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These lecture notes aim at developing a thorough understanding of the
core theory for interior-point methods. The overall theory continues to
grow at a rapid rate but the core ideas have remained largely unchanged
for several years, since Nesterov and Nemirovskii[l] published their path-
breaking, broadly-encompassing and enormously influential work. Since
then, what has changed about the core ideas is our conception of them.
Whereas [1] is notoriously difficult reading even for specialists, we now
know how to motivate and present the general theory in such a way as to
make it accessible for non-specialists and PhD students. Therein lies the
justification for these lecture notes.

We develop the theory in ™ although most of the theory can be devel-
oped in arbitrary real Hilbert spaces. The restriction to finite dimensions
is primarily for accessibility.

The notes were devdloped largely in conjunction with a PhD-level course
on interior-point methods at Cornell University.

Presently, the notes contain only two chapters, but those are sufficient
to provide the reader with a solid introduction to the contemporary view of
interior-point methods. A chapter on Duality Theory is nearing comple-
tion. A chapter on Complexity Theory is planned. If you are interested in
receiving the chapters as they are completed, please send a brief message to
renegar@orie.cornell.edu.






Chapter 1

Preliminaries

This chapter provides a review of material pertinent to continuous optimiza-
tion theory quite generally, albeit phrased so as to be readily applicable in
developing interior-point method (ipm) theory. The primary difference be-
tween our exposition and more customary approaches is that we do not rely
on coordinate systems. For example, it is customary to define the gradient
of a functional f : R* — R as the vector-valued function g : ®* — "
whose jt* coordinate is 8f/0z;. Instead, we consider the gradient as de-
termined by an underlying inner product (, }. For us, the gradient is the
function g satisfying

; f(z + Az) - f(z) — (9(z),Az) _ 0
llAz||—0 | Az ’

where ||Az|| := (Az, Az)'/2. In general, the function whose j** coordinate
is 8f/8z; is the gradient only if (, ) is the Euclidean inner product.

The natural geometry varies from point to point in the domains of
optimization problems that can be solved by ipm’s. As the algorithms
progress from one point to the next, one changes the inner product — and
hence the geometry — to visualize the headway achieved by the algorithms.
The relevant inner products may bear no relation to an initially-imposed
coordinate-system. Consequently, in aiming for the most transparent and
least cumbersome proofs, one should dispense with coordinate systems.

We begin with a review of linear algebra by recalling, for example,
the notion of a self-adjoint linear operator. We then define gradients and
Hessians, emphasizing how they change when the underlying inner product
is changed. Next is a brief review of basic results for convex functionals,
followed by results akin to the Fundamental Theorem of Calculus. Although
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4 CHAPTER 1. PRELIMINARIES

these “Calculus results” are elementary and rather dry, they are essential
in achieving lift-off for the ipm theory. Finally, we recall Newton’s method
for continuous optimization, proving a standard theorem which later plays
a central motivational role.

1.1 Linear Algebra

We let  , ) denote an arbitrary inner product on ®”. In later sections, ( , )
will act as a reference inner product, an inner product from which other
inner products are constructed. For the ipm theory, it happens that the
reference inner product ( , ) is irrelevant; the inner products essential to
the theory are independent of the reference inner product. To large extent,
the reference inner product will serve only to fix notation.

Although the particular reference inner product will prove to be irrele-
vant for ipm theory, for optimization problems to be solved by ipm’s there
typically are associated natural reference inner products. For example, in
linear programming (LP) where vectors z are expressed coordinate-wise and
“r > 0” means each coordinate is non-negative, the natural inner product
is the Euclidean inner product, which we refer to as the “dot product,”
writing z; - z2. Similarly, in semi-definite programming (SDP) where the
relevant vector space is S™*™ - the space of symmetric n x n real matrices
X —and “X > 0” means X is positive semi-definite (i.e., has no negative
eigenvalues), the natural inner product is the “trace product,”

X oS :=trace(X 9).

(Thus, X o S equals the sum of the eigenvalues of the matrix X S.)

Throughout the general development, we use ®" to denote an arbitrary
finite-dimensional real vector space, be it S**™ or whatever.

The inner product (, ) induces a norm on R*,

llzll := (2, 2)"/2.

Perhaps the most useful relation between the inner product and the norm
is the Cauchy-Schwarz inequality,

(21, 22)| < llzall |22l

with equality iff ; and z5 are co-linear. If neither z; nor z, is the zero
vector, Cauchy-Schwarz implies the existence of © satisfying

cos © = (z1,z2)/||z1]| ||z2]]-
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The value O is referred to as the angle between z; and z3.

Whereas the dot product gives rise to the Euclidean norm, the norm
arising from the trace product is known as the “Frobenius norm.” The
Frobenius norm can be extended to the vector space of all real n xn matrices
by defining [|M]| := (3_ m;)*/? where m;; are the coefficients of M.

We remark that the Frobenius norm is “submultiplicative,” meaning
IXSIE < XN {IS]]-

Recall that vectors z1,z2 € R™ are said to be orthogonal if (z1,z2) = 0.
Recall that a basis vy,...,v, for R is said to be an orthonormal if

('U,',vj) = 6ij for all 1,

where &;; is the Kronecker delta. A linear operator (i.e., a linear transfor-
mation) @ : ®™ — R™ is said to be orthogonal if

{(Qx1, Qx2) = {x1,z2) for all zy,z2 € R,

If given an inner product {, ) on R™, one adopts a coordinate system
obtained by expressing vectors as linear combinations of an orthonormal
basis, the inner product (, ) is the dot product for that coordinate system.
Consequently, one can consider the results we review below as following
from the special case of the dot product, but one should keep in mind that
thinking in terms of coordinates is best avoided for understanding the ipm
theory.

If both ®™ and R™ are endowed with inner products and A : R* —» ™
is a linear operator, there exists a unique linear operator A* : R™ — R
satisfying
(Az,y) = (z,A%y) forall z € R, y € R™.

The operator A* is the adjoint of A. The range of A* is orthogonal to the
nullspace of A.

Assuming A is surjective, the linear operator A*(AA*)~! A projects R
orthogonally onto the range space of A*, that is, the image of z is the point
in the range space closest to x. Likewise, I — A*(AA*)~1A projects R
orthogonally onto the nullspace of A.

If both ®” and ®™ are endowed with the dot product and if A and A*
are written as matrices then A* is the transpose of A. Thus it is natural in
this setting to write A7 rather than A*.

It is a simple but important exercise for SDP to show that if S1,...,S, €
S™*™ and A : §"*™ — R™ is the linear operator defined by

X~ (Xo0S5,...,X08,)
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then
Ay =) uiSi,

assuming S™*" is endowed with the trace product and ®™ is endowed with
the dot product.

Continuing to assume " and R™ are endowed with inner products,
and hence norms, one obtains an induced operator norm on the vector
space consisting of linear operators A : R* — R™:

4]l := max{||Az| : |l=]| < 1}.

Each linear operator A : R* — R™ has a singular-value decomposition.
Precisely, there exist orthomormal bases uy,...,u, and wy, ..., w,, as well
as real numbers 0 < 73 < ... < 7, where r is the rank of A, such that for
all z,

,
Az = E ~i{us, Thw;.
i=1

The numbers «; are the singular values of A; if 7 < n then the number 0 is
also considered to be a singular value of A. It is easily seen that ||A| = ~,.
Moreover,

Aty = yilwi, yui,
=1

so that the values ; (and possibly 0) are also the singular values of A*. It
immediately follows that ||A*| = || A]l.

If R and R™ are endowed with the dot product, the singular-value
decomposition corresponds to the fact that if A is an m x n matrix, there
exist orthogonal matrices @, and @, such that Q,,AQ, = I where I is an
m X n matrix with zeros everywhere except possibly for positive numbers
on its main diagonal. ,

It is not difficult to prove that a linear operator @ : R* — R is orthog-
onal iff @* = Q. For orthogonal operators, ||Q|| = 1.

A linear operator S : R* — R" is said to be self-adjoint if § = S*.

If (, ) is the dot product and S is written as a matrix then S being
self-adjoint is equivalent to S being symmetric.
It is instructive to show that for § € 8™*", the linear operator A4 :
S — §™*™ defined by
X~ SXS
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is self-adjoint. Such operators are important in the ipm theory for SDP.

A linear operator S : R® — R" is said to be positive semi-definite (psd)
if S is self-adjoint and

(z,Sz) >0 for all z € R".
If, further, S satisfies
(z,Sz) >0 forall z#0

then S is said to be positive definite (pd).

Each self-adjoint linear operator S has a spectral decomposition. Pre-
cisely, for each self-adjoint linear operator S there exists an orthonormal
basis v1,...,v, and real numbers A\; < ... < A, such that for all z,

Sz = Z Ai(vi, 2)v;.

It is easily seen that v; is an eigenvector for S with eigenvalue ;.

If (, ) is the dot product and S is a symmetric matrix then the spectral
decomposition corresponds to the fact that S can be diagonalized using an
orthogonal matrix, i.e., QTSQ = A.

The following relations are easily established:
* |||l = max; |Ai| = max{[(z, Sz)| : ||z} = 1};
e Sis psd iff A; > 0 for all 4;
e Sispdiff A; > 0 for all ¢;

e If S—! exists then it, too, is self-adjoint, and has eigenvalues 1/X;.
(In particular, ||S~!|| = 1/ min; |A;].)

The spectral decomposition for a psd operator S allows one to easily
prove the existence of a psd operator S1/2 satisfying S = (S!/2)?; simply
replace \; by v/X; in the decomposition. In turn, the uniqueness of S/2
can readily be proven by relying on the fact that if T is a psd operator
satisfying T2 = S then the eigenvectors for T are eigenvectors for S. The
operator S'/2 is the “square root” of S.

Here is a crucial observation: If S is pd then S defines a new inner
product, namely,
(T1,72)5 = (z1, ST2).
Every inner product on R" arises in this way; that is, regardless of the
initial inner product { , ), for every other inner product there exists S
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which is pd w.r.t. {, )} and for which (, )g is precisely the other inner
product.

Let || ||s denote the norm induced by {, )s.

Assume A* is the adjoint of A : R® — R™. Assuming S and T are pd
w.r.t. the respective inner products, if the inner product on R" is replaced
by ( , )s and that on R™ is replaced by ( , )7 then the adjoint of A
becomes S~ A*T, as is easily shown. In particular,if m =nand S =T
then the adjoint of A becomes S~1A4*S. Moreover, letting ||A||s,r denote
the resulting operator norm, it is easily proven that

lAlls,r = IT*/2AS72|| and ||A|| = |IT~/?AS |51

The notation used in stating these facts illustrates our earlier assertion that
the reference inner product will be useful in fixing notation (as the inner
products change).

It is instructive to consider the shape of the unit ball w.r.t. || ||s viewed
in terms of the geometry of the reference inner product. The spectral
decomposition of S easily implies the unit ball to be an ellipsoid with axes
in the directions of the orthonormal basis vectors vy, ...,v,, the length of
the axis in the direction of v; being 21/1/A,.

1.2 Gradients

Recall that a functional is a function whose range lies in . We use Dy to
denote the domain of a functional f. It will always be assumed that Dy is
an open subset of ®” in the norm topology (recalling that all norms on ®"
induce the same topology). Let (, )} denote an arbitrary inner product on
R and let || || denote the norm induced by (, ).

The functional f is said to be (Frechet) differentiable at x € Dy if there
exists a vector g(z) satisfying

f(z + Az) - f(z) — (9(x), Ax)

m =0.
lazf—o0 |Az]|

The vector g(x) is the gradient of f at z w.r.t. (, ).

Of course if one chooses the inner product {( , } on ®" to be the dot
product and expresses g(z) coordinate-wise, the j** coordinate is 8f/9z;.

For an arbitrary inner product {, }, the gradient has the same geomet-
rical interpretation that is taught in Calculus for the dot product gradient.
Roughly speaking, the gradient g(x) points in the direction for which the
functional output increases the fastest per unit distance travelled, and the
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magnitude ||g(x)| equals the amount the functional will change per unit
distance travelled in that direction. We give rigour to this geometrical
interpretation in §1.5.

The first-order approzimation of f ot z is the linear functional

y = f(z) + (g(x),y — ).

If f is differentiable at each z € Dy then f is said to be differentiable.
Henceforth, assume f is differentiable.

If the function z — g(z) is continuous at each z € Dy then f is said to
be continuously differentiable. One then writes f € C*.

To illustrate the definition of gradient, consider the functional
Ff(X) := —Indet(X)

with domain ST3", the set of all pd matrices in §**". (This functional
plays an especially important role in SDP.) We claim that w.r.t. the trace
product,

g(X)=-X""
For let AX € 8™™ and denote the eigenvalues of X ~1/2(AX)X /2 by
Y1,.+.,Yn- Since the trace of a matrix depends only on the eigenvalues —

hence, X~! o AX = trace(X~1/2(AX)X~!/?) - we have
fIX+AX) - f(X) - (-X"1,AX)
lAX]|
| —Indet(X + AX) +Indet(X) + X~ o AX]|
(AX o AX)1/2
| — Indet(I + X~1/2(AX)X~'/?) + trace(X ~Y/2(AX) X 1/?)|
trace(X2)1/2

1327 — In(1 + )|
trace((AX)2)1/2 °

Letting A;(X) and A\;(AX) denote the eigenvalues of X and AX, it is easily
proven that

(1.2.1) trace((AX)?)*/? > max |A;(AX)| > (min Ai(X))(max )

and hence
: f(X +AX) - f(X) - (-X"1,AX)
lim su
HAXH—E) laxi|
. | 207 — In(1 + )l
——— limsup L .
min; A;(X) jax|—o max; |7i
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Since (1.2.1) implies v; — 0 when ||[AX|| — 0, it is now straightforward to
conclude that the value of the limit supremum is 0. Thus, g(X) = —-X 1.

Our definition of what it means for a functional f to be differentiable
depends on the inner product {, ). However, relying on the equivalence of
all norm topologies on ", it is readily proven that the property of being
differentiable — and being continuously differentiable — is independent of
the inner product. The gradient depends on the inner product but differ-
entiability does not.

The following proposition shows how the gradient changes as the inner
product changes.

Proposition 1.2.2 If S is pd and f is differentiable at = then the gradient
of f atz wrt. (, )s is S71g(z).

Proof. Letting A; denote the least eigenvalue of S, the proof relies on the
fact that

VAllz|l < llzl|s for all z,
as follows easily from the spectral decomposition of S.

To prove that S~g(z) is the gradient of f at z w.r.t. (, )s, we wish
to show

imsup L@+ A2) = £(2) —(S7'9(a), An)s| _
llaz)s—0 llAzils

However, noting that for all v,
(S71g(z),v)s = (57 g(z), Sv) = (SS™*g(),v) = (g9(z),v)

we have

|f(z + Az) — f(z) - (S7"g(), Az)s]

;
|aaleor0 1Azl
iy @+ A7) — £@) ~ (o(a), Ac)
laz|s—0 |Az||s
1 |f(z+Az) — f(z) ~ (9(x), Az)|
= e, iaal

1 f@+An) - (=) - (9(a),Az) _
= T am, |Aa] =0

the next-to-last equality due to ||Az|| = 0 if ||Az|ls = 0 (because ||Az|| <

Azlls/v). o
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Theorem 1.2.2 has the unsurprising consequence that the first-order
approximation of f at z is independent of the inner product:

f(@) +{g(x),y — z) = f(z) + (S g(2),y — )s.

Finally, we make an observation that will be important for applying
ipm theory to optimization problems having linear equations among the
constraints. Assume L is a subspace of R". Restricting (, ) to L makes L
into an inner product space. Thus, if f is a functional for which DyNL # 0,
one can speak of the gradient of f|, the functional obtained by restricting f
to L. Let g|;, denote the gradient, a function from L to L. It is not difficult
to prove g|r = Prg where Py, is the operator projecting R®" orthogonally
onto L. Summarizing, if z € L then the gradient g|z(z) of f|. at z is the
vector Prg(z).

1.3 Hessians

The functional f is said to be twice differentiable at z € Dy if f € C! and
there exists a linear operator H(z) : R* — R™ satisfying
lg(z + Az) — g(z) — H(z)Az| _

l1az]—o lAz|l

0.

If it exists, H(z) is said to be the Hessian of f at z w.r.t. (, ).
If (, ) is the dot product and H(z) is written as a matrix, the (3, 7)
entry of H(z) is
o f
6xi6xj )

The second-order approzimation of f at x is the linear functional

y P f(2) +(9(2),y — 2) + 5{(y — 2), H(z)(y — ).

If f is twice differentiable at each x € Dy then f is said to be twice
differentiable. Henceforth, assume f is twice differentiable.

If the function « — H(z) is continuous at z (w.r.t. the operator-norm
topology, or equivalently, any norm topology on the vector space of linear
operators from R” to R"), then H(z) is self-adjoint. If the function z +»
H(z) is continuous at each z € Dy then f is said to be twice continuously
differentiable. One then writes f € C2.
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The assumption of twice continuous differentiability, as opposed to mere
twice differentiability, is often made in optimization primarily to ensure self-
adjointness of the Hessian.

If the inner product is the dot product and Hessian is expressed as a
matrix, self-adjointness is equivalent to the matrix being symmetric, that
is,

8*f  8f
0z;0z;  O8z;0z;
(If the Hessian matrix does not vary continuously in z, the order in which
the partials are taken can matter, resulting in a non-symmetric matrix.)

To illustrate the definition of the Hessian, we again consider the func-
tional
F(X) = —Indet(X)

with domain STX", the set of all pd matrices in S"*". We saw that g(X) =
—X~1. We claim that H(X) is the linear operator given by
AX » X HAX)X L

This can be proven by relying on the fact that if | AX]|| is sufficiently small
then

o0
(X +AX)" =Xy [-(AX)X 7,
k=0
and hence

oo
9(X + AX) - g(X) - HX)AX = -X"1 ) [-(AX)X 1.
k=2
For then, from the submultiplicativity of the Frobenius norm,
l9(X + AX) — g(X) - H(X)AX|

lim sup
AX][—0 1AX]|
2 —1]j3 yo° —11\k
< limsup IAXZ X P Xk (AN IX 1)
lAX|[—0 lAX]]
= 0.

The property of being twice continuously differentiable does not depend
on the inner product whereas the Hessian most certainly does depend on the
inner product, as is made explicit in the following proposition. The proof
of the following proposition is similar to the proof of Proposition 1.2.2 and
hence is left to the reader.
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Proposition 1.3.1 If S is pd and f is twice differentiable at z then the
Hessian of f at xz w.r.t. (, )s is S"'H(z).

Propositions 1.2.2 and 1.3.1 have the unsurprising consequence that the
second-order approximation of f at z is independent of the inner product:

F(@) +{9(=),y — 2} + 3{(y — 2), H(z)(y — 2))
= f(@) + (87 g(z),y — 2)s + 3{(y — 2), ST H(z)(y — 2))s.

Finally, we make an observation regarding Hessians and subspaces. It
is straightforward to prove that if L is a subspace of R* and f satisfies
DyNL # 0 then the Hessian of f|1, at z € L — an operator from L to L — is
given by H|r(x) = PH(z). That is, when one applies H|L(z) to a vector
v € L, one obtains the vector Py, H(x)v.

1.4 Convexity

Recall that a set S C R™ is said to be conver if whenever z,y € S and
0<t<lwehavez+tly—z)€S.

Recall that a functional f is said to be convez if Dy is convex and if
whenever z,y € Dy and 0 <t < 1, we have

flz+t(y - 7)) < f2) +t(f(y) - f(2)).

If the inequality is strict whenever 0 < ¢t < 1 and z # y, then f is said to
be strictly conver.

The minimizers of a convex functional form a convex set. A strictly
convex functional has at most one minimizer.

Henceforth, we assume f € C? and we assume Dy is an open, convex
set.

If f is a univariate functional, we know from Calculus that f is convex
iff f"(z) > 0 for all z € Dy. Similarly, if f”(z) > 0 for all z € Dy then f is
strictly convex. The following standard theorem generalizes these facts.

Proposition 1.4.1 The functional f is convez iff H(z) is psd for all z €
Dy. If H(x) is pd for all x € Dy then f is strictly conve.

The following elementary proposition, which is relied on in the proof of
Proposition 1.4.1, is fundamental throughout these lecture notes. It does
not assume convexity of f.
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Proposition 1.4.2 Assume z,y € Dy and define a univariate functional
$:10,1] > R by
¢(t) = f(z +t(y — 2)).
Then
¢'(t) = (9(z + t(y — 2)),y — z)

and
¢"'(t) = (y — =z, H(z + t(y — 7)) (y — 2)).

Proof. Fix t and let u = = + t(y — z). We wish to prove

¢'(t) = {g(u),y —z) and ¢"(t) = (y — =, H(u)(y - 2)).

To prove ¢'(t) = (g(u),y — z) it suffices to show
Pt +5) — 6(t) — s(g(u),y — x)

S

lim sup = 0.

s—0

However, noting ¢(t) = f(u) and ¢(t + s) = f(u + s(y — z)), we have

lim sup P(t + s) — $(t) — s(g(u),y — =)
s—0 S
_ timsup |20+ 50 = 2)) = £() = (9(w), s(y = 2))
s~0 s

~|ly—2| limsup |f(u + s(y — ) ~ f(u) — (g(u),s(y = 2))| _ 0,
lls(y—=)ll—0 lls(y — 2)||

the final equality by definition of g(u).
Similarly, to prove ¢ (t) = (y — z, H{(u)(y — z)), it suffices to show

¢'(t+s) - ¢'(t) — sy — =, Hw)(y — 2))

8

=0.

lim sup
s—0

However, since we now know

#'(t) = (9(u),y — x) and ¢'(t+s) = (g9(u+s(y — 2)),y — )
we have

¢'(t+5) —¢'(t) - sly -z, Hu)(y — 2))

S

lim sup
8—0
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(g(u+s(y — 7)) — g(v) — H(u)s(y — ),y — z)

= lim sup
s—0 8
< limsup 190+ 30 = ) = 9() = B@)s(y = 2)l Iy - =]
T s=0 s
=zl tmeup 19050 =2) — o) - H@sty -l _
lls(y—2)lI-0 s(y — 2|

where the inequality is by Cauchy-Schwarz and the final equality is by
definition of H(u). O

Proof of Proposition 1.4.1: We first show that if the Hessian is psd ev-
erywhere on Dy then f is convex. So assume the Hessian is psd everywhere
on D 1

Assume z and y are arbitrary points in Dy. We wish to show that if ¢
satisfies 0 <t < 1 then

(1.4.3) fl@+t(y — 7)) < fz) + t(f(y) - f(2)).

Consider the univariate functional ¢ defined by

¢(t) == fz +ty — 7).

Observe (1.4.3) is equivalent to

¢(t) < #(0) + t(4(1) — (0)),

an inquality that is certainly valid if ¢ is convex on the interval [0, 1]. Hence
to prove (1.4.3) it suffices to prove ¢"(t) > 0 for all 0 < ¢t < 1. However,
Proposition 1.4.2 implies

¢"(t) =(y~z,H(z +tly — z))(y —z)) >0,

the inequality because H(z + t(y — 7)) is psd.

The proof that f is strictly convex if the Hessian is everywhere pd on
Dy is similar and hence is left to the reader.

To conclude the proof, it suffices to show that if H(z) is not psd for some
z then f is not convex. If H(z) is not psd then H(z) has an eigenvector
v with negative eigenvalue A\. To show f is not convex, it suffices to show
the functional ¢(¢) := f(z + tv) is not convex. To show ¢ is not convex,
it suffices to show ¢"(0) < 0. This is straightforward, again relying on
Proposition 1.4.2. O
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Earlier in the notes it was asserted that, roughly speaking, the gradient
g(z) points in the direction for which the functional output increases the
fastest per unit distance travelled, and the magnitude ||g(z)|| equals the
amount the functional will change per unit distance travelled in that direc-
tion. Proposition 1.4.2 provides the means to make this rigorous: Choose
an arbitrary direction v of unit length. The initial rate of change in the
output of f as one moves from x to z + v in unit time is given by ¢'(0)
where

() := fz + tv).

Note Proposition 1.4.2 implies

(1.4.4) ¢'(0) = (g(=),v)

and hence, by Cauchy-Schwarz and ||v|| = 1, we have

—llg(@)|l < ¢'(0) < llg(@)lI-

So the initial rate of change cannot exceed ||g(z)| in magnitude, regardless
of which direction v of unit length is chosen. However, assuming g(z) # 0,
if one chooses the direction

1
U= Tg@n?@

(1.4.4) implies ¢'(0) = ||g(z)||-

We mention that a point z minimizes a convex functional f iff g(2) =
0. (For the “if,” assume g(z) = 0. For y € Dy, consider the univariate
functional ¢(t) := f(z + t(y — 2)). By Proposition 1.4.2, ¢'(0) = 0. Since
¢ is convex, we know from univariate Calculus that 0 minimizes ¢. In
particular, ¢(0) < #(1), that is, f(z) < f(y). For the “only if,” assume
g(z) # 0 and consider the discussion of the preceding paragraph.)

As with the two preceding sections, we close this one with a discussion
of subspaces.

If L is a subspace of R” and Dy N L # @, we know the gradient of f|
to be Prg. Thus, z € L solves the constrained optimization problem

min  f(z)
st. z€elL

iff PLg(2) =0, that is, iff g(z) is orthogonal to L. In particular, if L is the
nullspace of a linear operator A then z solves the optimization problem iff
g(z) = A*y for some y. Likewise when L is replaced by a translate of L;
that is, when L is replaced by an affine space v + L for some vector v. We
record this in the following proposition.
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Proposition 1.4.5 If f is conver and A is a linear operator then z € D 7
solves the linearly-constrained optimization problem

min  f(z)
st Az =b

iff Az=10 and g(2) = A*y for some y.

1.5 Fundamental Theorems of Calculus

We continue to assume f € C? and D ¢ is an open, convex set.

The following theorem generalizes the Fundamental Theorem of Calcu-
lus.

Theorem 1.5.1 If z,y € Dy then

1
f@) - f(z) = / (9@ + t(y — ),y — ) dt.

Proof. Consider the univariate functional ¢(t) := f(z + t(y — z)). The
fundamental theorem of Calculus asserts

1
60 -00)= [ #®a
Since ¢(1) = f(y), #(0) = f(z) and, by Proposition 1.4.2,
¢'(t) = (g9(z + t(y — 2)),y ~ ),

the proof is complete. a

In a similar vein, we have the following proposition.
Proposition 1.5.2 If z,y € Dy then

(1.5.3) f) = f(z) + (9(z),y — )

1
+ / (9@ +t(y — 2)) — g(z),y — @) dt

and
(1.5.4)  f(y) = f(2) +(9(2),y — 2) + §{y — , H(z)(y — x))

+ /O / (v — 5, [H(z + s(y — 2)) — H@)](y — 2)) ds dt.
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Proof. Again considering the univariate functional ¢(t) := f(z +t(y —z)),
the Fundamental Theorem of Calculus implies

1
(15.5) 6(1) = 6(0) + ¢/ (0) + /0 #(t) — ¢ (0) dt

and
1 gt
(150) 8(1) = 9(0) + 4O + 3O+ [ [ #'() - 4" dsa.
o Jo
Using Proposition 1.4.2 to make the obvious substitutions, (1.5.5) yields
(1.5.3) whereas (1.5.6) yields (1.5.4). O
Proposition 1.5.2 provides the means to bound the error in the first and

second order approximations of f.

Corollary 1.5.7 If z,y € Dy then
|f () — f(z) = (9(z),y — 2)|

<y -zl /0 lo(@ + t(y - z)) — 9(o) | dt

and

If () — f(z) — (9(2),y — =) — 1 {y — =, H(z)(y — x))|
<y~ /0 /0 IH(z + s(y — 7)) — H(z)|| ds dt.

Relying on continuity of g and H, observe that the error in the first-
order approximation is o(|ly — z||) (i.e., tends to zero faster than ||y — z||),
whereas the error in the second-order approximation is o(||y — z||?).

Theorem 1.5.1 gives a fundamental theorem of Calculus for a functional
f. It will be necessary to have an analogous theorem for g, a theorem which
expresses the difference g(y) — g{z) as an integral involving the Hessian. To
keep our development coordinate-free, we introduce the following definition:

The univariate function t — v(t) € %", with domain [a, b}, is
said to be integrable if there exists a vector u such that

b
(u,w) = / (v(t),w) dt for all w € R™.

If it exists, the vector u is uniquely determined (as is not difficult
to prove) and is called the integral of the function v(t). One uses

the notation f: v(t) dt to represent this vector.
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Although the definition of the integral is phrased in terms of the inner
product (, ), it is independent of the inner product. For if u is the integral
as defined by (, ) and if S is pd then for all vectors w,

(v,w)s = (u,Sw)

/ * (), Swy dt

b
= / (u(t), w)s dt.

Following are two useful, elementary propositions.

Proposition 1.5.8 If the univariate function t = v(t) € R™, with domain
[a,b], is integrable then

b b
| [ vodl < [ ool de
a a
Proof. Let u:= f: v(t) dt. By definition of the integral, for all w we have
b
() = [ (olt), w)
In particular, choosing w = u gives
b
(1.5.9) Il = [ (ote), )

However,

b b
[ o a < | [

IA

b
[ wtelas

IA

b

/nwmwwt
b

(1.5.10) =nw/uwma

Combining (1.5.9) and (1.5.10) gives

b
wwgwfuwmw
a
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Since |juf| = || f:v(t) dt||, the proof is complete. m]
Proposition 1.5.11 If the univariate function t — v(t) € R", with do-

main [a,b], is integrable and if A : R™ — R™ is a linear operator then the
function t — Av(t) is integrable and

/a " aot) di = A / " o) d.

Proof: Observe that for all w € ®™ we have
b b
(A/ v(t)dt,w) = (/ v(t) dt, A*w)
‘ b
= / (u(t), A*w) dt

/ (o(t), w) dt,

where the second equality is by definition of |, : v(t) dt. a

Next is the fundamental theorem of Calculus for the gradient.
Theorem 1.5.12 If z,y € Dy then

9(y) —g(z) = /0 H(z +t(y — z))(y — ) dt.

Proof. By definition of the integral, we wish to prove that for all w,

1
(1513)  (9y) - g(c),w) = /0 (H(z + t(y — 2))(y — 2),w) dt.

Fix arbitrary w and consider the functional

#(t) == (g(x + t(y — )), w).

The Fundamental Theorem of Calculus asserts

6(1) — $(0) = /0 #/(t) dt

which, by definition of ¢, is equivalent to

1
(15.14) (9(v) — 9(2),w) = /0 #/(t) dt.
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Comparing (1.5.14) with (1.5.13), we see that to prove (1.5.13) it suffices
to show for arbitrary 0 < ¢ <1 that

(1.5.15) ¢'(t) = (H(u)(y — z),w)

where
u:=2z+t(y —x).

Towards proving (1.5.15), recall that H(u) is the unique operator satis-
fying
Au) — g(u) — H(u)A
(1.5.16) 0= lg(u + Aw) — g(u) — H(w)Au||
lau|—0 | Aul|

Thinking of Au as being s(y — x) where s # 0, it follows from (1.5.16) that

(1517) 0= lim 190+ 50 =2)) = g(w) — sH(u)(y — 2)||

§—0 S

Since, by Cauchy-Schwarz,
llg(u + s(y — 7)) — g(u) — sH(u)(y — z)| ||lwl|

2 [(g(u + s(y — z)) — g(u) — sH(u)(y — z),w)|,
(1.5.17) implies

0 = lim 9+ 8@y — 7)) — g(u) — sH(u)(y — z),w)

s—0 8

Since
¢t + 5) = (g(u+ s(y — )),w) and ¢(t) = (g(u), w),

we thus have

0 g O+ 3) = B(0) = s(H )y - 2),w)

s—0 Lt
from which it is immediate that (H (u)(y — z),w) = ¢'(¢). Thus, (1.5.15) is
a

established and the proof is complete.

Proposition 1.5.18 If z,y € Dy then

1
9(y) = 9(z) + H(z)(y — z) + /0 [H(z + t(y ~ z)) — H(z))(y — =) dt.
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Proof: A simple consequence of Theorem 1.5.12 and
1
| B@@ -2t = H@ - )
0
an identity which is trivially verified. a

Corollary 1.5.19 Ifz,y € Dy then

lg(w) — g(z) — H(z)(y — 2)|| < lly — 2| /0 |H(z + t(y — z)) — H(z)| dt.
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1.6 Newton’s Method

In optimization, Newton’s method is an algorithm for minimizing func-
tionals. The idea behind the algorithm is simple: Given a point z in the
domain of a functional f, where f is to be minimized, one replaces f by
the second-order approximation at z and minimizes the approximation to
obtain a new point z;. One iterates this procedure with z in place of z,
and so on, generating a sequence of points which, under certain conditions,
converges rapidly to a minimizer of f.

For z € Dy, we denote the second-order — or “quadratic” — approxima-
tion at x by

4z(y) :== f(2) + (9(2),y — z) + 3{y — z, H(z)(y — z)).

The domain of g, is all of R".

Proposition 1.6.1 The gradient at y of ¢, is g(z) + H(z)(y — x) and the
Hessian is H(z) (regardless of y).

Proof: Using the self-adjointness of H(z), is easily established that

%(y + Ay) — & (y) — (9(z) ~ H(z)(y — ), Ay) = 3(Ay, H(z)Ay).
Proving the gradient is as asserted is thus equivalent to proving

(Ay, H(z)Ay)

i =0
lagl—o  [|Ay]l ’

an easily established identity.

Having proven the gradient is as asserted, it is a trivial to prove the
Hessian is as asserted. a

Henceforth, assume H(z) is pd. Then g, is strictly convex and hence is
minimized by the point z satisfying g(z) + H(z)(z+ — z) = 0, that is, ¢,
is minimized by the point

z4 =z — H(z) 'g().
The “Newton-step at z” is defined to be the difference
n(z) =24 —z = —H(z) lg(x).

Newton’s method steps from z to = + n(z).

We know the second-order approximation is independent of the inner
product. Consequently, so is Newton’s method. More explicitly, in the
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inner product { , )s, the gradient of f at z is S~g(z), the Hessian is
S—1H(z), and so the Newton step is

—(ST'H(2)) 'S g(z) = —H(z) 'g(z).
The Newton step is unchanged.

The following theorem is the main tool for analyzing the progress of
Newton’s method.

Theorem 1.6.2 If z minimizes f and H(z) is invertible then
1
o4 = 2l < llz — 2|l H ()7 /0 |H(z + t(z — z)) — H(z)]| dt.
Proof: Noting g(z) = 0, we have

o~z = llz—2z-H(z) g
= |lz —z+ H(z) " (9(2) - g())I

1
= Jlz— 2+ H(z)™ /0 H(z +t(z — 2))(z — z)dt]

1
= |H(=z)™ /O [H(z + t(z — z)) — H(z)](z — z) di|

IA

1
llz — 2|15 ()~ /0 |H(z + t(z — 7)) — H(z)|| dt.
a]

Invoking the assumed continuity of the Hessian, the theorem is seen to
imply that if H(z) is invertible and z is sufficiently close to z then z will
be closer to z than is z.

Now we present a brief discussion of Newton’s method and subspaces,
as will be important when we consider applications of ipm theory to opti-
mization problems having linear equations among the constraints. Assume
L is a subspace of " and x € LN Dy. Let n|.(z) denote the Newton step
for f|p at z. Since the Hessian of f|; at z is P H(z) and the gradient is
Prg(z), the Newton step n|r(x) is the vector in L solving

PLH(z)n|L(z) = —Pry(z),

that is, n|L(z) is the vector in L for which H(x)n|r(x)+ g(z) is orthogonal
to L. In particular, if L is the nullspace of a linear operator A : ®* — R™
then n|z(z) is the vector in ™ for which there exists y € ™ satisfying

H(z)n|L(z) + g(z) = A™y
An|g(z) = 0.
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Computing n|z(z) (and y) can thus be accomplished by solving a system
of m + n equations in m + n variables.

If H(z)™! is readily computed (as it is for functionals f used in ipm’s),
the size of the system of linear equations to be solved can easily be reduced
to m variables. One solves the linear system

AH(z)™*A*y = AH(z) ' g(z)
and then computes

nlr(z) = H(z) ™ (A"y — g(2)).

In closing this section we remark that of course the error bound given by
Theorem 1.6.2 applies to f|y if z minimizes f|1, z+ := T+ n|r(z), and the
Hessians for f are replaced by Hessians for f|.. In fact, the Hessians need
not be replaced by the Hessians for f|;. To verify the replacement need
not be done, one notes, for example, that because H|,(z) = P H(z)Py,

we have
[H|L(z)™ ) = 1/M < 1/A = [|H(z) 7!,

where A}, A, is the smallest eigenvalue of the pd operator H|y(x), H(z),
respectively.
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Chapter 2

Basic Interior-Point
Method Theory

Throughout this chapter, unless otherwise stated, f refers to a functional
having at least the following properties: Dy is open and convex; f € C?;
H(z) is pd for all z € Dy. In particular, f is strictly convex.

2.1 Intrinsic Inner Products

The functional f gives rise to a family of inner products, ( , ) H(z), an
inner product for each point € Dy. These inner products vary continu-
ously with z. In particular, given e > 0, there exists a neighborhood of z
consisting of points y with the property that for all vectors v # 0,

lvll ery)

<l+e
”v“H(z)

1—-¢e<

We often refer to the inner product ( , ) H(z) as the “local inner product
(at z).”

In the inner product ( , )p(s), the gradient at y is H(z) !g(y) and
the Hessian is H(z)"1H(y). In particular, the gradient at z is —n(z), the
negative of the Newton-step, and the Hessian is I, the identity. Thus, in
the local inner product, Newton’s method coincides with the “method of
steepest descent,” i.e., Newton’s method coincides with the algorithm which
attempts to minimize f by moving in the direction given by the negative of
the gradient. (Whereas Newton’s method is independent of inner products,
the method of steepest descent is not independent because gradients are
not independent.)

27
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It appears from our definition that the local inner product potentially
depends on the reference inner product { , ) because the Hessian H(z) is
w.r.t. that inner product. In fact, the local inner product is independent of
the reference inner product. For if the reference inner product is changed
to {, )s, and hence the Hessian is changed to S~ H(z), the resulting local
inner product is

(u, ST H (z)v)s = (u, SS™ H(z)v) = (u, H(z)v),

that is, the local inner product is unchanged.

The independence of the local inner products from the reference inner
product shows the local inner products to be intrinsic to the functional
f. To highlight the independence of the local products from any reference
inner product, we adopt notation which avoids a reference. We denote the
local inner product at z by (, );. Let || |z denote the induced norm.
For y € Dy, let g,(y) denote the gradient at y and let H,(y) denote the
Hessian. Thus, g;(z) = —n(z) and Hy(z) = I. If A: ™ = R™ is a linear
operator, let A% denotes its adjoint w.r.t. (, )z. (Of course the adjoint
also depends on the inner product on ®™. That inner product will always
be fixed but arbitrary, unlike the intrinsic inner products which vary with
z and are not arbitrary, depending on f.)

The reader should be especially aware that we use g;(z) and —n(z)
interchangably, depending on context.

A miniscule amount of the ipm literature is written in terms of the
local inner products. Rather, in much of the literature, only a reference
inner product is explicit, say, the dot-product. There, the proofs are done
by manipulating operators built from Hessians, operators like H(z) ' H(y)
and AH(z) AT, operators we recognize as being H,(y) and AA}. An
advantage to working in the local inner products is that the underlying
geometry becomes evident and, consequently, the operator manipulations
in the proofs become less mysterious.

Observe that in the local inner product, the quadratic approximation
of fat zis

% (y) = f(z) ~ (n(z),y — 2)s + 3lly — =17,

and its error in approximating f(y) (Corollary 1.5.7) is no worse than

1 t
ly - =2 / / | = Ha(z + s(y — 2) ds dt

where the latter norm is the operator norm induced by the local norm.
Similarly, the progress made by Newton’s method towards approximating
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a minimizer z (Theorem 1.6.2) is captured by the inequality

1
ey = 2lls < llz = 2ls / I = Hy(z + t(z — o) dt.
0

Assume L is a subspace of R* and z € LN D - Let Pr; denote the
operator projecting " orthogonally onto L, orthogonal w.r.t. {, );. In
the inner product obtained by restricting (, ), to L, the Hessian of f|, at
T is

PpoHy(x) = Pp, =1 (the last equality is valid on L, not ®").

Consequently, the local inner product on L induced by f|y, is precisely the
restriction of (, ); to L. Letting g|; ; denote the gradient of f|; w.r.t. the
local inner product on L, we thus have

n|L(x) = ~glrz(z) = —Pp:9:(z) = Ppan(z).

That is, in the local inner product, the Newton step for f|; is the orthogonal
projection of the Newton step for f.

If L is the nullspace of a surjective linear operator A, the relation
n|L(z) = Ppon(z) = [I — A;(AA47) ™ Aln(z)

provides the means to compute n|;(z) from n(z): One solves the linear
system

AALy = —An(z)

and then computes
n|(x) = ALy + n(z).

Expressed in terms of an arbitrary inner product { , ), the equations become
AH(z)"' A"y = AH(z) 'g(z) and n|i(z) = H(z) " [A"y - g(2)],

precisely the equations we arrived at in $1.6 by different reasoning.

2.2 Self-Concordant Functionals

Let B;(y,r) denote the open ball of radius r centered at y, where radius is
measured w.r.t. || ||,. Let B, (y,r) denote the closed ball.
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A functional f is said to be (strongly non-degenerate) self-concordant
if for all z € Dy we have B;(z,1) C Dy, and if whenever
y € B;(z,1) we have

loll, 1
l1—fly—z|: £ < for all v # 0.
v =2l < o1, < Toy =T,

Let SC denote the family of functionals thus defined.

Self-concordant functionals play a central role in the general theory of
ipm’s, as was first made evident in the pioneering work of Nesterov and
Nemirovskii[l]. Although our definition of strongly non-degenerate self-
concordant functionals is on the surface quite different from the original
definition given in [1], it is in fact equivalent except in assuming f € C? as
opposed to the ever-so-slightly stronger assumption in [1] that f is thrice
differentiable. The equivalence is shown in §2.5, where it is also shown that
our definition can be “relaxed” in a few ways without altering the family
of functionals so-defined; for example, the leftmost inequality involving
lvlly/llv|lz is redundant.

The term “strongly” refers to the requirement B,(z,1) C Ds. The
term “non-degenerate” refers to the Hessians being pd, thereby giving the
local inner products. The definition of self-concordant functionals — not
necessarily strongly non-degenerate — is a natural relaxation of the above
definition, only requiring the Hessians to be psd. However, it is the strongly
non-degenerate self-concordant functionals that play the central role in ipm
theory and so the relaxation of the definition is best postponed until the
reader has in mind a general outline of the theory.

As the parentheses in our definition indicate, for brevity we typically
refer to strongly non-degenerate self-concordant functionals simply as “self-
concordant functionals.”

If a linear functional is added to a self-concordant functional — z —
(c,z) + f(x) — the resulting functional is self-concordant because the Hes-
sians are unaffected. Similarly, if one restricts a self-concordant functional
f to a subspace L (or to a translation of the subspace), one obtains a
self-concordant functional, a simple consequence of the local norms for f|r,
being the restrictions of the local norms for f.

The primordial self-concordant barrier functional is the “logarithmic
barrier function for the non-negative orthant” having domain D := R,
(i-e., the strictly positive orthant). It is defined by f(z) := -3 Inz;.
Since the coordinates of vectors play such a prominent role in the definition
of this functional, to prove self-concordancy, it is natural to use the dot
product as a reference inner product. Expressing the Hessian H(z) as a
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matrix, one sees it is diagonal with j** diagonal entry 1/ x? Consequently,
y € Bg(z,1) is equivalent to

 — x . 2
> (452) <
j 7
an inequality which is easily seen to imply y € Dy as required by the

definition of self-concordancy. Moreover, assuming y € B,(z,1) and v is an
arbitrary vector, we have

LHEEY (’y’—)

J

-2 (2) (7))

J

2
N
o]]2 max (—)
2 y]

IA

Since

1-|ly -z’

the rightmost inequality on ||v||y/||v||z in the definition of self-concordancy
is proven. The leftmost inequality is proven similarly.

For an LP
min c¢-zx
st. Arxr=b
x>0,

the most important self-concordant functionals are those of the form
ne-z + flo(z),

where n > 0 is a fixed constant, f is the logarithmic barrier function for
the non-negative orthant, and L := {z : Az = b}.
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Another important self-concordant functional is the “logarithmic barrier
function for the cone of pd matrices” in $"*™. This is the functional defined
by f(X) := —Indet(X), having domain S}}". To prove self-concordancy,
it is natural to rely on the trace product, for which we know H(X)AX =
X~1(AX)X~!. For arbitrary Y € §"*", keeping in mind that the trace of
a matrix depends only on the eigenvalues, we have

v - X||% = trace((Y - X)X }(Y -X)X71)
= trace(X V(Y - X)X"Y(Y - X)X 1/?)
= Z(l - /\j)z,

where A\; < ... < A, are the eigenvalues of X ~1/2Y X~1/2, Assuming ||Y —~
X|lx <1, all of the values ); are thus positive, and hence X ~1/2Y X ~1/2
is pd, which is easily seen to be equivalent to Y being pd. Consequently,
if Y = X||x < 1 then Y € Dy, as required by the definition of self-
concordancy.

Assuming Y € Bx(X,1) and letting @ be an orthogonal matrix for
which
QTx—l/2YX—1/2Q =A

is diagonal, for arbitrary V € $™*" we have
IVI2 = trace(VY VY1)

= trace(X2VY-lvy-1x1/?)
trace([(X 12V X /2 (X 2y X))
trace(X ~1/2V X 1/2)(Qr—1QT)1?)
trace([(QT X2V X2Q)A1)?)
Klgtrace([QTX_1/2VX_1/2Q]2)
Xl-frtrace([X‘l/zVX‘l/z]z)
fgtrace(VX_lVX_l)

= HIVIE.

oAl

Since

v 1+ -1

o0

>t

k=0
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PO CEPDLE

k=0 i=1

o0
= Y trace([XMA(X - V)X V22
k=0

IA

= i trace((X — Y)X~1(X — V)X~ 1)k/2

k=0
o0

= Y Iv-Xxl%
k=0

_ 1
1-lY - X|x’

the rightmost inequality on ||V ||y /||V|| x in the definition of self-concordancy
is proven. The leftmost inequality is proven similarly.

For an SDP
min CoX
st. A(X)=b
X =0,

where A : $™*™ — R™ is a linear operator, the most important self-
concordant functionals are those of the form

nCo X + f|L(X),

where > 0 is a fixed constant, f is the logarithmic barrier function for
the cone of pd matrices, and L := {X : A(X) = b}.

LP can be viewed as a special case of SDP by identifying, in the ob-
vious manner, R with the subspace in S™*" consisting of diagonal ma-
trices. Then the logarithmic barrier function for the pd cone restricts to
the logarithmic barrier function for the non-negative orthant. Thus, we
were redundant in giving a proof that the logarithmic barrier function for
the non-negative orthant is indeed a self-concordant functional. The in-
sight gained from the simplicity of the non-negative orthant justifies the
redundancy. In §2.5 we show that the self-conjugacy of each of these two
logarithmic barrier functions is a simple consequence of the original defini-
tion of self-concordancy due to Nesterov and Nemirovskii[l]. (The original
definition is not particularly well-suited for a transparent development of
the theory, but it is well-suited for establishing self-conjugacy of logarithmic
barrier functions.)
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To apply our definition of self-concordancy in developing the theory, it
is useful to rephrase it in terms of Hessians. Specifically, since

llvl? (v, Ho (y)v)s
sup = sup ———=—— = || Hz ()|
Loz =S R e
and, similarly,
int 5 1y )
v J[uli2

the pair of inequalities in the definition is equivalent to the pair

e L
(2.2.1) 1@l 1Ho(0) " e < T =217

In turn, since

17 — Ho(y)lle = max{||Ho()llz — 1,1 = 1/I|Hz(y) " 1}

and, similarly,

17 = Hz(y) " llo = max{|| Ha(y) "= — 1,1 = 1/ Hs()ll=},
the inequalities (2.2.2) imply

1
T e
(1= lly - =llz)

Recalling that H;(z) = I, it is evident from (2.2.2) that to assume self-
concordancy is essentially to assume Lipschitz continuity of the Hessians
w.r.t. the operator norms induced by the local norms.

(22.2) N = Ho@)lls, 1 = Ho ()7l <

An aside for those familar with third differentials: Dividing the quan-
tities on the left and right of (2.2.2) by |ly — z|| and taking the limits
supremum as y tends to z, suggests when f is thrice differentiable that self-
concordancy implies the local norm of the third differential to be bounded
by “2.” In fact, the converse is also true, that is, a bound of “2” on the
local norm of the third differential for all z € Dy, together with the require-
ment that the local unit balls be contained in the functional domain, imply
self-concordancy, as we shall see in §2.5. Indeed, the original definition of
self-concordancy in [1] is phrased as a bound on the third differential.

The following proposition and theorem display the simplifying role the
conditions of self-concordancy play in analysis. The proposition bounds the
error of the quadratic approximation, and the theorem guarantees progress
made by Newton’s method. Note the elegance of the bounds when com-
pared to the more general Corollary 1.5.7 and Theorem 1.6.2.
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Proposition 2.2.3 If f € SC, z € Dy and y € B;(z,1) then

_ Iy ~ I
1£0) - 0:(0)| < gt e,

Proof: Using Corollary 1.5.7, we have

IA

1 t
ly - o2 / / I = Ho(z + s(y — )|, ds dt

||y—x||2/1/t ! —ldsdt
“Jo Jo (1-slly —z|5)?
1 42

3
- - _— dt
=2 [ = vl
_ 3 1
0

|f(y) — g=(v)]

IA

Ty — o,
S Ve
3T~ Ty ~ all)

a

Theorem 2.2.4 Assume f € SC and x € Dy. If z minimizes f and
z € By(z,1) then

o — I
Ty — 2| £ —m—".
o =2l < T,

Proof: Using Theorem 1.6.2, simply observe

1
les — 2l < Nl [ I - Halo+ bz - 2))lo de
0
! 1
<z -z / _—— - 1dt
o=l J, T=t =
lz — z|I2
1z -zl
0O
The use of the local norm || ||; in Theorem 2.2.4 to measure the dif-

ference ; — z makes for a particularly simple proof but does not result
in a theorem immediately ready for induction. At z, the containment
z € By, (z+,1) is needed to apply the theorem, i.e., a bound on ||z — z||.
rather than a bound on |z — z||;. Given that the definition of self-
concordancy restricts the norms to vary nicely, it is no surprise that the
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theorem can easily be transformed into a statement ready for induction.
For example, substituting into the theorem the inequalities

et = 2ll(1 = llz = 2ll2) < llz4 - 2l

and

lz — 2|l
- 1-|lz— <z - <
llz — 2[]2( lz - zll.) < |l= z||z < 1-|lz— Z”z,

as are immediate from the definition of self-concordancy when = € B,(z,1),
we find as a corollary to the theorem that if ||z — 2|, < } then

Iz — 21 .
(@ Tz — 22— 2}z = 211.)

(2.2.5) oy — 2]l <

Consequently, if one assumes ||z — z||, < } then

lzs — 2l < 4(llz — 2[|2)?* (< §, so z+ € Dy),
and, inductively, ‘
(2.2.6) lzi = 2|l < 3(llz - 2]l)*,

where £, = 4, Z, . . . is the sequence generated by Newton’s method. The
bound (2.2.6) makes apparent the rapid convergence of Newton’s method.

The most elegant proofs of key results in the ipm theory are obtained by
phrasing the analysis in terms of ||n(z)||; rather than in terms of ||z — z||»
as was done in Theorem 2.2.4. In this regard, the following theorem is
especially useful.

Theorem 2.2.7 Assume f € SC. If ||n(z)||s <1 then
In(2)lle )2
n(z < | ——=1 .
Proof: Assuming ||n(z)||z; < 1, we have
In(@o)llZ, = IHz(@+) go(z4)lIZ,

(9z(z+), He (x+)—lgz(~"’+))z
I He(zs)  llallga (@4 )13-

IA

Since by (2.2.1) we have

-1 1
W=zl < @i
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we thus have

2
I, < (228l )

The proof is completed by observing

loazlls = || / [He( + tn()) - IIn(z) dt]l.
1
< @)l / I = He(z + t (@), dt
0
1 1
< @l [ G - 1
lIn(@)|2
T n@,’

a

A rather unsatisfying, but unavoidable, aspect of general convergence
results for Newton’s method is an assumption of z being sufficiently close
to a minimizer z, where “sufficiently close” depends explicitly on 2. For
general functionals, it is impossible to verify that x is indeed sufficiently
close to z without knowing 2. For self-concordant functionals, we know
that the explicit dependence on z of what constitutes “sufficiently close”
can take a particularly simple form (e.g., we know z is sufficiently close to
z if [z — z||, < %), albeit a form which appears still to require knowing
z. The next proposition provides means to verify proximity to a minimizer
without knowing the minimizer.

Proposition 2.2.8 Assume f € SC. If ||n(z)(|, < % then f has a mini-

mizer z and 3ln(a)|2 -
n(z)||2
lz=o+lle € T m@ie
(So, |lz — zl|z < |In(2)]lz + 3|In(2)lI2/(1 — |In(z)]|<)3.)

Proof: We first prove a weaker result, namely, if [|n(z)||, < % then f has
a minimizer z and ||z — z||; < 3||n(z)|l,.

Proposition 2.2.3 implies that for all y € B, (z, %—),

1F(y) — ¢z ()| < Ly — =|I2

and hence
f@) = f(z) = In@)llzlly - zlls + 3lly — =|12.
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It follows that if |[n(z)||s < § and |ly — zllz = 3||[n(z)|lz, then f(y) > f(z).
However, it is easily proven that whenever a continuous, convex functional
f satisfies f(y) > f(z) for all y on the boundary of a compact, convex set
S and some z in the interior of S, then f has a minimizer in S. Thus, if
In(z)l|z < §, f has a minimizer z and ||z — 2||z < 3|in(z)|lz-

Now assume |[n(z)||s < §. Theorem 2.2.7 implies
2

LETRP

1=|n@)=/ ~

Applying the conclusion of the preceding paragraph to z, rather than to
z, we find that f has a minimizer z and ||z — z4 ||z, < 3|[n(z4)|lz,. Thus,

O )=

In(@)llas < (

2~ 4,

lz=alle < T @,
- 3zl
S T @I,
. 3@
S Ao @Iy

O

We noted that adding a linear functional to a self-concordant functional
yields a self-concordant functional. The next two propositions demonstrate
other relevant ways for constructing self-concordant functionals.

Proposition 2.2.9 The set SC is closed under addition, that is, if fi and
f2 are self-concordant functionals satisfying Dy, N Dy, # 0 then fi + f2 :
Dy, N Dy, = R is a self-concordant functional.

Proof: Let f := fi + fo. Assume « € Dy. For all v,
(’U,H(.’I))’U) = (U7H1 (.’E)’U) + (U’H2(x)’u)’
that is
ol = llvll2 1 + llvllZ,2-
Hence,

Bz(x,l) - B,,yl(x, 1) anyz(.'L‘,l) c Df1 ﬂDf2 = Df,

as required by the definition of self-concordancy.
Note that whenever a, b, ¢, d are positive numbers,

min{%, %} < ‘C—li'—g < max{%,%}.
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Consequently, if y € Dy,
v||? v|)?
|I I3 S” Ilg<m llvll3,: .
HUII vl vll3,:
Thus, if ||y — z||: < 1 (and hence ||y — z||.: < 1),

Ioly (e L 1
olle =" Ty = allos = T=Ty =3l

establishing the upper bound on ||v||, /||v]| in the defintion of self-concordancy.
One establishes the lower bound similarly. 0

Proposition 2.2.10 If f € SC, Dy C R™ and A : R" - R™ is an in-
jective linear operator then z — f(Ax — b) is a self-concordant functional,
assuming the domain {x : Az — b € Dy} is non-empty.

Proof: Denote the functional z — f(Az —b) by f'. Assuming z € Dy,
one easily verifies from the identity H'(z) = A*H(Az — b)A that H'(z) is
pd and that ||v||;, = ||Av||az—s for all v. In particular,

AB;(CL‘, 1) —b C Bay—s{Az —b,1) C Dy

and thus
B,(z,1) C{y: Ay—be Dy} = Dy,
as required by the definition of self-concordancy.
If |y — z||., <1 - hence ||A(y — z)||z < 1 - and v # O then

lolly, _ lAv]lay-s
llvll% | Av|| Az—b
1
1-|A(y — )| az—b
B 1
1—|ly — |’

establishing the upper bound on ||v||,/||v|| in the defintion of self-concordancy.
One establishes the lower bound similarly. O

Applying Proposition 2.2.10 with the logarithmic barrier function for
the non-negative orthant in R™, we obtain the self-concordancy of the func-

tional
T —Zln(ai -z — b;)
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whose domain consists of the points x satisfying the strict linear inequality
constraints a; -z > b;. This self-concordant functional is important for LP’s
with constraints written in the form Az > b. It, too, is referred to as a
“logarithmic barrier function.”

To provide the reader with another (logarithmic barrier) functional with
which to apply the above propositions, we mention that  — — In(1 - ||z|?)
is a self-concordant functional with domain the open unit ball. (Verification
of self-concordancy is made in §2.5.) Given an ellipsoid {z : ||Az| < r}, it
then follows from Proposition 2.2.10 that

T — —ln(r2 - |IA:1:||2)

is a self-concordant functional whose domain is the ellipsoid, yet another
logarithmic barrier function. For an intersection of ellipsoids, one simply
adds the functionals for the individual ellipsoids, as justified by Proposi-
tion 2.2.9.

Nesterov and Nemirovskii[1] showed that each open, convex set contain-
ing no lines is the domain of a (strongly non-degenerate) self-concordant
functional. We give a somewhat different proof of this in §3.7??. Unfortu-
nately, the result is only of theoretical interest. To rely on self-concordant
functionals in devising ipm’s, one must be able to readily compute their
gradients and Hessians. For the self-concordant functionals proven to ex-
ist, one cannot say much more than that the gradients and Hessians exist.
By contrast, the importance of the various logarithmic barrier functions
we have described lies largely in the ease with which their gradients and
Hessians can be computed.

Although the values of continuous convex functionals with bounded do-
mains (i.e., bounded w.r.t. any reference norm) are always bounded from
below, they need not have minimizers when the domain is open. Such is
not the case for self-concordant functionals.

Proposition 2.2.11 If f € §C and the values of f are bounded from below
then f has a minimizer. (In particular, if Dy is bounded then f has a
minimizer.)

Proof: Assume z satisfies
@) - o5 <inf f(y).
Letting y := z + 3”n(1z) -n(z), Proposition 2.2.3 implies

f@) < f(@) - §lin(@)lz + &
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and thus by choice of z,

5lIn@)lz — 2 < 15>

that is,
In(@)lls < 3(3% + 15) = §-

Proposition 2.2.8 then implies f to have a minimizer. O

The conclusion of the next proposition is trivially verified for important
self-concordant functionals like those obtained by adding linear functionals
to logarithmic barrier functions. Whereas the definition of self-concordancy
plays a useful role in both simplifying and unifying the analysis of New-
ton’s method for many functionals important to ipm’s, it certainly does not
simplify the proof of the property established in the next proposition for
those same functionals. Nonetheless, for the theory it is important that the
property is possessed by all self-concordant functionals.

Proposition 2.2.12 Assume f € SC and & € 0Dy, the boundary of Dy.
If the sequence {x;} C Dy converges to & then liminf; f(z;) = oco.

Proof: Adding f to a functional z — —~ln(1~{ ~ ||z||?) where R > ||,
one obtains a self-concordant functional f for which D 7 is bounded and
for which lim inf; f (zi) = oo iff liminf; f(z;) = co. Consequently, we may
assume Dy is bounded.

Assuming Dy is bounded, we construct from {z;} a sequence {y;} C D;
whose limit points lie in 8Dy and for which

fyi) < f(w:) — 35

Applying the same construction to the sequence {y;}, and so on, we will
thus conclude that if liminf; f(z;) < oo then f assumes arbitrarily small
values, contradicting the lower boundedness of continuous convex function-
als having bounded domains.

Shortly we prove liminf; ||n(z;)||s; > 1. In particular, for sufficiently

large 4, y; := z; + mn(m) is well-defined and, from Proposition 2.2.3,

Fly) < fl@) — 55 + 56 + 505 = @) — %5

Moreover, all limit points of {y;} lie in dDs. For otherwise, passing to a
subsequence of {y;} if necessary, there exists € > 0 such that B(y;,e) C Dy
for all ¢, where the ball is with respect to the reference norm. However, since
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y; and z; — (y; — z;) lie in Dy (because ||y; — i||s, = § < 1), it then follows
from convexity of Dy that B(z;,€/2) C Dy, contradicting z; — & € 0Dy.

Finally we show liminf; |n(z;)|l; > §. Since Dy is bounded, Propo-
sition 2.2.11 shows f has a minimizer z. Since B,(z,1) C Dy and z; =
& € 0Dy, we have liminf; ||z; — z||, > 1. Hence, from the definition of self-
concordancy, liminf; ||z; — z||z; > 1. Because f has a most one minimizer,
Proposition 2.2.8 then implies liminf; ||n(z;)||z, > £, concluding the proof.
O

We close this section with a technical proposition to be called upon
later.

If g(z) + v is a vector sufficiently near g(z), there exists z + u close
to z such that g(z + u) = g(z) + v, a consequence of H(z) being pd and
hence invertible. It is useful to quantify “near” and “close” when the inner
product is the local inner product, that is, when H,(z) = I and hence
u .

Proposition 2.2.13 Assume f € SC and x € Dy. If ||v|lz < r where
r < 1, there ezists u € By (v, ZlaTT:F) such that g;(z + u) = g.(z) +v.

Proof: Consider the self-concordant functional

(2.2.14) ¥y —(9:(%) + v,y)z + (),

a functional whose local inner products agree with those of f. Note that
a point 2’ minimizes the functional iff g.(z') = g.(z) + v. Under the
assumption of the proposition, we thus wish to show 2’ exists and u := 2’ —z
— 2

satisfies u € By (v, 1¥553)-

Since at z, the Newton step for the functional (2.2.14) is v, the as-
sumption [|v||; < r allows us to apply Proposition 2.2.8, concluding that a

e s . . 32

minimizer z’ does indeed exist and ||z’ — (z + v)||z < - a

2.3 Barrier Functionals

A functional f is said to be a (strongly non-degenerate self-
concordant) barrier functional if f € SC and

9f 1= sup ||gz(2)||2 < oo.
.’BEDf
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Let SCB denote the family of functionals thus defined. We typically refer
to elements of SCB as “barrier functionals.”

The definition of barrier functionals is phrased in terms of ||g,(z)]|.
rather than in terms of the identical quantity ||n(z)||; because the im-
portance of barrier functionals for ipm’s lies not in applying Newton’s
method to them directly, but rather, in applying Newton’s method to self-
concordant functionals built from them. As mentioned before, for an LP

min c-zx
st. Az =0
z2>0,

the most important self-concordant functionals are those of the form

(2.3.1) nc-z + flo(z),

where n > 0 is a fixed constant, f is the logarithmic barrier function for
the non-negative orthant, and L := {z : Az = b}.

When they defined barrier functionals, Nesterov and Nemirovskii[1] ref-
ered to ¥ as “the parameter of the barrier f.” Unfortunately, this can be
confused with the phrase “barrier parameter” which predates [1] and refers
to the constant 7 in (2.3.1). Consequently, we prefer to call ¥; the “com-
plexity value of f,” especially because it is the quantity that most often
represents f in the complexity analysis of ipm’s relying on f.

If one restricts a barrier functional f to a subspace L (or a translation
of a subspace), one obtains a barrier functional simply because the local
norms for f|i are the restrictions of the local norms for f and

“glL,x(x)”z = ”PL,zgz(x)“z < llg=(@)llz < AZE

Clearly, ¥y, < 5.

The primordial barrier functional is the primordial self-concordant func-
tional, i.e., the logarithmic barrier function for the non-negative orthant;
f(z) := = 3°;Inz;. Relying on the dot product, so that g(z) is the vector
with j* entry 1/z; and H(z) is the diagonal matrix with j** diagonal entry
1/x3, we have

lgz(2)II7 = (9(z), H(z) "} g(z)) = n.
Thus, ¥f = n.

Now let f denote the logarithmic barrier function for the cone of pd
matrices in S™*™; f(X) := —Indet(X). Relying on the trace product, we
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have for all X € S73",

lax (% = (9(X), H(X)'g(X))
= trace(X!1XX71X)
= trace(])
n.
Thus, ¥f =n.
Finally, let f denote the logarithmic barrier function for the unit ball in
R f(z) := —In(1 - ||z|?) (where || || := (, )}/2 for some inner product).

It is not difficult to verify that for z in the unit ball,

2 2 4(z, Azx)
)= ———z, H) Az = ——Azx+ —F—=,
90 = T o™ F@A = T T ey
and hence,
- 1—|l=|?
1 -
H(z) " g(z) = T “zllzx
Consequently,
- 2||=}?
2 _ 1 —

It readily follows that ¥y = 1, showing the complexity value need not
depend on the dimension n.

In §2.2 we noted that if a linear functional is added to a self-concordant
functional, the resulting functional is self-concordant because the Hessians
are unchanged; the definition of self-concordancy depends on the Hessians
alone. By contrast, adding a linear functional to a barrier functional need
not result in a barrier functional. For example, consider the the univariate
barrier functional z — —Inz and the functional z = z — In z.

The set SCB, like SC, is closed under addition.

Proposition 2.3.2 If fi, f, € SCB and Dy, N Dy, # 0 then f :== fi+ f2 €
SCB (where Dy = Dy, N Dy, ) and 95 < 9y, + V4,

Proof: Assume z € Dy. Let the reference inner product (, ) be the local
inner product at z defined by f. Thus, I = H(z) = Hi(z) + Hs(z). In
particular, Hy(z) and H3(x) commute, i.e., Hy(z)Hz(z) = Ha(z)Hi(z).
Consequently, so do Hi(z)'/? and Ha(z)'/2.

For brevity, let H; := H;(z) and g; := g;(z) for¢ = 1,2.
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To prove the inequality in the statement of the proposition, it suffices
to show

llgr + g2ll® < (g1, H ‘1) + (g2, H; ' g2).

For, by definition, the quantity on the right is bounded by ¥y, + ¥4,.

1/2

Defining v; := H; *'“g; for i = 1,2, we have

g1l + 2(g1, g2) + llg=I?

(v1, Hivi) + 2(H11/2v1,H21/202) + {v2, Havs)

(v1,(I = Ha)v1) + 2(H11/2v1,H21/2v2) + (v2, (I — Hy)vs)
(v1,01) + (v2,v2) = | Hy *v1 — H 05|

(v1,v1) + (v2,v2)

(91, H 'q1) + (92, H; ' g2)-

llg1 + gll?

IA

O

The set SCB, like SC, is closed under composition with injective linear
maps.

Proposition 2.3.3 If f € SCB, Dy CR™ and A : R* = R™ is an injec-
tive linear operator then x — f(Az — b) is a barrier functional — assuming
the domain {x : Ax —b € Dy} is non-empty - and its complexity value does
not exceed V.

Proof: Assume Az — b € Dy. Endow R™ with an arbitrary reference
inner product and let the reference inner product on ®™ be the local inner
product for f at Az — b. Denoting the functional z — f(Az —b) by f',
we then have ¢'(zx) = A*g(Az —b), H'(z) = A*H(Az — b)A = A*A and
llg(Az — B)|[2 < 9. Thus,

(¢'(@), H' ()" ¢ (2))

(9(Az —b), A(A*A) "  A*g(Az - b))
< A4 AT A% |lg(Az ~ b)|?
< ’19f.

(The last inequality is due to the operator being a projection operator;
hence the operator has norm equal to one.) The proposition follows. O

With regards to theory, the following proposition is perhaps the most
useful tool in establishing properties possessed by all barrier functionals.
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Proposition 2.3.4 Assume f € SCB. If z,y € Dy then

(9(z),y — z) < Iy

Proof: We wish to prove ¢/(0) < ¥ where ¢ is the univariate functional
defined by ¢(t) := f(z + t(y — 7). In doing so we may assume ¢'(0) > 0
and hence, by convexity of ¢, ¢'(t) > 0 for all £ > 0 in the domain of ¢.

Let v(t) := z + t(y — z). Assuming ¢ > 0 is in the domain of ¢,

¢"(t) _ -2y -2y
¢’(t)2 (gu(t)(v(t))ay - z)?,(t)
1
9wy W2y
1
2 %

and hence for all s > 0 in the domain of ¢,

s "
9" (¢) s
dt > —.
o ¢t T U
Thus,
8
-1 > 5
¢t)lo ~ I’
that is,
954'(0)
/ > _f____
AR TEFrT0
Consequently, s = 9¢/¢'(0) is not in the domain of ¢. Since s = 1 is in the
domain, we have 1 < d5/¢'(0). a

The next proposition implies that for each z in the domain of a barrier
functional, the ball B,(z,1) is, to within a factor of 49 + 1, the largest
among all ellipsoids centered at z which are contained in the domain.

Proposition 2.3.5 Assume f € SCB. Ifz,y € Dy satisfy (g(z),y—z) >0
then y € Bgy(z,49f +1).

Proof: Restricting f to the line through = and y, we may assume f is
univariate. Viewing the line as R with values increasing as one travels from
z to y, the assumption {(g(x),y — =) > 0 is then equivalent to g(z) > 0, i.e.,
g(z) is a non-negative number.
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Let v denote the smallest non-negative number for which ||g,(z) +v||z >
1. Since g,(z) > 0, we have |jv||l; < . Applying Proposition 2.2.13, we
find there exists u satisfying

u€ Bft(va %) and ”g:c(x +u)“:c = ”gz(w) +v”z > %

Note jluflz < 1.
Proposition 2.3.4 implies

19f Z <gﬂ'»‘($+u)7y_(m+u)>z
= (gz(w) + v,y ~ z)s — (9:(T) +v,u)s

> glly = zlls = (92(2) +v,0)s,
where the last inequality makes use of g;(z) + v and y — = both being non-
negative. However, since [|g;(z) +v|l; > § only if v = 0 (and hence only if
u = 0), we have

(9s(2) +v,u)s < Fllullz < 3.
Thus,
95 > tlly -zl — 1,

from which the proposition is immediate. a

Minimizers of barrier functionals are called analytic centers. The fol-
lowing Corollary gives meaning to the term “center.”

Corollary 2.3.6 Assume f € SCB. If z is the analytic center for f then
B,(z,1) C Dy C B,(z,49¢ + 1).

Proof: Since f € SC, the leftmost containment is by assumption. The
rightmost constainment is immediate from Proposition 2.3.5 since g(2) = 0.
a

Corollary 2.3.6 suggests that if one was to choose a single inner product
as being especially natural for a barrier functional with bounded domain,
the local inner product at the analytic center would be an appropriate
choice.

Corollary 2.3.7 If f € SCB then f has an enalytic center iff Dy is
bounded.

Proof: Immediate from Proposition 2.2.11 and Corollary 2.3.6. O
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In the complexity analysis of ipm’s, it is desirable to have barrier func-
tionals with small complexity values. However, there is a positive threshold
below which the complexity values of no barrier functionals fall. Nesterov
and Nemirovskii[l] prove that 9y > 1 for all f € SCB. To understand
why there is indeed a lower bound, assume ¥9; < % for some f € SCB.
Proposition 2.2.8 then implies f has a (unique) minimizer z and all x € Dy
satisfy ||z —z||z < %%. However, by choosing z so that in the line L through
z and z, the distance from z to the boundary of Dy N L is smaller than the
distance from z to z, the containment B;(z,1) C Dy implies ||z — z||; > 1,

a contradiction. Hence 95 > {5 for all f € SCB.

Likewise, by Proposition 2.2.8, if f € SCB and Dy is unbounded -
hence f has no minimizer — then ||g;(z)|l. > £ := 3 for all z € Dy.
In the unbounded case, Nesterov and Nemirovskii prove the lower bound
l|lgz(@)||z = £:=1for all z € Dy.

It is worth noting that a universal lower bound £ as in the preceeding
paragraph implies a lower bound nf < ¥ for each barrier functional f
whose domain is the non-negative orthant R% , . For let e denote the vector
of all ones and let e; denote the j** unit vector. Consider the univariate
barrier functional f; obtained by restricting f to the line through e in
the direction e;. Let g. denote the gradient of f w.rt. (, )e and let
gje denote the gradient of f; w.r.t. the restricted inner product. Since
Dy, is unbounded, and hence f; does not have an analytic center, it is
readily proven (without making use of the particular inner product) that
(gje(€),ej)e < 0. Since gj. and e; are co-linear (because Dy, is one-
dimensional), it follows that

(95.e(e),e5)e = —llgj.e(€)llelleslle-
Noting ||e;{|le > 1 because e — e; & Dy, we thus have
(gje(€),€5)e < —llgjele)lle < —L.

Hence,
nt < ) (giele),—es)e
J
S (ge(e) —e)e

7

(ge(e)10 - e)e
< 9y

the last inequality by Proposition 2.3.4.
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In light of the two preceding paragraphs, we see that with regards to
the complexity value, the logarithmic barrier function for the non-negative
orthant R% | is the optimal barrier functional having domain 7% . Like-
wise, viewing R” as a subspace of §"*", the logarithmic barrier function
for the cone of pd matrices is the optimal barrier functional having that
cone as its domain.

For arbitrary inner products, the bounds ||g;(z)||z < 1/Y; imply noth-
ing about the quantities [|g(z)||. However, the bounds do imply bounds
on the quantities ||g,(z)||, for all y € Dy. This is the subject of the next

proposition. First, a definition.

For z in an arbitrary bounded convex set D, a natural way of measur-
ing the relative nearness of = to the boundary of D, in a manner that is
independent of a particular norm, is the quantity known as the symmetry
of D about z, denoted sym(z, D). This quantity is defined in terms of the
set L(z, D) consisting of all lines through z which intersect D in an interval
of positive length. (If D is lower dimensional, most lines through z will not
be in L(z,D).) If z is an endpoint of L N D for some L € L(z,D), de-
fine sym(z, D) := 0. Otherwise, for each L € L(z, D), letting r(L) denote
the ratio of the length of the smaller to the larger of the two intervals in
LN (D\ {z}), define

sym(z, D) := Leérg D)r(L).

Clearly, if D is an ellipsoid centered at z then sym(zx, D) = 1, “perfect
symmetry.” Corollary 2.3.6 implies that if z is the analytic center for a
barrier functional f then sym(z, Dy) > 1/(49¢ + 1).

Proposition 2.3.8 Assume f € SCB. If x € Dy then for all y € Dy,

lov(ally < (1+ ot ) 91

Proof: For brevity, let s := sym(x, Ds). Assuming z,y € Dy, note that
w =y + (1 + s)(z — y) € Dy, the closure of D;. Since By(y,1) C D; and
Dy is convex, we thus have

=W+ 15 By(y,1) € Dy,

that is, By(z, i—j_—s) C Dy. Consequently,

lgy(@)lly = vegfé,l)(gy(w);v —T)y
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max . 122 (gy(z), v — )y
vE€By(z,715)

IA

1
max H2(gy(2),v — z)y
< Moy,
the last inequality by Proposition 2.3.4. ]

At the end of §2.2 we saw that f(z;) — oo if f is a self-concordant
functional and {z;} converges to a point in the boundary of Dy. To close
this section, we present a proposition that indicates the rate at which f(z;)
goes to oo is “slow” if f is a barrier functional.

Proposition 2.3.9 Assume f € SCB and z € Ds. Ify € Dy then for all
0<t<1,

fly+tz—y)) < f(z) —dfInt.

Proof: For s > 0 let z(s) := y + e”*(z — y) and consider the univariate
functional ¢(s) := f(z(s)). Relying on the chain rule, observe that

o) = $(0)+ / oL
= f@)+ /0 (9(@(®), —e (@ — v)) di
= fl@)+ /0 “(o(a(®)), v — z(6)) de

< f($)+/sl9fdt
= fl@)+ S:;f,
the inequality due to Proposition 2.3.4. Hence, for 0 < ¢ < 1,
fly +t(z —y)) = ¢(=Int) < f(z) — I In(?).

2.4 Primal Algorithms

The importance of a barrier functional f lies not in itself, but in that it can
be used to efficiently solve optimization problems of the form
min (c,z)

(24.1) st. w€ Dy,
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where D; denotes the closure of Dy. Among many other problems, linear
programs are of this form. Specifically, restricting the logarithmic barrier
function for the non-negative orthant to the space {z : Az = b}, we obtain
a barrier functional f for which

Dy ={z:Az=b, z > 0}.

Similarly for SDP.
Let val denote the optimal value of the optimization problem (2.4.1).

Path-following ipm’s solve (2.4.1) by following the central path, the path
consisting of the minimizers z(n) of the self-concordant functionals

fn(x) = T](C, .'E) + f(x)a

for n > 0. It is readily proven when D; is bounded that the central path
begins at the analytic center z of f and consists of the minimizers of the
barrier functionals f|(,) obtained by restricting f to the spaces

L) = {z: (¢,z) = v}

for val < v < {c,z). Similarly, when Dy is unbounded, the central path
consists of the minimizers of the barrier functionals f|,) for val < v.

We note the local inner products for the self-concordant functionals f,
are identical with those for f. We observe for each y € Dy, the optimization
problem (2.4.1) is equivalent to

min  (cy, T)y

s.t. =z € Dy,

where ¢, := H(y)"'c. (In other words, w.r.t. {, )y, the objective vector is
cy.)

The desirability of following the central path is made evident by consid-
ering the objective values {(c, z(n)). Since g(z(n)) = —nc, Proposition 2.3.4
implies for all y € Dy,

(e;z(m) ~(e,y) = 3{g(z(m),y — z(m)
< -71;'(9f
and hence
(2.4.2) (c,z(n)) < val+ %ﬁf.

Moreover, the point z(n) is well-centered in the sense that all feasible points
y with objective value at least (c,z(n)) satisfy y € B, (2(n),49; + 1), a
consequence of Proposition 2.3.5.
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Path-following ipm’s follow the central path approximately, generating
points near the central path where “near” is measured by local norms. If a
point y is computed for which ||y — 2(n)||.(y) is small then, relatively, the
objective value at y will not be much worse than at 2(n) and hence (2.4.2)
implies a bound on {c,y). In fact, if z is an arbitrary point in Dy and y
is a point for which |y — z||, is small then, relatively, the objective value
at y will not be much worse than at z. To make this precise, first observe
B:(z,1) C Dy implies z —tc; € Dy if 0 <t < 1/||egf|z. Since the objective
value at z — tc, is (¢, z) — t||cz||2 we thus have

(2.4.3) llezllz < {c,x) — val.
Hence for all y € ®7,
o) -val _ | (ay=2)
(¢, z) — val (¢, z) — val
1y ledoly sl
{c,z) — val
< 1+lly - 2.

In particular, using (2.4.2),
(24.4) (y) < A+ lly = s(llzm) (val + £95).

Before discussing algorithms, we record a piece of notation: Let n,(z)
denote the Newton step for f, at z, that is,

ny(z) = —H(z)"(nc+ g(z))
= —(ncz + g=(z)).

The Barrier Method

“Short-step” ipm’s follow the central path most closely, generating se-
quences of points all of which are near the path. We now present and
analyze an elementary short-step ipm, the “barrier method.”

Assume, initially, we know 7; > 0 and z; such that z; is “near” z(n;),
that is, z; is near the minimizer for the functional f,,. In the barrier
method, one increases 7; by a “slight” amount to a value 7, then applies
Newton’s method to approximate z(7;), thus obtaining a point z5. Assum-
ing only one iteration of Newton’s method is applied,

T =Ty + Ny, (21).
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Continuing this procedure indefinitely (i.e., increasing n, applying Newton’s
method, increasing 7, ...), we have the algorithm known as the barrier
method.

One would like 7, to be much larger than 1;. However, if 7, is “too”
large relative to 7;, Newton’s method will fail to approximate z(n.); in fact,
it can happen that xz, ¢ Dy, bringing the algorithm to a halt. The key
ingredient in a complexity analysis of the barrier method is proving that 7,
can be larger than 7, by a reasonable amount without the algorithm losing
sight of the central path.

In analyzing the barrier method, it is most natural to rely on the length
of Newton steps to measure proximity to the central path. We will assume
7 is near z(7,) in the sense that ||ny, (z1)||z, is small. The Newton step
taken by the algorithm is n,,(z;), not ny, (z1). The relevance of n,, (z1)
for ny, (1) is due to the following easily proven relation:

Mye (2) = 7o (2) + (G2 — 1)gz(2).

In particular,

(24.5) I, (@)lle < 2 iy (@)llz + 122 = 1]3/9;.

Besides the bound (2.4.5), the other crucial ingredient in the analysis is
a bound on ||ng,(x2)]|z, in terms of ||ny,(z1)||z,. Theorem 2.2.7 provides
an appropriate bound: If |jn,, (z1)]|z, < 1 then

2
(2.4.6) ||n,,2(z2)[|z2s( Iy (1)l ) _

1 = {Ing, (21|l

Suppose we determine values & > 0 and 3 > 1 such that if we define

v=aB+ (8- 1)/3;

(1_3_) <a.

By requiring ||n,, (z1)|lz, < @ and 1 < L < B, we then find from (2.4.5)
that

then v < 1 and

lInn, (21)llzy <,
and thus, from (2.4.6),
Inn, (22)lz, < o
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Consequently, xo2 will be close to the central path like ;. Continuing, by
requiring 1 < 1’% < B, z3 will be close to the central path, too. And so on.
Hence, we will have determined a value § such that if one has an initial
point appropriately close to the central path, and if one never increases the
barrier parameter from 7 to more than fn, the barrier method will follow
the central path, always generating points close to it.

The reader can verify, for example, that

a-—landﬂ'—l+; 1+L

9 o 8max{1,/Vs} 8P
satisfy the relations. Hence we have a “safe” value for 8. Relying on it,
the algorithm is guaranteed to stay on track. It is a remarkable aspect of

ipm’s that safe values for quantities like 8 depend only on the complexity
value ¥¢ of the underlying barrier functional f. Concerning LP’s,

min (c,z)
st. Az =1b
z20,

if one relies on the logarithmic barrier function for the strictly non-negative
orthant 8%, then v = (1 + ﬁ) is safe, regardless of A, b and c.

Assuming at each iteration of the barrier method, the parameter 7 is
never increased by more than 1+ 1/ 8\/19— , we now know that for each z
generated by the algorithm, there corresponds z(n) which = approximates
in that ||n,(z)||s < %; hence, by Propositon 2.2.8, ||z~ 2(n)||s < %; thus, by
the defintion of self-concordancy, ||z — z(n)||;(;) < §. All points generated
by the algorithm lie within distance # of the central path.

Assuming that at each iteration of the barrier method, the parameter
7 is increased by exactly the factor 1+ 1/ 8\/19_ , the number of iterations
required to increase the parameter from an initial value 7; to some value

n>mn is

In(n/m)
In(1 + 1/8,/9y)
10 /95 In(n/m),
(2.4.7) = O(\/9log(n/m)),

where in the inequality we rely on ¥y > 1. Hence, from (2.4.4), given
e> 0,

(2.4.8) 0 (\/197 log (2%))

IA
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iterations suffice to produce z satisfying (c, z) < val + €.

We have been assuming that an initial point z; near the central path is
available. What if, instead, we only know some arbitrary point =’ € Dj?
How might we use the barrier method to solve the optimization problem
efficiently? We now describe a simple approach, assuming Dy is bounded
and hence f has an analytic center.

Consider the optimization problem obtained by replacing the objective
vector ¢ with —g(z'). The central path then consists of the minimizers 2'(v)
of the self-concordant functionals

fo(®) := —v(g(z), z) + f(2).

The point z’ is on the central path for this optimization problem. In fact,
' =2(v) forv=1.
Let n,(x) denote the Newton step for f, at z.

Rather than increasing the parameter v, we decrease it towards zero,
following the central path to the analytic center z of f. From there, we
switch to following the central path {z(n)} as before.

We showed 7 can safely be increased by a factor of 1+ 1/8,/9;. Brief
consideration of the analysis shows it is also safe to decrease i by a factor
1-1/ 8\/19_ , and hence, safe to decrease v by that factor. Thus, to complete
our understanding of the difficulty of following the path {z’'(v)}, and then
the path {z(n)}, it only remains to understand the process of switching
paths.

One way to know when it is safe to switch paths is to compute the
length of the gradients for f at the points z generated in following the path
{z’(v)}. Once one encounters a point z for which, say, ||gz(z)||. < %, one
can safely switch paths. For then, by choosing 1 = 1/12 ||c;]|;, we find the
Newton step for f,, at z satisfies

I (@)le = limes + go (@)l < f5+ 5 = 4,

and hence, by Proposition 2.2.8, the Newton step takes us from z to a
point z; for which ||n,, (z1)llz, < 1, putting us precisely in the setting of

the earlier analysis (where oo = } was determined safe).

How much will v have to be decreased from the initial value » = 1
before we compute a point z for which ||gz(z)ll; < L so that paths can be
switched? An answer is found from the relations

gz (@)l lvge (') + i, ()l

vllgz(=)le + lIn,, (@)l

IA
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1
< —_— : 3]
< vy (14 — gy ) + o)

the last inequality by Proposition 2.3.8. In particular, with ||n},(z)[lz < §,
v need only satisfy

1

(2.4.9) V<13 9;(1 + 1/sym(z’, Dy))

in order for ||gz(z)|lz < %.

The requirement on v specified by (2.4.9) gives geometric interpretation
to the efficiency of the algorithm in following the path {2'(v)}, beginning
with the initial value v = 1. If the domain Dy is nearly symmetric about
the initial point z’, not much time will be required to follow the path to a
point where we can switch to following the path {z(n)}.

We stipulated that the algorithm switch paths when it encounters x
satisfying ||gz(z)||z < &, and we stipulated that one choose the initial value
m := 1/12||c;||z. Letting

V :=sup{{c,z) : € Dy},

note 2.4.3 implies
llezlle £V —val

and hence
m > 1/12(V — val).

We have now essentially proven the following theorem.

Theorem 2.4.10 Assume f € SCB and Dy is bounded. Assume z' € Dy,
a point at which to initiate the barrier method. If 0 < € < 1, then within

0 (V75 (carmp)

iterations of the method, all points x computed thereafter satisfy
(c,z) — val .
V—val — 7

Consider the following modification to the algorithm: Choose V' >
(c,z'). Rather than relying on f, rely on the barrier functional

z = f(z) = In(V' - (c,z)),
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a functional whose domain is
(24.11) Din{z:{c,z) <V'}

and whose complexity value does not exceed ¥; + 1. In the theorem, the
quantity V — val is then replaced by the potentially much smaller quantity
V' —val. Of course the quantity sym(z’, Dy) must then be replaced by the
symmetry of the set (2.4.11) about z’.

Finally, we highlight an implicit assumption underlying our analysis,
namely, the complexity value ¥; is known. The value is used to safely
increase the parameter 7. What is actually required is an upper bound ¢ >
¥¢. If one relies on an upper bound ¥ rather than the precise complexity
value ¥ then 9 in the theorem must be replaced by 9.

Except for ¥, none of the quantities appearing in the theorem are
assumed to be known or approximated. The quantities appear naturally in
the analysis of the algorithm but the algorithm itself does not rely on the
quantities.

No ipm’s have proven complexity bounds which are better than (2.4.8),
even in the restricted setting of linear programming. Nonetheless, the bar-
rier method is not considered to be practically efficient relative to some
other ipm’s, especially relative to primal-dual methods (discussed in Chap-
ter 3). The barrier method is an excellent algorithm with which to begin
one’s understanding of ipm’s, and it is often the perfect choice for concise
complexity theory proofs, but it is not one of the ipm’s that appear in
widely used software.

The Long-Step Barrier Method

One of the barrier method’s shortcomings is obvious, being implicit
in the terminology “short-step algorithm.” Although it is always safe to
increase n by a factor 1 + 1 /8\/19_f with each iteration, that increase is
small if ¥¢ is large. No doubt, for many instances, a much larger increase
is safe.

There is a trivial manner in which to modify the barrier method in hopes
of having a more practical algorithm. Rather than increase 1 by the safe
amount, increase it by much more, apply (perhaps several iterations of)
Newton’s method, and check (say, using Proposition 2.2.8) if the computed
point is near the desired minimizer. If not, increase i by a smaller amount
and try again.

A more interesting and more practical modification of the barrier method
is known as the “long-step barrier method.” In this version, one increases
1 by an arbitrarily large amount but does not take Newton steps. Instead,
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the Newton steps are used as directions for “exact line searches,” as we now
describe.

Assume as before that we have an initial value 177 > 0 and a point
x, approximating z(m). Choose 7y larger than #;, perhaps. significantly
larger. In search of a point zo which approximates z(72), the algorithm
will generate a finite sequence of points

Y1 =721,¥Y2,.--,YK-1, YK,

then let zo := yx. At each point yg, the algorithm will determine if the
point is close to z(nz) by, say, checking whether ||n, (¥&)|ly, < %. (We
choose the specific value § because it is the largest value for which Proposi-
tion 2.2.8 applies.) The point yx will be the first point that is determined
to satisfy this inequality.

To compute yx4+1 from yy, the algorithm minimizes the univariate func-
tional

(2.4.12) t = flyk +tnn, (¥e)).

This is the step in the algorithm to which the phrase “exact line search”
alludes. “Line” refers to the functional being univariate. “Exact” refers to
an assumption that the exact minimizer is computed, certainly an exager-
ation, but an assumption needed to keep the complexity analysis succinct.
Letting tx41 denote the exact minimizer, define

Yr+1 = Yk + tey1Mna (Yr),

thus ending our description of the long-step barrier method.

The short-step barrier method is confined to making slow but sure
progress. The long-step method is more adventurous, having the poten-
tial for much quicker progress.

Clearly, the complexity analysis of the long-step barrier method revolves
around determining an upper bound on K in terms of the ratio n2/m. We
now undertake the task of determining such a bound.

We begin by determining an upper bound on the difference

p = fn(x1) — fro(2(n2)).

Then we show that fr,(yx) — fn.(yx+1) is bounded below by a positive
amount 7 independent of k, that is, each exact line search decreases the
value of f,, by at least a certain amount. Consequently K < p/7. Proofs
like this — showing a certain functional decreases by at least a certain
amount with each iteration — are common in the ipm literature.
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In proving an upper bound on the difference p, we make use of the fact
that for any convex functional f and x,y € Dy, one has

(2.4.13) f(z) - f{y) < —(g(z),y — z).

The upper bound on p is obtained by adding upper bounds for

p1i= fra(@1) = fra(2(m)) and pa = fo, (2(m)) — fa (2(n2))-

Assuming 7 is close to z(n;) in the sense that ||n,, (z1)|lz, < }, Propo-
sition 2.2.8 implies ||lz1 — z(m)||z, < Thus, applying (2.4.13) to the
functional f,,,

1
5

p1 < (nng(21),2(m) — 21)z,
= ?,%<nn1(x1)a2(771) - T1)e,
+(B = 1){ge: (1), 2(m) — 71)s,
< Rt (E-DiVYs
< BJVY;.

Similarly, for all y € Dy,

Fa(Z2(m)) = fra(¥) < (nna(2(m))yy = 2(m)) ()
= L(ny (2(m)),y — 2(m))z(n)
F(Z = 1)(9a(mn) (2(m)), ¥ — 2(m)) 2(my)
= (B = 1){gz(nn) (2(m))s ¥ = 2(m))2(m)>

the final equality because z(n:) minimizes f,, and hence n,, (z2(m)) = 0.
Thus,

p2 < (B —1){g(2(m)), 2(m2) — 2(m))z(m)
< w95
the last inequality by Proposition 2.3.4.
Now we show fy, (yx) — fn, (¥k+1) is bounded below by a positive amount
7 independent of k.

If the algorithm proceeds from yj to yx41, it is because yx happens not
to be appropriately close to z(n2), i.e., it happens that ||y, (yz)lly, > 1.
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Letting & := 1/5||np, (yx)|ly. and § := yx + tny, (yx), Proposition 2.2.3 then
implies

3

Fn@) < Fralys) — 22+ 3(1)2 + ;480
< fnz(yk)_%'

Since t;4; minimizes the functional (2.4.12), we thus have

A

Tra i) = fra(rs1) 2 7= 41—0.

Finally,
p_pmtp2 _ 4
K<l < BER cimy, + /).

<

It follows that if one fixes a positive constant k > 1 and always chooses
successive values 7;, ;41 to satisfy n;+1 = k7;, the number of points gener-
ated by the long-step barrier method (i.e., the number of exact line searches)
in increasing the parameter from an initial value #; to some value > 7 is

O(rkd; log(n/m).

No better bound is known for the long-step method. Fixing & (say, K =
100}, we obtain the bound

O(95 log(n/m)-

This bound is worse than the analogous bound (2.4.7) for the short-step
method by a factor \/J5. It is one of the ironies of t he ipm literature that
algorithms which are more efficient in practice often have slightly worse
complexity bounds.

A Predictor-Corrector Method

The Newton step n,(z) := —nc, — g-(z) for the barrier method can be
viewed as the sum of two steps, one of which predicts the tangential direc-
tion of the central path and the other of which corrects for the discrepancy
between the tangential direction and the actual position of the (curving)
path.

The corrector step is the Newton step at z for the barrier functional
flo(w) where v = (¢, z) and

L(v) :={y: (¢,y) = v}.
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Thus, the correcting step is n|(,) (), this being the orthogonal projection
of the Newton step n(z) for f onto the subspace L(0) (where “orthogonal”
is w.r.t. (, )z). In the literature, the corrector step is often referred to as
the “centering direction.” It aims to move from x towards the point on the
central path having the same objective value as z.

Since the multiples of ¢, (= H(z)!c) form the orthogonal complement
of L(0), the difference n(z) — n|L(y)(z) is a multiple of ¢, and hence so is
the predictor step

9(2) = nlLw)(€) = —nce + (n(z) — nlLw)(2))-

The vector —c; predicts the tangential direction of the central path near z.
If z is on the central path, the vector —c; is exactly tangential to the path,
pointing in the direction of decreasing objective values. In the literature,
—cz is often referred to as the “affine-scaling direction.” With regards to
( )z, it is the direction in which one would move to decrease the objective
value most quickly.

Whereas the barrier method combines a predictor step and a corrector
step in one step, predictor-corrector methods separate the two types of
steps. After a predictor step, several corrector steps might be applied. In
practice, predictor-corrector methods tend to be substantially more efficient
than the barrier method, but the (worst-case) complexity bounds that have
been proven for them are worse.

Perhaps the most natural predictor-corrector method is based on mov-
ing in the predictor direction a fixed fraction of the distance towards the
boundary and then re-centering via exact line searches. We now formalize
and analyze such an algorithm.

Fix o satisfying 0 < o < 1. Assume x, is near the central path. Let
v1 := (¢, z1). The algorithm is assumed to first compute

81 := sup{s : T — sc;, € Dy}
and then let y; := £ — 081¢;,. Thus, —s;¢,, is the predictor step. Let

V2 = (C, yl) =1 — 031”%1”31-

Beginning with y;, the algorithm takes corrector steps, moving towards
the point z; on the central path with objective value vy by using the New-
ton steps for the functional f|;(,,) as directions in performing exact line
searches. Precisely, given yy, the algorithm is assumed to compute exactly
the minimizer ¢;4, for the univariate functional

t— f(yk + tnlL(‘Uz)(yk))a
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and then let
Yk+1 = Yk + te17| L(vg) (W)

When the first point yx is encountered for which ||n|f(w,)(Yx) |y« is ap-
propriately small, the algorithm lets zo := yx and takes a predictor step
from x5, relying on the same value o as in the predictor step from z;. The
predictor step is followed by corrector steps, and so on.

Typically, o is chosen very nearly equal to 1, say ¢ = .99. In the
following analysis, we assume o > 1.

In analyzing the predictor-corrector method, we determine an upper
bound on the number K of exact line searches made in moving from z; to
z2, and we determine a lower bound on progress made in decreasing the
objective value by moving from z; to zs.

For the analysis, we consider ||n|r()(2)ll: < 75 to be the criterion
for claiming z to be close to the point z on the central path satisfying
(¢, 2) = {c,z). The specific value 11—3 is chosen so we will be in position to
rely on the barrier method analysis. To see how it puts us in position to
rely on that analysis, let z; denote the minimizer of f|r(,,) and let ;1 >0
denote the value for which z(n;) = z1. We claim that ||n|L ;) @1)llz; < 55
implies ||y, (z1)||lz;, < &, precisely the criteria we assumed x; to satisfy
in the barrier method. For if [|n|L(v;)(%1)lle; < 75 then Proposition 2.2.8
applied to f|z(,) implies

(2.4.14) 21 — z1lle; < 15

Since 21 = z(m), applying Theorem 2.2.4 to f,, then yields ||ny, (z1)||z, <
1

5

The barrier method moves from z; to z1 + ny,(z1) where 2 = (1 +
1/8,/9¢)n2. (It is not necessarily the case that z; = z(n;) where z; mini-
mizes f|f(v,).) The length of the barrier method step is thus

Inn(@)ller = 15200 (1) + (G2 = 1)z, (21) ||z,
91 1
S 89ts
= 1
L

Consequently, in one step of the barrier method, the objective value de-
creases by at most 1{|c5|o

Assuming o > %, in the predictor-corrector method the predictor step is

in the direction —c¢;, and has length at least %, a consequence of By, (z1,1) C
Dy. Thus, v; —v2 > L|lcs, ||z, Hence, in moving from z; to 22, the progress
made by the predictor-corrector method in decreasing the objective value is
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at least as great as the progress made by the barrier method in taking one
step from x,. Of course in moving from z; to x5, the predictor-corrector
method might require several exact line searches. We now bound the num-
ber K of exact line searches.

Analogous to our analysis for the long-step barrier method, we obtain
an upper bound on K by dividing an upper bound on f(y;) — f(22) by a
lower bound on the differences f(yx) — f(yx+1)-

The lower bound on the differences f(yx) — f(yx+1) is proven exactly as
was the lower bound for the differences fy, (yx) — fn, (yx+1) in our analysis of
the long-step barrier method: Assuming ||72|1(y,)(Yk)|ly, > 75 (as is the case
if the algorithm proceeds to compute yx+1), one relies on Propositon 2.2.3,
now applied to the functional f| (), to show f(yx) — f(yx+1) is bounded
below independently of k.

To obtain an upper bound on f(y1) — f(z2), one can use the relation

f(y1) = f(22) = (F(n) = f(z1)) + (f(=1) = f(21)) + (f(=21) = f(22)).
Proposition 2.3.9 and the definition of y; imply

fy) = f(z1) < =05 In(1 - o).
Relation (2.4.13) applied to f|z(v,), together with (2.4.14), give

f(@1) = f(21) < lInfpey @)l ller = 21llzy < F515-
Finally, (2.4.14) applied to f gives

f(z1) = f(22) < (mc,22 —z1) < 0.
In all,

fz1) = f(z2) < 95 In(55) + 13-
Combined with the constant lower bound on the differences f(yx) — f(yr+1)
we thus find the number K of exact line searches performed in moving from

1 to z, satisfies
1

Having shown the progress made by the predictor-corrector method in
decreasing the objective value is at least as great as the progress made by
the barrier method in taking one step from z;, we obtain complexity bounds
for the predictor-corrector method which are greater than the bounds for
the barrier method by a factor K, that is, by a factor ¥ (assuming o fixed;
say, 0 = .99). The bounds are greater than the bounds for the long-step
barrier method by a factor \/d;. No better bounds are known for the
predictor-corrector method.
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2.5 Matters of Definition

There are various equivalent ways to define self-concordant functionals.
Our definition is geometric and simple to employ in theory, but it is not
the original definition due to Nesterov and Nemirovskii[l]. In this section
we consider various equivalent definitions of self-concordancy, including the
original definition. We close the section with a brief discussion of the term
“strongly non-degenerate,” a term we have supressed thus far.

Unless otherwise stated, we assume that f € C2, Dy is open and convez,
and H(z) is pd for all x € Dy.
For ease of reference, we recall our definition of self-concordancy:
A functional f is said to be (strongly non-degenerate) self-concordant

if for all z € Dy we have B;(z,1) € Dy, and if whenever
y € Bg(z,1) we have

ol 1
1-|ly—zll: € 7% < for all v # 0.
le <ol € T= Ty =2l

Recall SC denotes the family of functionals thus defined.

An important property is establishing the equivalence of various defini-
tions of self-concordancy is the “transitivity” of the condition

llvlly 1
(2.5.1) Yv#£0 < .
"o lelle T 1=y —2lle
Specifically, if «,y and z are co-linear with y between z and 2, if z and y
satisfy (2.5.1), if y and z satisfy the analogous inqualities
llvl2 < 1 ’
lolly = 1= llz—ylly

(2.5.2) Vu #0,

and if ||z — z||z < 1, then
folle 1

(2.5.3) Yo #0, < .
[vlle = 1=z =zl

To establish this transitivity, note (2.5.1) implies

“z_y”z
lz = ylly < —————-
o1 ly — z||=

Substituting into (2.5.2) gives for all v # 0,

loll: 1- |ly = alls
oy = 1-lly-=llz —llz -9l
1=y —
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the equality relying on the co-linearity of z, y and 2. Note (2.5.3) is
immediate from (2.5.1) and (2.5.4). Hence the transitivity.

Our first modification to the definition of self-concordancy is to show
the redundancy of the leftmost inequality in the definition.

Proposition 2.5.5 Assume f is such that for all z € Dy we have By (z,1) C
Dy, and is such that whenever y € B,(z,1) we have

llvlly 1
9. < .
(2.5.6) ol = 1=y — 2l forallv#0
Then

1-|ly—-z=|. < :::”” for allv #0.

Proof: Since

1 Ha ()2 = sup 120z,
SUP o2

it suffices to show for all z, y and 0 < e < 1,

1

Cal< L -
(25.7)ly -zl < > 0" < Tomr gy =

~—1+4e€

Towards establishing the implication (2.5.7), note that from (2.5.6),
whenever points y and z satisfy ||z — y|l, < 15 we have

12—l
(2.5.8) =l < 28 oz -y,
o=yl < T2, v

Letting Amin denote the minimum eigenvalue of H,(z), also note that since
Hy(z) is self-adjoint w.r.t. both (, ), and (, )., we have

1Hy (2)™Hly = 1/ Amin = [|Hy(2) 7" ||z = 1 H2 ()]
Recalling
Jloll3
H,(y)||. = sup 7—=,
MWl =358 Tz
we thus have by (2.5.6) and (2.5.8),

1
By 0 A s [ g PR

1By ()Ml <



66 CHAPTER 2. BASIC INTERIOR-POINT METHOD THEORY

In other words,
1
1-(1+¢)llz—yll)?’

which would give the desired implication (2.5.7) except that 1 replaces
1
1—+€.
In light of (2.5.9), to prove (2.5.7) it suffices to establish that for all y

(# z) satisfying

€
2.5. - < — H,(2) Y, <
@59z -yly < 7 = IH@) 7y < ¢

-1, < 1 o
1=+ 9l =2l

if we define z := y + t(y — z) where t is chosen so that

(2.5.10)y — z|l» < and ||Hz(y)

1
1+e
lz = yllz = e(z = ly — zll2),

then

-1 1
1)l < =T o

Assuming z, y and z satisfy the assumptions just stated, using (2.5.6)
we have

”Z - y”z

lz—ylly < =y —2l.
=l -0+9ly—zl.
B 1- "y - .’17”,;
< ¢ .
~ l+e

Hence, by (2.5.9),
1

e G s [

Since by (2.5.6),

lz=vlle . lz=yls
—_ )
—Ty-2ll. = T= (A +9ly -l

— <
o= lly < 5

we thus have

I1Hy () lly

( 1- (1+6)lly -zl )2
1—(1+elz—yllz + ly — 2llz)

_ (izral sy
1-1+éllz—zlz/) ’
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the equality relying on the co-linearity of z, y and z. That is, for all v # 0,

Iolly . 1= (A +9lly— 2l
Ioll: = 1= (1 +¢)llz -zl

Since
vl 1

<
Ivlly = 1= QA +6lly -zl

it follows that
llvllz 1

< .
loll: = 1~ (1 +6llz -zl

In other words,

~ 1
157 < G el

completing the proof of the proposition. O

The following theorem provides various equivalent definitions of self-
concordant functionals.

Theorem 2.5.11 The following conditions on o functional f are equiva-
lent:

o la: Forall z,y € Dy, if ly — z|ls < 1 then

llvlly 1
< for allv #£0.
ol = 1= lly —2ll=

e 1b: For all x € D¢, and for all y in some open neighborhood of z,

lolly 1
Ivlle = 1=y — =

for all v £ 0.

e Ic: For allx € Dy,

I = H @)l _

lim sup
y—T ly — zll=

Moreover, if f satisfies any one (and hence all) of the above conditions,
as well as any one condition from the following list, then f satisfies all
conditions from the following list.

e 2a: For all z € Dy we have By(z,1) C Dy.
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o 2b: There exists 0 < r < 1 such that for allz € Dy we have Bz(z,r) C
Dy.

o 2c: If a sequence {xy} converges to a point in the boundary 0D; then
f(.’tk) — 00.

Hence, since SC consists precisely of those functionals satisfying conditions
1a and 2a, by choosing one condition from the first set and one from the
second, the set SC can be defined as the set of functionals satisfying the
two chosen conditions.

Proof: To prove the theorem, we first establish the equivalence of condi-
tions la, 1b and 1c. We then prove conditions la and 2b together imply 2a
as do conditions 1a and 2c. Trivially, 2a implies 2b. To conclude the proof,
it then suffices to recall that by Proposition 2.2.12, conditions la and 2a
together imply 2c.

Now to establish the equivalence of 1a, 1b and lc. Trivially, 1a implies
1b. Next note

(v, (I = Hy(y)]v)s

II - He(y)ll. = limsup
s v#0 o2
2
. v
= limsup|l — I ”g .
v#0 ”v”z
Consequently, condition 1b implies for y near z,
M- Bl € 7y — 1
T (1= ly - 2llk)?
2|y — zlls — lly — =|i3
(1= lly - =llz)?

Thus, 1b implies 1c.

To conclude the proof of the equivalence of la, 1b and lc, we assume
1c holds but 1a does not, then obtain a contradiction.

[lo]13
H(y)||s = sup —2
” I( )“z v£0 ”'U”%,

condition la not holding implies there exist z, y, and ¢ > 0 such that
ly — z||z < 1+_€ and

Since

1

> T oy a7
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Considering points on the line segment between z and y and relying on
continuity of the Hessian, it then readily follows that there exists y (possibly
y = z) satisfying ||y — z||. < 1%6,

1
(2.5.12) 1 He ()l = TEGEBITEE A
and 1
(2.5.13) 1 Hz (2|2 >

(1= (1 +8lz—=ls)?
for all z := y + t(y — z) where ¢ > 0 is sufficiently small.
Condition 1c implies for z near vy,

1
&l < T a T o =l

That is, for all v # 0,

ol 1 |
Folly = T= @+ o)l — T2

Likewise, from (2.5.12),

(2.5.14)

loll, 1
2.5.15 < .
(2:5.13) ol < A= 0+ 9y — 2l

In particular,
Iz =yl
(1 +6)lly —zlo

Substituting into (2.5.14) and relying on the co-linearity of z, ¥ and z, we
have

(2.5.16)

- <
Iz = ylly < 7=

oll: . 1= (+9lly =zl
lolly = T= @+ e)lls = 2l

From (2.5.15) and (2.5.16), for all v # 0,

loll: _ 1
loll. = T= (1 + NIz — =l

that is,
1

S T E T ol

contradicting (2.5.13). We have thus proven the equivalence of conditions
la, 1b and lc.

| Ha(2)]
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Now we prove conditions 1la and 2b together imply 2a. Let 0 < r <1
be as in 2b, i.e., By(z,r) C Dy for all z € Dy. Assuming y € Dy satisfies
lly — z|lz < 1 and letting

ti=r(l-lly—zls), z:=y+i(y-2),
we show 1la and 2b together imply z € Dy. Condition 2a readily follows.

By condition 1la,

”y_z“:z:
ly—zlly £ —— >
Y1y —zls

from which it follows that z € By(y,r). Hence, by 2b we have z € Dy as
desired.

To conclude the proof of the theorem, it only remains to prove that
conditions 1a and 2c together imply 2a.

Assuming y € Dy satisfies ||y — z||; < 1, condition la implies

f)

1 t
(@) + (g2(2), ¥ — Yo + / / (W — 2, Hy(z + s(y — ))(y — 2)) ds dt

1 t
< £(@) + lgs(@)lla + / / |Ha(z + s(y — )]l ds dt
< 1@+ @)l + 5 “yl_ ENEE

In particular, f(y) is bounded away from co. By condition 2c we conclude
B, (1:, 1) CD f- O

We turn to the original definition of self-concordancy, due to Nesterov
and Nemirovskii. First, some motivation.

We know that if one restricts a self-concordant functional f to sub-
spaces — or translates thereof — one obtains self-concordant functionals. In
particular, if f is restricted to a line t — z + td (where z,d € R") then

¢(t) := f(z + td)
is a univariate self-concordant functional. Since for ¢ we have

lolle = v/¢" ()]vl,

the property

llvll. 1
oll: = 1= lls =2l
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is identical to
7S . 1
V) T 1-4/¢" ()]s — 1
Squaring both sides, then subtracting 1 from both sides, and finally multi-
plying both sides by ¢ (t)/|s — t|, we find

¢'(s) = ¢"(t) _ 2¢"(1)*% — ¢" ()]s — 1|
ls=t = @-VF@ls-th)?

If f — and hence ¢ — is thrice-differentiable this implies

(2.5.17) ¢ (t) < 2¢"(t)%/2.

This result has a converse. The converse, given by the following theorem,
coincides with the original definition of self-concordancy due to Nesterov
and Nemirovskii.

Theorem 2.5.18 Assume f € C* and assume each of the univariate func-
tionals ¢ obtained by restricting f to lines intersecting Dy satisfy (2.5.17)
for all t in their domains. Furthermore, assume that if a sequence {zy}
converges to a point in the boundary 0Dy then f(zy) — oo. Then f € SC.

Proof: The proof assumes the reader to be familar with certain properties
of differentials.

To prove the theorem, it suffices to prove f satisfies condition 1c and 2c
of Theorem 2.5.11. Of course 2c is satisfied by assumption.

Assuming the third differential D3(z) of f at z is written in terms
of a basis which is orthonormal w.r.t. (, )z, The inequality (2.5.17) is
equivalent to requiring

(2.5.19) | D3 (x)[u, u,u]] <2 whenever ||u|; <1.
On the other hand, condition 1c is equivalent to requiring
(2.5.20) |D3(z)[u,v,v]| <2 whenever ||ulls, [|v|l < 1.

However, for any C®-functional f and for any inner product norm || || :=
( , >1 /2,

max{} D% (z)[u, v, w]| : ||ull, |oll, llwll < 1} = max{D*(@)[u, u,u]| : |lull < 1}.

Hence (2.5.20) follows from (2.5.19). O
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The original definition of (strongly non-degenerate) self-concordancy
was that f satisfy the assumptions of Theorem 2.5.18. The theorem shows
such f to be self-concordant according to the definition relied on in these
lecture notes. The definition in these notes is ever-so-slightly less-restrictive
by requiring only f € C?, not f € C3. For example, letting || || denote the
Euclidean norm, the functionals

f(@) = 3lall® + llll®

and
f(@) = el — ||z

are self-concordant according to the definition in these notes, but not ac-
cording to the original definition. (Neither functional is thrice-differentiable
at the origin.)

The definition in these notes was not chosen for the slightly broader set
of functionals it defines. It was chosen because it provides the reader upfront
with some sense of the geometry underlying self-concordancy, and because
it is handy in developing the theory. Nonetheless, the original definition has
distinct advantages, especially in proving a functional to be self-concordant.
For example, assume D C R™ is open and convex, and assume F € C3 is
a functional which takes on only positive values in D, and only the value 0
on the boundary 8D. Furthermore, assume that for each line intersecting
D, the univariate functional ¢(t) := f(z + td) obtained by restricting F to
the line happens to be a polynomial — moreover, a polynomial with only
real roots. Then, relying on the original definition of self-concordancy, it is
not difficult to prove the functional

f(z) := —In(F(z))

to be self-concordant. For, letting r1,...,rq denote the roots of ¢ and
assuming w.l.o.g. that ¢ is monic, we have

¢"(1) = —SmJJet-r)
= —%}Zln(t—m)

1
= 2 Gy

()"

IA
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the inequality due to the relation || ||s < || ||z between the 2-norm and the
3-norm on R4

It is an insightful exercise to show that the self-concordancy of the
various logarithmic barrier functions are special cases of the result described
in the preceding paragraph. Incidentally, functionals F' as above are known
as “hyperbolic polynomials.”

We close this section with a discussion of the qualifying phrase “strongly
non-degenerate,” which we have suppressed throughout.

Nesterov and Nemirovskii define self-concordant functionals (with no
qualifiers) as functionals f € C3, with open and convex domains, satisfying
(2.5.17) for the univariate functionals ¢ obtained by restricting f to lines.
They define strongly self-concordant functionals as having the additional
property that f(zz) — oo if the sequence {z\} converges to a point in the
boundary dDy. Finally, strongly non-degenerate self-concordant function-
als are those which satisfy the yet further property that H(z) is pd for all
z€D T

It is readily proven that self-concordant functionals (thus defined) have
psd Hessians.

One might ask if the Nesterov-Nemirovskii definition of, say, strong self-
concordancy has a geometric analogue similar to the definition of strongly
non-degenerate self-concordancy used in these lecture notes. One would
not expect the analogue to be as simple as the definition in these notes
because the bilinear forms

(u,v); := {u, H(z)v)

need not be inner products if f is not non-degenerate. However, there
is indeed an analogue, obtained as a direct extension of the definition for
strongly non-degenerate self-concordancy. Roughly, strongly self-concordant
functionals are those obtained by extending strongly non-degenerate self-
concordant functionals to larger vector spaces by having the functional be
constant on parallel slices. Specifically, one can prove (as is done in [1])
that f is strongly self-concordant iff R™ can be written as a direct sum
L, & L, for which there exists a strongly non-degenerate self-concordant
functional h, with Dy C L, satisfying f(z1,72) = h(z;). For example,
f(z) :== —1In(z1) is a strongly self-concordant functional with domain the
half-space R4 @ "' in ™, but it is not non-degenerate.

If self-concordant (resp. strongly self-concordant) functionals are added,
the resulting functional is self-concordant (resp. strongly self-concordant).
If one of the summands is strongly non-degenerate, so is the sum. This is
an indication of how the theory of self-concordant functionals, and strongly
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self-concordant functionals, parallels the theory developed in these notes.
To get to the heart of the theory expeditously, these notes focus on strongly
non-degenerate self-concordant functionals. Those are by far the most im-
portant functionals.

Henceforth, we return to our practice of refering to functionals as self-
concordant when, strictly speaking, we mean strongly non-degenerate self-
concordant.
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