear, since v,v' being connected in P implies that there
is a path in the 1-skeleton of A between them, which corresponds to a path in
A,is( P, A), and likewise if there is a path in A,;s(P, A) between them it leads to a
path in P between them.

To prove the third assertion, note that any decomposition é of (P, .A) is uniquely
defined by its restriction to each connected component of P. [

The next lemma allows us to assume that the visibility graph G,;s(P,.A) is bi-
connected. Recall that for a graph G, a vertex v is an articulation point if G — v
is disconnected, and a graph is biconnected if it has no articulation points. Equiv-
alently, G is biconnected if any two vertices v,v’ have two vertex-disjoint paths in
G between them.

Lemma 6. Let P be a connected A-triangulable set in R Assume v € A is an
articulation point of Gyis(P, A). Let {A;}5_, be the sets of vertices of the different
connected components of G,is(P, A) — v, and let

P; = U conv(A).
ACA;U{v}
conv(A)CP

(1) Each {P;} is A; U {v}-triangulable. &
(2) P 1s homeomorphic to the one-point wedge Vi_, P;, with wedge point v.
(3) Ayis(P, A) ts homeomorphic to the one-point wedge

\C/ Avis(Pia-Ai U ’U),

=1

with wedge point v.
(4) Dec(P, A) is isomorphic as a poset to [[;_, Dec(P;, A; Uv)

Proof. All four assertions follow immediately from the following observation: if
A C A has conv(A) C P, then all the points of A lie in the same biconnected
component of G,;s(P, A), so A C A; Uv for some . [J

The next lemma allows us to assume that P has no mazimal edges, i.e., every
edge e in the triangulation of P is contained in some higher dimensional face.

)



Yt wd

v“"*(,{,%’a k

VISIBILITY COMPLEXES AND THE BAUES PROBLEM 5

Lemma 7. Let P be a connected A-triangulable set in R?. Assume A is in general
position (no three points collinear) Gois( P, A) ts biconnected, and let e be a mazimal
edge in the triangulation A of P.
(1) P — e is A-triangulable.
(2) P 1is homotopy equivalent to the one-point wedge of the spaces P — e and a
circle S1.
(3) Ayis(P, A) is homotopy equivalent to the one-point wedge of the spaces
Ayis(P — e, A) and a circle S*.
(4) Dec(P, A) is isomorphic as a poset to Dec(P — e, A)

Proof. The first assertion is obvious.

The second assertion follows from the following observation: if e is a maximal
edge in a finite simplicial complex A and A — ¢ is connected, then A is homotopy
equivalent_to the one-point wedge of A — e and S'. To see this fix one endpoint v
of the edge e, and let the other endpoint v’ slide along a path connecting v to v’ in
A —e. This gives the homotopy between the two spaces. Note that in the situation
of the lemma, A — e is connected since G,;s(P,.4) is biconnected.

The third assertion will also follow from the same observation, if we can show
that the edge é in A,;5(P,.A) spanned by the endpoints v,v' of e is maximal in
Ayis(P, A), since then we would have A, (P, A) — é = A,;s(P — e, A) by our
general position assumption. If é were not maximal, then there exists some v"' so
that conv(v,v’,v") C P. Again by our general position assumption, v,v’,v" are
not collinear, so conv(v,v’,v") is a triangle inside P which contains the edge e =
conv(v,v'). But this implies that some 2-simplex in A must contain e, contradicting
maximality of e in A.

The fourth assertion follows from the following claim: every polytopal decom-
position § = {P;, 4;} of P must use the edge e as one of the P;. The reason is
that the union of the P; must cover P and hence contain e, but e is not contained
in any triangle, and there are no vertices v" collinear with v,v’ (by our general
position assumption) which could be used to subdivide e or to produce a larger

edge covering e.

The next lemma allows us to assume that every vertex used in the triangulation
A of P has connected link. But first we recall some definitions from simplicial
topology (see [Bj2, (9.9)]): The link, star and deletion of a face F in a simplicial
complex A are the subcomplexes defined by

linka(F) :{GEA,GUFEA,GQFZQ}’ {
stara(F)={G e A,GUF e A}

delA(F):{GEA,GﬂF:@} :
e

Note that these definitions satisfy
A = stara(F) U delp(F)
linka(F) = stara (F) N dela(F)

starp (F) = F x linka(F)

where here F' means the simplical subcomplex generated by F', and * denotes the
operation of simplicial join [Bj2, (9.5)].

A

g

N

,
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Lemma 8. Let P be a connected A-triangulable set in R2. Assume A is in general
position (no three points collinear) Gis(P, A) is biconnected, and no edge of P s
mazimal. Let v be a verter in the triangulation A of P which has disconnected link.
Then there exists a point set A’ and an A'-triangulable space P' satisfying the same
hypotheses as P, A and furthermore:

(1) P is homotopy equivalent to the one-point wedge of the spaces P' and a
circle S1.

(2) Ayis(P, A) is homotopy equivalent to the one-point wedge of the spaces
Ayis(P', A') and a circle St.

(3) Dec(P, A) is tsomorphic as a poset to Dec(P', A").

(4) The quantity

Z Bo(linkA(w))

vertices w

s smaller for (P', A") than for (P, A), where Bo denotes rank of the re-
duced 0-homology, which s simply one less than the number of connected
components.

Proof. Construct A’ from A and P’ from P as in Figure 1. To be precise, pick a
connected component C in the link linka(v), and double the vertex v to create a
“twin” vertex v’ very near to v at a small but generic distance in a generic direction
toward the middle of an edge of C'. Note that this is possible by our general position
assumption on 4, and also C' must contain an edge, for if C were a single vertex
{w} then the edge vw would be maximal in P. Let A’ = AU {v'}, and obtain P’
from P by replacing the subcomplex v * C in A with v' * C.

FIGURE 1. The process P ~» P" ~» P’.

It is clear that P', 4’ satisfy the same hypotheses as P, A. It will be helpful in

proving the rest of the assertions of the theorem to imagine an intermediate step
in this process

P'V“)P”’V‘-)Pl

where P"' is obtained from P’ by adding an edge from v to v' as shown in Figure 1.



VISIBILITY COMPLEXES AND THE BAUES PROBLEM 7

To prove the first assertion, note that P, P' are obviously homotopy equivalent
(shrink v’ toward v along the edge between them), and since G;s(P"', A") is still
biconnected, we can apply the second assertion of the previous lemma to show that
P' is homotopy equivalent to the one-point wedge of P'" with a circle.

To prove the second assertion, by the third assertion of the previous lemma,
A,i(P", A") is homotopy equivalent to the one-point wedge of A,;(P’,.A") with
a circle. However, it is not quite as obvious that A,;s(P, A),A,s(P", A") are
homotopy equivalent. However this is still true, since we showed in the proof of
the previous lemma that the edge é spanned by v,v’ in A,;,(P",.A") is maximal,
because the edge from v to v’ was maximal in P"”. Hence we can still “shrink down”
v' toward v in A,;,(P", A') along the maximal edge €, and the result is A,;;(P, A).

The third assertion is obvious.

The fourth assertion is easy, since the number of connected components of
linka(w) is unchanged for most vertices in going from P to P’', is one smaller
for v, while v’ contributes 0 to the sum for P’ since its link is connected. O

Corollary 9. In proving Theorems 1 and 2, it suffices to consider the case where
P is a connected A-triangulable 2-manifold with boundary in R2.

Proof. By Lemmas 5-8, we may assume (using induction on various quantities) that
P is connected, has no maximal edges, and has the link of every vertex connected.
We claim that this implies P is a manifold with boundary.

To see this, choose some point p € P, and we will show that it has a neighborhood
homeomorphic to either R? or the upper half-plane R2. If p lies in the interior of
a 2-simplex in the A-triangulation A of P, then it has a neighborhood in this 2-
simplex homeomorphic to R2. If p lies in the interior of a 1-simplex of A, then this
1-simplex lies either in one or two 2-simplices, since P has no maximal edges. But
this then implies p has a neighborhood inside these 2-simplices homeomorphic to
either Ri or R? respectively. Lastly, if p is a 0-simplex of A, then its link linka (v)
is a connected 1-dimensional simplicial complex, in which every vertex has degree
at most 2 (else A would not embed in R?). Therefore the link is either a path or
a circle, so p has a neighborhood homeomorphic to either Ri or RZ?, respectively,
inside stara (v) = v * linka(v). O

—

In preparation for the following two sections, we establish some notation and
terminology about (P, A) when P is a connected 2-manifold with boundary in R2,
and A is in general position.

Since P is a 2-manifold with boundary embedded in R2, it follows that its bound-
ary is a collection {C;}%_, of polygonal A-triangulable Jordan curves, and there will
be one such curve C containing all the rest inside it.

Given a vertex v in AN C having nearest neig_h)bors 'v_'_,_g” on C, we will say C
bends inward at v if the interior angle between vv' and vv” (i.e., the angle swept
out by a ray emanating from v and pointing toward the inside of the Jordan curve
C) has measure less than 7 radians. Note that any polygonal Jordan curve has at
least one vertex v at which it bends inward.

IV. Proof of Theorem 1.

We recall here the statement of Theorem 1:
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Theorem 1. Let A be a finite set of points in general position in RZ  Then
Ayis(P, A) s homotopy equivalent to P.

The proof of Theorem 1 is essentially a deletion-contraction argument, using
induction on the cardinality |.A|. By Corollary 9, we may assume P is a 2-manifold
with boundary, and we let C,v,v’, and v’ be as in the end of the previous section,
and assume that C bends inward at v.

We define three other pairs of spaces and vertex sets

(P(lel> An',el), (Pst(w‘, -Asta,'/‘)a (Plinky Al-ink)

as follows:

Py = U conv(A)

ACA—v
conv(A)CP

Poior = U conv(A)

vEACA
conv(A)CP

Piing, = U conv(A — v)

v€EACA
conv(A)CP

Ager = A—v
Astar = {v' € A: conv(v,v') C P}
Alink = Astar — v.
Theorem 1 will follow from these two lemmas:

Lemma 10.

(1) Pyer 1s an Agei-triangulable space.

(2) delAm.s(ij)(v) = Avis(PdelaAdel)-
(3) Pyer is homotopy equivalent to P.

Lemma 11.

(1) Prnik s an Ajinp-triangulable space.

(2) linkAv“(P,_A)('U) = Avis(Plink)Alink)-
(3) Prink 1s contractible.

To see why Theorem 1 follows from these lemmas (and for other purposes) we
will make use of the following well-known fact about simplicial complexes (see e.g.
[Bj2, Lemma 10.3)):

Lemma 12. In a simplicial complez A, if the link of a vertez v is contractible,
then the deletion dela(v) is a deformation retract of A. & HOw O YOU ?

Using Lemma 11 assertion (2), we have that linka,,.(p,4)(v) = Avis(Prink, Atink),
and Ayis(Prink, Aink) is homotopy equivalent to the space Py, by induction on
|A], so it is contractible by Lemma 11 assertion (3). Hence A,;5( P, .A) is homotopy
equivalent to deln ; (p _a)(v) by Lemma 12, and by Lemma 10 assertion 2 this is iso-
morphic to Ayis(Pgety Ader). But this is homotopy equivalent to Py, by induction,
and hence to P by Lemma 10 assertion (3).

p

/
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Therefore it only remains to prove Lemmas 10 and 11.

Proof of Lemma 10. Our strategy will be to change the given A-triangulation A
of P into another triangulation A’ which restricts to a triangulation of Ag4.;. To
this end, denote by v' = vy,vs,... ,v5—1,v; = v' the sequence of vertices in the
path linka(v) (we know this link is a path from v’ to v", since v is a boundary
vertex in the triangulation of a 2-manifold with boundary, and v’,v" are its nearest
neighbors in the boundary). It follows that stara(v) is the subcomplex generated
by the triangles conv(v,v;,v;41) for i = 1,2,... ,k — 1 (see Figure 2a), and we
will only change A within this subcomplex to obtain A’, leaving the rest of A
alone. So for our purposes, one may as well excise the rest, replacing P, A with
llstara(v)]|, stara (v), and replacing A with A N stara(v).

Now let v = wy,ws,... ,wr—1,w) =v" be the vertices in the path which forms
the part of the boundary of conv((A —v) N stara(v)) which is not “obscured” from
v, i.e. those points z in conv((\A — v) N stara(v)) for which conv(a: v) € P and
there are no other points of conv((A—v)N starA(v)) on conv(z,v) (see Flgure 2%\ /}
By the definition of “obscuring the two paths v/ = vy,v2,... ,vx_1,v% = v an
v = wi,wy,... ,wr_1,w) = v" fit together at their endpomts v',v", with the latter
path always weakly “farther” from v than the first, and so together they bound a
sequence of Jordan curves in the plane (Figure 2b). We then obtain A’ by replacing
the triangulation of stara (v) with arbitrary triangulations of the interiors of these
Jordan curves as in Lemma 4, and then adding the triangles conv(v,w;,w;;1).

We now claim that dela:(v) triangulates Pge;. To see this note that every simplex
of dela/(v) lies in Py since it lies in P and doesn’t involve the vertex v. Conversely,
we need to show every point z of Py lies in some simplex of dela/(v). Such a point
z lies in some simplex F' of A, and if F' does not involve v, then it is still a simplex
of A’. If F does involve v, then we still must have that z lies in stara(v), but
on the “other side” of the path v' = wi,ws,... ,wp_1,w} = v" from v (by the
definition of “obscuring” and the fact that z € Pge). So z ends up inside one of
the sequences of Jordan curves from the previous paragraph, which means it lies in

delAf(’u).

From this claim, assertion (1) of Lemma 10 is now clear, and assertion (3) follows
from Lemma 12, since linka/(v) is the contractible path v’ = w1, ws,... ,wk_1, wy =
v'". Assertion (2) is obvious once we know that Py is Agei-triangulable. O

Proof of Lemma 11. Rather than showing the assertions of Lemma 11 directly, note
that if we can show Py, is an A, -triangulable contractible space, then Lemma
11 immediately follows from Lemma 10 applied with A = A,qr and P = Pyqr.
Contractibility of Py is obvious since it is star-shaped with respect to v.

Therefore our strategy will be to change the given A-triangulation A of P into
another triangulation which restricts to a triangulation of A.,. To do this, we
proceed in two steps:
Step 1. In the first step, we change A into a triangulation A’ which uses every
edge conv(v,w) for which w € A and conv(v,w) C P. To see this can be done,
assume that w is such a vertex which is not in such an edge of A, and we will show
that one can alter A so as to increase the number of such edges.

Consider the set of triangles (2-simplices) {T};} in A which one crosses while
traversing the line segment from v to w. By our general position assumption, the
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(a) (b)

FIGURE 2. Changing A to A'.

line segment crosses the boundaries of each T; through the interior of an edge, and
hence the union of the T;’s generates a subcomplex T' of A whose boundary consists
of two paths Ly, Ly from v to w, with the two paths separated by the line segment
conv(v,w) (see Figure 3a).

Therefore conv(v,w) U Ly, conv(v,w) U Ly form two polygonal Jordan curves,
and if we triangulate their interiors arbitrarily, we can replace the subcomplex T
in A with this new triangulation to obtain A’. Since we did not remove any edges
between v and other vertices, but added the edge from v to w, this does what was
promised, and Step 1 is complete.

Step 2. Now let A’ be any .A-triangulation of P satisfying these two properties:

(1) Every vertex w in A which is visible from v lies inside ||stara/(v)||.
(2) The set of vertices contained in linka,(v) is minimal under inclusion among
all triangulations satisfying (1).

We know from Step 1 that one can produce a A’ satisfying (1), and hence one can
find one that also satisfies (2).

We now claim, that such a A’ has stara:(v) triangulating A,4,,. To prove this,
note that every simplex in stara:(v) lies in A,zq, by definition. Conversely, we need
to show every point z of Py, lies in some simplex of stara:(v).

By definition such a point z lies in some set conv(4) C P where v € 4 and so
it is easy to see that z must lie in some triangle conv(v,w,w’) where w,w’ € A .
Since both w,w’ are visible from v, they lie inside ||stara:(v)l]. If z also lies inside
lstaras(v)|| we are done, so assume not and we will reach a contradiction. It is easy
to see (Figure 3b) that if z ¢ ||stara/(v)||, there must be some triple of vertices
u',u,u" which are consecutive (in this order) on the path linka/(v), and for which
u € conv(v,u’,u"). But we claim then that there are no points in ANconv(u,u’, u'),
since they would be visible from v but not contained in |/stara/(v)||. This then
allows us to do an argument like the one in the second paragraph of the proof of
Lemma 10 (replacing v,v',v” by u,u’,u") to show that we can alter A’ outside
of stara:(v) so that conv(u,u’,u") forms a triangle in the triangulation. Then we
can replace the three triangles conv(v,u,u’), conv(v,u,u"), conv(u,u’,u") in this
triangulation with the single triangle conv(v,v’,u"), eliminating u as a vertex in
linka:(v), and contradicting the minimality of A’. [

; [/C' ey O “\

/e
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\

FIGURE 3. (a) Step 1 (b) Step 2

This completes the proof of Theorem 1. Before closing this section, we mention
a stronger statement which we were not able to prove. Note that for any .A-
triangulable space P in R, there is an obvious surjection

¢ : | Avia(P, A)|| — P

induced by the map which sends a vertex » € A to the point » € R? which it
represents.

Conjecture 13. For A in general position in R?, the map ¢ induces the homotopy
equivalence between A,;s(P, A) and P.

V. Proof of Theorem 2.

In this section we prove Theorems 2 and 3, again using a variant of the deletion-
contraction method, in combination with Quillen’s Fiber Lemma. We should men-
tion that the relation between deletion and contraction and regular triangulations
of A (when P = conv(A)) was studied by Billera, Gel’fand and Sturmfels [BGS] in
the context of secondary polytopes. However the application of these ideas to an
arbitrary A-triangulable space P and the Baues problem appears to be new. We
should perhaps also mention that this argument bears a slight resemblance to the
proof of Theorem 1.2 in [BKS].

We recall here the statement of Theorem 2.

Theorem 2. Let A be a finite set of points in general position in R2.  Then
Dec(P, A) is contractible.
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As shown in Section III it suffices to prove Theorem 2 when P is a 2-manifold
with boundary. We let v,v’,v"” and C have the same meaning as in the end of that
section. N

Let v'/v,v" /v be points chosen close enough to v on the rays vv', vo” respectively,
so that the triangle conv(v,v'/v,v" /v) lies in P and contains no other points of A.
Define the vertez figure P/v of P at v to be the line segment conv(v'/v,v" /v).
When P = conv(.A) this notion of vertex figure coincides with the classical notion
- of the vertex figure of v on the boundary of the polygon P (see [Gr, page 49]). Also
define the contraction A/v to be the collection of points {w/v} on the line segment
P/v obtained by taking each point w € A visible from v, and intersecting the line
segment conv(v,w) with P/v. Note that because of our general position assumption
on A, all the points {w/v},ea are distinct. Clearly P/v is an .4/v-triangulable
space. Therefore we have the notion of its decomposition poset Dec(P/v, A/v).

r— -] R
Define a map \\z\g Frve O

f: Dec(P, A) — Dec(P/v, A/v)
as follows: given § = {(P;, A;)} € Dec(P,A), let f(8) = {(P;/v, Ai/v) : v € P;},

where P;/v is the line segment connecting the two neighbors of v in the boundary of
P;, and A;/v = {w/v:w € A;}. It is trivial to check this map is order-preserving.
We will make use of Quillen’s Fiber Lemma [Bj2, (10.5)]:

Lemma 14. Let f : Q — Q' be an order-preserving map of posets. If f=1( ’<q,) s
contractible for all ¢ € Q', then f induces a homotopy equivalence of the associated

order complezes A(Q) — A(Q').

We will refer to the subposet f~1( '<q,) in the theorem as the Quillen fiber of f
at ¢'. Our immediate goal is to show that for the map f defined above, the non-
empty Quillen fibers are indeed contractible, so we need to describe these fibers
more concretely.

For 6 = {(P;, A;)} € Dec(P, A), define the deletion dels(v) to be the union
of all polygons P; which do not contain v. By our remarks in Section 2, this
is an (A N dels(v))-triangulable space, and hence by induction has contractible
decomposition poset Dec(dels(v), AN dels(v)).

Lemma 15. Let &' be in the image of the map f : Dec(P,A) — Dec(P/v, A/v),
and let 6 be any pre-image of §', v.e., f(§) = §&'. Then the Quillen fiber

f~ (Dec(P/v, Alv)<s)
1 1somorphic to

Dec(P/v, A/v)<s x Dec(dels(v), AN dels(v)).

Proof. Every v = {(P;, A;)} in f~'(Dec(P/v, A/v)<s ) breaks into two pieces: the
(P;, A;) for which v € P;, giving rise to an element of Dec(P/v, A/v) which refines
§', and the (P;, A;) for which v ¢ P;, giving rise to an element of Dec(dels(v), A N

dels(v)). Conversely, any such pair in the above Cartesian product gives rise to an
element v in f~!(Dec(P/v, A/v)<s). O

o

Cube, /

Ay
AR
!

L\)\l\ﬂj L



VISIBILITY COMPLEXES AND THE BAUES PROBLEM 13

The two factors of the Quillen Fiber described in Lemma 15 are both contractible;
the first is contractible since it is a principal order ideal in the poset Dec(P/v, A/v),
and the second is contractible by induction on |A|. Therefore by Lemma 15 we
conclude that Dec(P,.A) is homotopy equivalent to the image of the map f. Tt
therefore only remains to identify the image of f, and prove that it is contractible.
We first identify the image.

Let Decyis(P/v, A/v) be the subposet of Dec(P/v, A/v) consisting of those ¢ =
{(P;/v,A;/v)} in which each 1-polygon (line segment) P;/v occurring satisfies

conv(A; Uv) C P, oK

where Aj; is the set {w},/yeca,/0- It is easy to see that this subposet is an order <
ideal in Dec(P/v, A/v), and it follows immediately from the definition of the map
f that its image lies in Dec,is(P/v, A/v). It is not quite as obvious that this is

exactly the image of f: K 5~?¢®{7£\m{’
Lemma 16. The image of f : Dec(P, A) — Dec(P/v, AJv) is Decyis(Pfv, A/v). ¥

Proof. By the previous remarks, it suffices to show that for any
8" = {(Pi/v, Ai/v)}ioy € Decyis(Pfv, Afv),

~ there is some § € Dec(P, A) with f(§) = é§'. For each i = 1,2,... ,k, let A; be
' the set {w}w/vea,; /o and P; = conv(A;). This yields a set {(P;, A))}E_ |, and we
“wish fo extend this set by more polygons {(Pi, A;)}'_, ., to obtain a polytopal
decomposition § = {(P;, A;)}._, of P. If this can be done, then clearly f(§) = ¢'.
To do this, we need only show that P has an A-triangulation A’ in which
staras(v) is a triangulation of Ule P;, since then the maximal simplices in dela; (v)
will give us the remaining {(P;, Ai)}l-:k+1 that are needed to make up §. So start
with the triangulation A that was constructed in the proof of Lemma 11, i.e. one
such that stara(v) is an A,s,,-triangulation of Py,,.. Since Ule P; C Pyor, the
paths linka(v) and Ule linkp, (v) (where linkp, (v) means the boundary segments
of P; which do not contain v as a vertex) both connect v’ to v”, and bound a
sequence of polygonal Jordan curves between them (see Figure 4a). Therefore if we
replace stara (v) in A with any triangulation of these Jordan curves (as in Lemma

4) and any refinement of Ule linkp,(v) to a triangulation, we get what we want.
O

It therefore only remainsin the proof of Theorem 2 to show that Dec,;s(P/v, A/v)

is contractible, which we will do using a second deletion-contraction/Quillen fiber
argument, via induction on |A|.

First of all, it should be fairly clear that when considering Dec,;s(P/v, A/v),
the part of P outside Py, is irrelevant, and therefore we may as well excise it and
assume P = Pg4,,. Define a map

g : Decyis(Pfv, AJv) — 24
as follows: if § = {(P;/v, A;/v)}i, € Decyio(P/v, A/v) then there is a unique line

segment P; /v containing the vertex v’/ /v € P/v, and we set

g8)={wed:w/ve A /v,w £}
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It is easy to check this map is order-preserving, if we order 24 by inclusion of sets.

Let (}5,,21) denote the pair obtained from (P, A) by doing the (Prinks Atink)
construction with respect to v. Then, let (p,fl) denote the pair obtained from
(]5,,41) by doing the (plink,jllink) construction with respect to v’ (since one can
easily check that the boundary curve of P must bend inward at v'). Notice that the
sets A which are in the image of g must have the property that conv(AU {v,v'}) C
P). Therefore the image of the map g lies in Am;s(f?, ,Zl) In fact, this characterizes
the image:

Lemma 17. The image of g is Avis(ﬁ,fl).

Proof. By the previous remarks, we need to show that any set A C A — {v,v'} for
which conv(A U {v,v'}) C P is in the image of g. Tracing this back through the
definition of g, we need to show there is a §' € Dec(P/v, A/v) having conv(A/v)
as one of its line segments, which is equivalent by Lemma 16 to showing there is a
8 € Dec(P, A) having conv(AU {v,v'}) as one of its polygons. It would suffice then
to show that we can extend some triangulation of conv(AU{v,v'}) to a triangulation
of P. This follows by the usual argument. The area P —conv(AU{v,v'}) is bounded
by a sequence of Jordan curves formed by all the boundary edges of conv(AU{v,v'})
except conv(v,v'), and the edges of the link of v in the triangulation A constructed
in Lemma 11 which has stara(v) triangulating P = Py, (Figure 4b). Therefore
one can triangulate the inside of each of these Jordan curves arbitrarily by Lemma

4. 0O

e

FIGURE 4. Sequences of Jordan curves

Since P comes from applymg the P ~» Py, construction, it is contractible by
Lemma 11, and hence AMS(P A) is contractible by Theorem 1. Therefore the
contractlblhty of Decyis(P/v, A/v) will follow from Lemma 14, if we can show that
the Quillen fibers of g are contractible.

Lemma 18. Let A € A, o(P, A), i.e
ACA—{v,v'} and conv(A U {v,0'}) C P
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and let w € A be such that w/v is the farthest vertez from v'/v in A/v on the lne
segment P/v. Then the Quillen Fiber

_ 5 [ 247% x Decyis(P'Jv, A'[v if w# v
97 (Avia( Py A)<a) = { 2A~E” o) if w ="

where P' is an A'-triangulable 2-manifold with boundary bending inward at v, and

A < | A

Proof. Any é € g_l(Am'S(I:’, .,Zl)SA) is completely determined by two pieces of data:
(1) the set of its endpoints (other than v'/v,w/v) used in the line segments with
which it subdivides the line segment conv(v'/v,w/v), and (2) its restriction to a
polytopal decomposition of P/v — conv(v'/v,w/v). If w # v", then the latter
restriction is an element of Dec,;s(P' /v, A'/v), where P'is the closure of the interior
of the unique Jordan curve containing v’ in the proof of Lemma 17, and A" = ANP".
Conversely any such pair in 247 x Decys(P' /v, A’ /v) gives rise to an element in

the fiber. O

The contractibility of Decys(P/v, A/v) now follows, since both factors in the
Quillen fiber are contractible: 247 is a poset with a maximum element, and
Decyis(P' /v, A" /v) is contractible by induction on A.

The proof of Theorem 2 is now complete. From the proof we deduce Theorem
3.

Theorem 3. Assume A is in general position in R%. If P = conv(A), then
Dec(P, A) has a unique top element 1, and Dec(P, A) — 1 is homotopy equivalent
to a sphere of dimension |A| — 3.

Proof. When P is convex,i.e. P = conv(A), themap f : Dec(P, A) — Dec(P/v, A/v)
is a surjection since Dec(P/v, A/v) = Decyis(P/v, A/v). Furthermore, the top el-
ement 1 in Dec(P, A) is the polytopal decomposition {(P,.4)}, having a single
polygon, and this is the unique pre-image of the top element 1/v of Dec(P/v, A/v)
consisting of the single pair {(P/v,.A/v)}. Therefore Dec(P, A) — 1 surjects onto
Dec(P/v, A/v) — 1/v, and induces a homotopy equivalence since we have already
shown the fibers are contractible. But Dec(P/v, A/v) — 1/v is well-known (see
e.g. [BKS, Example 3.1]) to be the face poset of the boundary of an (|.4/v| — 2)-
cube: identify the vertices of the cube with the subsets of vertices (other than
v'/v,v" /v) used in the triangulations of P/v, which are the minimal elements of

Dec(P/v, A/v) —1/v. Since [A/v| = |A| — 1, Theorem 3 follows. O
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