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1. INTRODUCTION

Hilbert’s 17th Problem asks whether a real positive semidefinite (psd) polynomial in
several variables must be a sum of squares of rational functions. This paper gives a survey
of the literature on two closely related questions: What can be sald about a psd polynomial |
which is not a sum of squares of polynomials? How can one “Wwrite a glvéh psd polynormal
as a sum of squares of rational functions? These questions go back to Hilbert himself, and
his interest in them predated the 1900 Paris Congress.

My original presentation in the seminar consisted of two parts: the first was a summary
of the history of the answers to the first question, the second was a detailed exposition
of my recent contribution towards understanding the second question for positive definite
forms. The paper on which I based the second part has now appeared in print [63], and
so | have emphasized the first part in this paper.

Sadly, two mathematicians influential to the development of this subject have passed
away this year. Raphael M. Robinson (1911-1995) died on January 25 and Olga Taussky
Todd (1906-1995) died on October 7. The reader will see below the vital contributions
made by Professors Robinson and Taussky.

I thank Danielle Gondard for the opportunity to speak (in English!) in her seminar. I
would also like to express my gratitude to the members of the seminar (and to many other
patient audiences) for their insights, tolerance and good humor during my presentations.
Finally, I thank Man-Duen Choi, Chip Delzell, Tsit-Yuen Lam, David Leep, Lou van den
Dries and Beate Zimmer for their assistance in preparing this paper.

2. NOTATIONS

It is becoming standard to let Hy(K™) denote the set of homogeneous forms of degree d
in n variables (“n-ary d-ics”) with coefficients from the field K. By identifying p € Hy(K™")
with its N = ("+d -tuple of coefficients, we see that Hy(K") = KN. Suppose m is an
even integer. A form p € H,(R™) is called positive semidefinite or psd if p(z1,. .. o) 20
for all (z1,...,z,) € R™. Following [12], we denote the set of psd forms in H (R") by
P, m. Since P, is closed under addition and closed under multiplication by positive
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2 BRUCE REZNICK /
scalars, it is a convex cone. In fact, P, m is a closed convex cone: if p, — p coefficientwise,
and each p, is psd, then so {s"'jfm&“grrﬁgig»Eﬁfééf;ositive definite if p(z1,...,2,) =0
implies (z1,...,2,) = 0. It is not difficult to see that the positive definite forms constitute
the interior of the cone P, .

A form p € Hn(R") is called a sum of squares or sos if it can be written as a sum
of squares of polynomials. It is easy to show that if p € Hn(R") and p = 3, h? with
hi € R[zy,...,T,], then each hy € Hp/2(R™). Again following [12], we denote the set of
sos forms in H,,(R") by Zn m. It is easy to see that £, » is a convex cone; less so that
it is closed; this was first proved by R. M. Robinson [68]. Finally, we note the inclusion
Spm C Pym and define Ap = Pom \ Znm. If p € Ay, then p can be construed as
lying in Ay, . for ny > n; for even my > m, it is easy to show that 2" ""'p € Ap m, .

One may, of course, dehomogenize a forms into a polynomial by setting, say, z, = 1, and
in this way reduce the number of variables by 1. Any polynomial f(z1,...,z,) of degree d
over K can be homogenized into a form p € H, (K "*!) with e > d, by adding a new variable
y, and defining p(zy,...,Zn,y) =y f(21/y,...,2n/y). The properties of being psd and sos
are inherited under dehomogenization, and conversely, are preserved when a polynomial is
homogenized into a form of even degree. However, the property of being positive definite
is not preserved upon homogenization, For example, f(z,y) = 2% + (1 — zy)? takes only
positive values for real (z,y), but its homogenized form p(z,y,2) = 2%2% + (2% — zy)? has
a non-trivial zero at (1,0,0) owing to f's “zero at infinity”. Many of the results in the
literature were originally presented in the non-homogeneous case, and in most contexts, it
does not matter much which is used. We prefer to phrase all results in terms of forms.
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“It is a truth universally acknowledged, that a mathematical object whose order- L oper

ings are non-negative must be in want of a representation as a sum of squares.” |
- after Jane Austen *.

a. Before 1900. It was well-known by the late 19th century that P, ,, = T m vtrhen
n =2 or m = 2. This is easy for m = 2: any psd n-ary quadratic form can be diagonalized
as a sum of n squares of linear forms. If p(z,y) € Py m, then f(t) = p(t,1) > 0 for all real

t, so the roots of f are either real (with even multiplicity) or appear in complex conjugate
pairs, and the leading coefficient of f is positive. Thus, we have the expression

3 s

f(t) =c? H(t - tj)2aj H(t — (ak + lﬂk)) H(t - (ak - zﬂk))

k=1 k=1
= P(t)*(Q(t) + iR(t)) (Q(t) — iR(t)) = (P()Q(t))* + (P(t)R(t))*.

It follows upon homogenizing f that p is also a sum of two polynomial squares. Note that,
if f is a product of m distinct linear factors in C[t], then there are 2™/2~! possible distinct
pairs {Q + iR, Q — iR}, and that many inequivalent representations of p as a sum of two
squares. For example,

2y = (@0 + () = (2 = 20y + (207 — )
2 2
= (2° - foy* £ %) + (P 7 P’ - 1)
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In 1888, the 26-year old David Hilbert proved two remarkable results in one paper, [32].
First, he showed that ¥34 = P34; in fact, he showed that p € P34 is a sum of three
squares of quadratic forms. (For an elementary proof, with “three” replaced by “five”, see
[13]; for a modern exposition of Hilbert's proof by Cassels, see [58,pp.89-93].) Hilbert’s
second result is that the preceding are the only cases for which A, » = 0. That is, if
n>3and m >6orn >4 and m > 4, then there exist forms p € P, » which are not
sos. These can be derived as noted above from forms in A3 ¢ and Ay 4. Hilbert’s proofs
used the techniques of 19th century algebraic geometry. Since we shall describe shorter
and simpler examples, we state Hilbert’s construction of p € Az ¢ without complete proof.
It is presented in the non-homogeneous setting: we obtain a polynomial F(z,y) > 0 of
degree six which is not a sum of squares of polynomials. The final step in the proof is key
to these constructions: if p = Y., h% and p(u) = 0, then 0 = 3, A%(u), hence hx(u) =0
for all k. Hilbert had already isolated one of the essential principles of real algebra.

Let ¢(z,y) and ¥(z,y) be two cubic polynomials with no common factor which have
common zeros at {Py,..., Py} C R% (This is the maximum number of zeros by Bezout’s
Theorem; ¢ and 3 might have complex zeros in common.) It is (or used to be) commonly
known that any cubic h(z,y) which vanishes at eight of the P;’s must vanish at the ninth.
Choose a quadratic polynomial 0 # f(z,y) which vanishes at Py, P,, P;, Py and Ps and
a quartic polynomial 0 # g(z,y) which vanishes at Py, P, P;, Py and Ps and is singular
at Ps, P; and Ps. (Such curves exist by constant-counting arguments since there are 5
conditions on f and (;) = 6 coefficients in a quadratic, and 5 + 3 - 3 = 14 conditions on ¢

and (§) = 15 coefficients in a quartic.) It can then be shown that there exists A so that

F(z,y) = ¢*(z,y) + ¥*(z,y) + Af(z,y)g(z,y) 2 0

for all real (z,y), and that F(P;) =0for 1 <j < 8but F(Py) > 0. If F =3, k%, then
each Ay is a cubic and h(P;j) =0for 1 <i< 8 hence hk(Pg) = 0 for all k, contradicting
S hA(Py) = F(Py) >0, 2

The most complete exposition of Hilbert’s method seems to be by Gel’fa.nd and Vilenkis
[23,pp.232-235], which established the connection between forms in A", aind the’ “Ham-"
burger moment probleri‘ifi 7i"="1"Variables,” For more on this connection, see [62] and the
references contained within. Robinson [68] greatly simplified Hilbert’s methods and cited
an unpublished example of Ellison using the original construction (see below). Ellison also
generalized a key step of Hilbert’s construction in [22,p.668].

The earliest published reference to [32] seems to be (40}, by Hilbert’s close friend Adolf
Hurwitz. Hurwitz proves the arithmetic-geometric inequality by showing that for even m,
the form z"+---+ 2z —mz; - Tx is a sum of squares of forms. He remarks in a footnote
(p. 507) that “Die Moglichkeit einer solchen Darstellung ist freilich nicht von vornherein
klar. Es giebt ndmlich, wie Herr Hilbert gezeigt hat, positive Formen, welche nicht als
Summen von Formenquadraten darstellbar sind.” The Hurwitz construction, which can
also be found in [29,p.53], is simplified somewhat in [60].

In 1893, Hilbert [33] generalized his earlier theorem on P; 4; his proof seems to be non-
constructive and lacks a modern exposition. He proves that if p € Ps ,,, then there exists
p1 € P34 so that pp; = h2 + h3 + k2, with hy € Hp—2(R3). Similarly, there exists
p2 € P3 ;»—s so that pyp; is a sum of three squares of forms, etc. After s = [Zt] steps,
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Ps—1Ps 1s a sum of three squares, but now p, is psd with degree 0 or 2, and so is a sum
of squares. Thus, p(p1---ps)? = (pp1)(p1p2) - - (Ps—1Ps)Ps is a product of sums of squares
of forms, and so is a sum of squares of forms. It follows that p is a sum of squares of
rational functions with denominator p; - -+ ps. Landau [45] observed that Hilbert's proof
implies that p € P3 m is a sum of four squares of rational functions. This was generalized
by Pfister [52] in 1967, who proved in a celebrated theorem that every p € Pp m, 1s a sum
of at most 2"~! squares of rational functions. The further studies in this direction -are
beyond the scope of this paper.

b. Hilbert’s “Hilbert’s 17th Problem”. In his 1900 address to the International
Congress of Mathematicians in Paris (35], Hilbert posed a generalization of his results as
the 17th Problem: Must every psd form p be a sum of squares of rational functions? We
quote from the contemporary English translation [6,p.24] of Hilbert’s address:

“A rational integral function or form in any number of variables with real coefficients
such that it becomes negative for no real values of these variables, is said to be definite.
The system of all definite forms is invariant with respect to the operations of addition and
multiplication, but the quotient of two definite forms — in case it should be an integral
function of the variables — is also a definite form. The square of any form is evidently
always a definite form. But since, as I have shown ([32]), not every definite form can
be compounded by addition from squares of forms, the question arises — which I have
answered affirmatively for ternary forms ([33]) — whether every definite form may not
be expressed as a quotient of sums of squares of forms. At the same time it is desirable,
for certain questions as to the possibility of certain geometrical constructions, to know
whether the coefficients of the forms to be used in the expression may always be taken
from the realm of rationality given by the coefficients of the form represented ([34,§38]).”

That is, supposép € wom N Hyn(K™) where K C R. Hilbert’s 17th Problem asks
whether it true that there exist 0 < A € K and hx € K(z1,...,2n) so that p=3_, Aih?.
Upon clearing denominators, we get an equivalent formulation: do there exist 0 < Ay € K,
q € H.(K™) (for some r) and gx € Hm/a4+(K") so that pg® = 3 Mg:? The geometrical
roots of Hilbert’s 17th Problem will not be discussed here, but see [57]. 4~

The requirement that we allow coefficients from K ‘might seem_odd to those unfamiliar
with real algebra, but it is essential. For an example of its necessity, let K = Q(\/§),
(n,m) = (1,0) and p(z) = V2, which is certainly psd as a form. If there were a represen-
tation p(z) = 3, hi(z), with hx € K[z], then each hy would be a constant; write hy =
i+ B2, with ax, B € Q. Then v2 = Y (ak+B8kv2)%, hence —v2 = ¥ (ak —Bev2)%,
a contradiction to the order in R. Initiates will recognize that V2 is negative in one order-
ing of A, and so is not a sum of squares in K. Lam [43,pp.16-18] discusses three aspects of
Hilbert’s work which might have motivated a study of formally real or ordered fields. The
first is geometrical and mentioned above. The second is the 17th Problem. The third is
the study of totally positive elements in number fields, which are sums of four squares by
the Hilbert-Landau Theorem. Elements which are not totally positive, such as V2 above,
are negative in at least one embedding into R, and so cannot be sums of squares.

c. After 1920. In 1927, Emil Artin [1] used the Artin-Schreier theory of real closed fields
to answer Hilbert’s 17th Problem in the affirmative. However, given a particular psd form
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p € P, m, Artin’s proof gives no information about any specific representation of p as a
sum of squares of rational functions.

Among the many generalizations of the 17th Problem, we mention one in detail. In
1981, Becker [2,3] gave necessary and sufficient conditions for a rational function p over a
formally real field to be a sum of 2k-th powers of rational functions. For such functions

over R, the criterion is, roughly speaking, that p must be psd, its degree must be a multiple

of 2k and all zeros must have “2k-th order”. A concrete application [3,p.144] is that for
all k > 1, there exist 0 < A\; ¢ € Q and fj, g; » in Q[t] so that

1+ 2 fie®\*
B) =514 =ZA""‘(92 :8) '
J Al

As with Artin’s result, one does not obtain an explicit representation of B(t) as a sum of
2k-th powers of rational functions. These are not hard to find for small k, and there was
some interest in finding them for all k. We give such an expression at the end of the paper,
but one in which Aj; and the coefficients of f; and g; are not, in general, rational.
One can deduce from recent work of Becker and Powers [4] that there is a representation
of B(t) as a sum of 2k-th powers in which each g; x is positive definite. Schmid has also
recently shown [70] that if f and g are real positive definite polynomials in one variable
with the same degree, then (f/g)(t) can be written as above, but where f; & and g; , are
positive definite polynomials of the same degree.

There are now many expositions of Artin’s proof in the literature, e.g., [5,41,43,44].
Ribenboim [65] and Pfister [53] wrote surveys on Hilbert’s 17th Problem in the 1970s; two
more recent surveys are by Gondard [24] (in a previous collection of this seminar) and
Scheiderer [69]. The deep connections of Hilbert’s 17th Problem with logic were initiated

by A. Robinson [66,67] in the mid-1950’s; Delzell [20] has a very recent survey which
includes the history of logicians’ interest in Hilbert’s 17th Problem.

The spectacular development of real algebra and real algebraic geometry is well-known
(see e.g. [5]) and will not be further discussed here. Rajwade [58] contains detailed exposi-
tions of much of the material discussed and alluded to here, and should be read with care
(see [64,72]). Lam has written two wonderful expository articles on real algebra: [43,44].
In 1982, he was awarded the Steele Prize by the AMS, in part for [43] ([44] had not yet
appeared). Taussky wrote two survey articles ([74,75]) on sums of squares in algebra.[ The
first one was particularly influential in calling attention to the ubiquitous role of sums of
squares in algebra, and was awarded the Ford Prize by the MAA in 1971. Olga Taussky
was always supportive and encouraging to all of us interested in sums of squares, and, as
a direct link to Hilbert, embodied the intellectual continuity of mathematics.

4. EXAMPLES FROM THE 1960s AND 1970s

For reasons that may be more psychological than mathematical, it took nearly 80 years
for explicit forms in A, ., to appear in the literature. When they appeared, they were much
simpler than those in [32]. Interestingly, different authors produced different examples.

a. Examples of Motzkin. The way the first one arose is described in the introduction
to Theodore S. Motzkin’s collected works [50,pp.xvi-xvii}: “During many of his years at
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UCLA, Motzkin conducted seminars that were very exciting to the students and faculty
members who participated in them. Some of Motzkin’s most beautiful and important work
made its first appearance here ... [D]uring a seminar on inequalities, a colleague presented
Artin’s solution of Hilbert’s 17th [P]roblem ... Motzkin wondered out loud what would
happen if the classical inequalities of the type f(zy,...,2,) > 0 (such as the arithmetic-
geometric mequality, when suitably formulated) were proved by expressing f in the form
f =3, p% and in particular if the p; would turn out to be polynomials. At the next
meeting of the seminar he carried out this program and presented for the first time the now
celebrated Motzkin polynomial ... Although some results of the seminar were published
in the proceedings of a symposium at Dayton, Ohio [49], the polynomial was still not as
widely known as it became after O. Taussky-Todd mentioned its existence to A. Pfister
who, along with J. W. S. Cassels and W. J. Ellison, did further work in this area.”
Motzkin proved [49,p.217] that for all n > 3,

(t% + “ s + ti-_l _ nu2)tf « . t?t—l + ’U,2n e AnyZn-

The form in the special case n = 3 was denoted S’ in [13] and M in [59]. The proofs for
general n are very similar to that we give here for n = 3. Let

M(z,y,z) = (22 + y* = 32%)2%y? + 2% = 2%y% + 2%y* + 25 — 322222,

The fact that M is psd follows from the arithmetic-geometric inequality 9—*%"3 > (abc)!/3
applied to (a,b,¢) = (z*y? z%y*, 2%). If M were sos, then the equation M(z,y,z) =
>t hi(z,y,z) would hold for suitable h; € H3(R3). Write out M as a ternary sextic,
using all potential monomials:

0z% + 0z%y +1z%y? + 0z3y® +1z%yt + 0zy> + 0y®
+ 0z%2 + O0z'yz + 0z3y%z + 0z%y%z 4+ Ozytz + 0yS2
+ 0z%2%? 4+ 02%yz?% - 3z2y?t + 03:y$.z2 + 0y*z?
+ 02323 + 0z%yz® + 0zy?23 + 0y3z®
+ 0z%z* + Ozyz* + 0y?2*
+ 0z2° +0yz°
+ 125

Now write out hi(z,y, z), utilizing the same geometric scheme:

Az +Bk1:2y +Ckxy2 + Dky3
+ Evz®z + Froyz + Gry’z
+ Hyzz® + ILyz?
+ Je2.
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Since the coefficient of z® in M is 0, 3", A2 = 0, hence A = 0 for all k. This can also
be seen directly: M(1,0,0) = 0 and hg(1,0,0) = A;. Now look at the coefficient of z*z2
in O, h%: it is Y (E} + 2A4,H). Since Ax = 0 and the coefficient of z*z% in M is 0,
it follows that Ex = 0 for all k as well. Continuing down the zz edge, we compare the
coefficients of z2z* in 3, h? and M: ¥, 2EJi + H} = 0. Since E; =0, it follows that
Hi = 0. (These also follow from M vanishing to 5th order at (1,0,0) in the direction of
(0,0,1).) A similar argument applied to y°, y*z? and y%z* shows that Dy = G = Ix = 0.

At this point there are two paths to our conclusion. We have already reduced our task
to drawing a contradiction from the equation

oiy? + 2%yt 4+ 2% - 3x2y?2? = Z(Bka:Qy + Crzy® + Frayz + Jez®)2.
k

Since M(1,+1,£1) = 0, we have hi(1,+1,£1) = 0; that 1s,
Bi+Cr+Fe+Ji=Bi+Ci—Fr=Ji=-Bx+Cr—Fe+ Jy = =Bx + Cr + Fi = Jx = 0.

Thus, Bx = Cx = Fi = Jr =0, hence each hy = 0, and this contradicts Shi=M.

It is more telling to consider the coefficient of z2y*2?% in M and 3, h}; the contradiction
is immediate from —3 = 5, FZ! This second argument is more powerful. Let N(z,y,z) =
M(z,y,z) + z?y?2%. Then N is evidently psd. If N = Y. hi, then an identical argument
to that for M shows that each hj can only use the same monomials as before. However,
the zeros of N are just (1,0,0), (0,1,0) and (0,0,1), and these give no additional linear
equations on By, Ck, Fx and L. On the other hand, a consideration of the coefficient of
z2y2z% in N and Y, k2 gives the contradiction: —2 = 3°, F{.

b. Examples of Robinson. In the late 1960s, Raphael M. Robinson [68,p.264] saw
“an unpublished example of a ternary sextic worked out recently by W. J. Ellison using
Hilbert’s method. It is, as would be expected, very complicated. After seeing this, I dis-
covered that an astonishing simplification would be possible by dropping some unnecessary
assumptions made by Hilbert.” He adds in a footnote: “When I submitted this paper for
publication, I did not think that any such example had ever appeared in print. However,
shortly thereafter, T. S. Motzkin called my attention to the fact that he had published a
counterexample for the case of ternary sextics in 1967. I have added an Appendix which
discusses Motzkin's result.”

Motzkin replaced the set {P;} of nine points formed by the intersections of the two
cubics with the square array {—1,0,1}?%, which is the intersection of ¢(z,y) = 22 —z=0
and ¥(z,y) = y® —y = 0. Where Hilbert had argued that some A makes the perturbed
form positive, Robinson took the maximal perturbation, and defined

R(x,y,z)=:c6+y6+z6—(m4y2+x2y4+x4z2+z2z4+y4z2+y224)+3x2y2z2.

(Robinson primarily discussed R(z,y,1) and (12] introduced the notation R.)

Robinson proved that R is psd by writing (z® + y?)R(z,y,1) as a sum of squares of
polynomials. In fact, the inequality R > 0 is a special case of an inequality which also
appears in Motzkin [49,p.211] (!) and is due to Schur, see [29,p.64]:

u"(u—v)(u—w)+ v (v—u)v—w)+w(w-u)(w-v)20 ifruvw2 0.
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(Taker = land (u,v.w) = (2%,y?,z?) to obtain R.) For much more on Schur’s inequalities
and related sextic forms, see [16].
It is easy to see that R =0 on the set

Z = {(1,£1,41),(1,%1,0),(1,0,£1),(0, 1, £1)}.

If R = Y, h%, where each hj is a ternary cubic, then hy vanishes on Z. This gives ten
equations on the ten coefficients of Ay, which together imply that hy =0, a contradiction,

since R # 0.
Robinson also gave the first explicit example in Ay g

flz,y,z,w) = 2%z - w)? 4+ Yy —w)? + (2 - w)? 4+ 2zyz(z + y + z — 2w).

The proof that f € A4 4 is not quite as simple as the proof for R € Ay 6, and f has been
replaced as the exemplary element of Ayy by Q (see below). In the Appendix of [68],
Robinson gives a method for generalizing Motzkin’s example: if f is a real polynomial in
n variables with degree d < 2n which is not sos, then neither is

g(:vl,...,:cn)=xf-~~xf,f(x1,...,xn)+1.

When n = 2 and f(z;,z2) = 23 + z3 — 3, this construction produces M(zy,22,1).

c. Examples of Choi and Lam. Man-Duen Choi was trying in 1973 to classify positive
linear mappings; mappings between matrix algebras which preserve the cone of positive
semidefinite matrices. In the real case, this reduces to the cone of psd biquadratic forms;
quartic forms which are quadratic forms in two different sets of variables. Choi learned
of a paper by an electrical engineer [42], which purported to show (p.14) that every psd
biquadratic form is sos. A recent paper of Calderén [7] had covered some low-dimensional
cases and convinced Choi that the result could not be extended. He tried to find the
flaw in the proof, and, in doing so, constructed a counterexample (in [9]). He writes [10]:
“Without Koga’s false proof, I would have dared not construct a counterexample. Actually,
I had been haunted by Hilbert’s non-constructive example (in [23]) as a graduate student.”
Choi’s example is

F(z1,22, 23, y1, Y2, ¥3) = 22y° + 2392 + 23y} + 2(z3y] + 2393 + 2397)

—2T1Z2Y1Y2 — 2T123Y1Y3 — 2T2T3Y2Y3-

Choi also specializes F in [9] to give some other forms in Ay 4 and Az .

Choi had a lectureship in Berkeley from 1973-1976, and started working with Tsit-Yuen
Lam, who had already written extensively on quadratic forms. The following year, Choi
and Lam wrote the first two papers devoted to a systematic study of our subject: [12] and
[13]. They made monomial substitutions in B = F' - (z2y2 + z3y2 + z}y?), which they
prove to lie in Ag ¢, and gave two more simple explicit elements of A4 4 and Az s:

Q(‘Taya zﬂ«”) = B(xawaZ,ya z,w) = x2y2 + 222 + yr‘)z2 + wt — dwzyz,
S(z,y,z):= B(yz,a:z,a:y,x,y,z) = x4y2 + y422 + 2422 — 3x2y2z2.
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In each case, the fact that these forms are psd can be demonstrated from first principles
as a consequence of the arithmetic-geometric inequality, and the fact that these forms are
not sos follow in a manner similar to that shown above for M, using what Choi and Lam
now called the “term-inspection method”.

Choi and Lam constructed several other examples of psd forms which are not sos. One
. . s 2.2 2., —2 ) . h . f
is a symmetric quaternary quartic: D rjz} + S rirjrg — 2z r9T324; another arises from
2

making the substitution z; — z% in a quadratic form studied by A. Horn:

H(Il,...,z5)=(x%+---+x§)2—4(r%x§+~-+x;‘:r§+x§xf).

(Observe that xfx? has coefficient F2 in H depending on whether or not ¢ and j are
adjacent in {1,2,3,4,5}, viewed cyclically.) It can be shown that any psd even symmetric
quartic form in n variables must be sos — see [15,30]; for higher degrees, see below.

Let C be a closed convex cone; z € C is called eztremal if = y; + y2, yi € C implies
that y; = Az for some A; > 0. Every element in a closed convex cone C for which
C N —C = {0} can be written as a finite sum of extremal elements. Choi and Lam studied
extremal elements in the convex cones P, and Y, m. (Calderén had used extremality
in studying psd biquadratic forms in (7).) If p € Pam is extremal, then p 2 ¢ 2 0 for
q € P, implies ¢ = Ap. If p € T, 1, is extremal, then p = h® for some h € Hy,/2(R").
(Some sufficient conditions on h are discussed in [11]; it is not true that if A? is extremal
in L, m, then it is also extremal in P,m.)

Perhaps the most significant results in [12] and [13] were the proofs that the forms M,
R, S and Q are all extremal elements in their respective P, m’s. It is remarkable that these
early examples were also best-possible, in this sense. The method of proof is an extension
of the “zero argument” used in sums of squares. For example, R > f > 0 implies that —g—f,
%5 and %f vanish on Z. This imposes 30 conditions on the 28 coefficients of f, implying
that f = AR. These paragraphs do not completely describe the contents of [12] and [13];
many of the ideas in these papers have yet to be fully develqped.:]a-— P

My entry into the subject came in late 1976. I was studying the two-dimensional
Hamburger moment problem as it applied to an embedding problem in functional analysis
which had earlier arisen in my thesis — see [62,pp.117-120] for details. I found a reference
to the abstract of [68] and was immediately captivated. My colleague Leonard Carlitz
gave me his reprint of [68] and I wrote Prof. Robinson about other papers in the area. He
directed me to the then-new [12] and [13]. I first met Lam at the 1977 Winter Meetings in
St. Louis, and showed him a counterexample to a minor conjecture in the preprint of [13]. 1
visited him at his Berkeley home that summer and had the shortest four-hour conversation
of my life. I enjoyed a post-doctoral year at Berkeley in 1978-1979, and Choi, Lam and I
have worked together (with occasional fourth authors) ever since.

d. Examples of Lax, Lax and Schmiidgen. Two other forms in A, ,, were discovered
independently in the 1970’s. Anneli and Peter Lax [46] showed that the form

5

A(z1,22,73,T4,T5) = Z H(l': - z;),

i=1 j#i
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which appeared on the 1971 International Mathematical Olympiad, is psd and not sos.
They observe that A is a polynomial in the z; — z;'s,860 it is “really” a form in four
variables. (The proof that A is psd was an Olympiad question!)

Konrad Schmiidgen [71], following the program of Gel'fand and Vilenkin, produced a
sextic polynomial which homogenizes to a form in Ajg:

g(z,y,z) = 200(z> — 42z%)2 +200(y® — 4yz®)? + (v — 2H)z(z + 22) (2% — 22z + 2y* - 82%).

The proof that ¢ is psd involves decomposing R? into ten regions; the proof that ¢ is not
sos involves the eight (surprise!) zeros of ¢.

5. SOME LATER DEVELOPMENTS

a. Zeros of psd forms and multiforms. The first Choi-Lam-Reznick paper [14] was
largely concerned with the number of zeros of psd forms. Viewed projectively, R has the
ten zeros of Z. We show that if p € P; ¢ and p has more than ten zeros, then p is divisible
by the square of an indefinite form and p is a sum of three squares of ternary cubics. If
p € P; ¢ has exactly ten zeros, then it is cannot be sos. In fact, if p € P; , has more than
m?2/4 zeros, then it is either not sos or is divisible by the square of an indefinite form. If
p € P, 4 has more than eleven zeros, then it has infinitely many, and is a sum of six squares
of quaternary quadratics.

The ten zeros for p € P; ¢ above cannot be in general position, but Z is not the only
possible set. Here is a previously unpublished example. For the real parameter a > 0, let

falz,y,2) =
a4(1:6+y6+26)+(1—-2a6)(a:4y2+y422+z4x2)+(a8—2a2)(22y4+y224+22$4)
—3(1 — 2a% + a* — 2a® + a®)z?y?2%

Then fo = S, fi = R, and it can be shown that f, € A3 6 for 0 < a < 1 with the following
ten zeros: {(1,+1,%1),(=%a,1,0),(0,+ta,1),(1,0,+a)}.

A second concern of {14] was multiforms. A multiform of type (ny,...,nymy,...,m,)
is a form in )_ nj variables in r blocks {z11,...,Z1,n,;Z2.1,..-Trn, } S0 that each term is
homogeneous of degree my in the z ;’s. Hilbert’s characterization of P ;, Pn2 and P34
is generalized by showing that a psd multiform of type (ni,...,n,;my,...,m,) must be
sos if and only if the type is (2,n;m,2) (up to permutation). The counterexamples were
closely based on @ and S. The fact that a psd (2,n;m,2) multiform is sos was already
known: it is the assertion that an n-ary quadratic form Zij fi(y1,y2)ziz; (fij € Hm(R?))
which is psd for every fixed (yi1, y2) is a sum of squares of forms linear in the z;’s. This had
been proved by D. Z. Djokovié, V. A. Jakubovi¢, V. M. Popov and M. Rosenblum and J.
Rovnyak in somewhat different contexts (see [14] for details and references). Calderdn 7]
had also proved the special case m = 2.

d. Generalizations of the term-inspection method. We now adopt multinomial

notation: if & = (ay,...,a,) € Z", write z* = z7" --- 23" and |a| = ), as. Suppose

f(z1,-.. za) = Z (a)z* € Hd(.R"),

|a)|=d

(

i
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and let C(f) = cva({a : ¢(a) # 0}) C R" denote the Newton polytope of f; C(f) is
a subset of the simplex whose vertices are de. It is proved in [59] that, if p = 3 ¢},
then %C(p) D C(qk). (In the Motzkin example, C'(M) is the triangle whose vertices are
(4,2,0),(2,4,0),(0,0,6),s0if M =3, h?, the monomials in ki must come from the lattice
points contained in the triangle with vertices (2,1,0), (1,2,0) and (0,0,3). There is one
non-vertex lattice point. (1,1,1), and the corresponding monomials are 22y, zy?, z* and
ryz. This result automates the first part of the term-inspection method.)

The rest of the term-inspection method is formalized in [17] into the “Gram matrix”
method. Suppose p(z) = Y., aqa2® € Pp24 and p(z) = E:=lh?(x), where h;(z) =
g (ﬁ’)xﬂ € HyR") for 1 <1<t Let Ug = (ug), e ,u(ﬁt)) € R'. Then

> aax® =p(z) =) hi(z)= Z(

|a]=2d =1

> et ) (3wl

|8]=d |8'|=d
Z UB Us) ﬂ+‘B'.

By comparing the coefficients of 2% in p and Y, h%, we get
p i g

Y Us-Up.

8+8'=a

Conversely, if there exist vectors {Ug} C R which satisfy these equations for all a, then
we can write p as a sum of ¢ squares by using the coordinates of the Ug’s as the coefficients
of the h;’s. The dot product matrix (Ug-Ug ) is called the Gram matriz associated to the
expression p = 5, h?. In order to state the Gram matrix method, we first recall that a
symmetric matrix can serve as the set of dot products of vectors in R* if and only if the
corresponding quadratic form is psd with rank < t. We also define the length of an sos
form p to be the smallest number of forms {h;} required to write p = 5 h%. The following
results are proved in [17,p.106]; very recently, Powers and Wormann [56] have written an
algorithm which implements them.

(1) Let p(z) = Y., aaz® and V = (vgg) be a real symmetric matrix. The following
statements are equivalent:

(A) pis a sum of squares and V is a Gram matrix associated to p (with respect to some
sums of squares expression p = Y h?);

(B) Vispsdand 3. wvgg = a, for all a.

B+8 =a

(2) If p is a sum of squares, then the length of p is equal to the minimum rank of V', where
V ranges over all Gram matrices associated to p.

c. Generalizations of M and S. The quadrinomial property of M and S has also
been generalized. It is proved in [59] that if p is in any A, m, then it has at least four
terms. If p € A, ,, has four terms, then it is extremal in P, , if and only if, after a
scaling z; — o,z;, we have p(z) = 22 + 2% + 22¢ — 3z%¢, where a,b,c € Z} have a
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certain geometric property. To be specific, if T is the triangle with vertices {a,b,c}, then
T N Z"™ must equal {a,b,c,d}, where d = 3(a + b+ c) is the median of T. This implies the
extremality of the forms M (with a = (2, 1,0), b=(1,2,0),¢c=(0,0,3),d = (1,1,1)) and
S (with @ = (2,1,0), b=(0,2,1), ¢ =(1,0.2), d=(1,1,1)).

An agiform (see [61]) is derived by even monomial substitutions into the arithmetic-
geometric inequality. Suppose a; € (2Z)7 and 0 < A, Y, Ai = 1 are such that >, \ia; =
b Z". Then the agiform A\yz® +- -+ Ap2%" —z% is psd as a consequence of the arithmetic-
geometric inequality. Necessary and sufficient conditions are given in [61] for this form to
be sos and necessary and sufficient conditions are given for this form to be an extremal
psd form. These conditions depend heavily on the combinatorial structure of the lattice
points contained in the simplex with vertices {a;}. This paper also contains six explicit
families of extremal psd forms in n variables, two each generalizing M, S and Q; three of
these families were defined in [13] and proved there to be psd but not sos.

One consequence of the sos property for agiforms is that, if p(zy,...,Z,) is an agiform
and r > n, then p(z7,...,z}) is sos, so p 1s a sum of squares of forms in the variables
{x}c/r}. This property is not true for all psd forms. If H € As 4 denotes the Horn form,
then it can be shown that H(zT,...,z§) is not sos for every r 2 L. A related question
involves taking odd powers of psd forms. Stengle [73] proved in 1979 that for k¥ > 0 and
m > 1, every odd power of

x2m+lz2m+1 + (y2z2m—l _ x2m+1 _ xz?m)2

is psd and not sos. This is also true for S(z,y,z) and M(z,y, z).

d. Symmetric Examples. One obstacle to understanding the geometry of P, and
Tn,m is these cones lie in RN for N = (":’fl—l); if Apm # 0, then N > 28. One way to
overcome this obstacle is to take sections of lower dimension, and one of the simplest ways
to do this is to consider even symmetric forms. This is done in [15] for m = 6. A typical

even symmetric n-ary sextic is:

n
oo =a Yot 4 Y elel by ¥ oleled
=1

i#] i<j<k

The ultimate conditions on p are more easily expressed in terms of power-sums. Write

D(2rs . 2n) = ang +b<g a:) (sz) +c(ix3>3.

i=1 =1

(The two expressions for p are related by a = a + b+c, B =0b+3c, v = 6c) Let
p*(t) = a+ bt + ct? and let v(%) denote any n-tuple whose coordinates consist of k 1’s and
n — k O, then p(v(¥)) = ak + bk? + ck® = kp*(k). A clear necessary condition that p be
psd is that p*(k) > 0 for k =1,2,...,n. Thisis also a sufficient condition: p is psd if and
only if it is psd on the “test set” {vy,... ,vn}. The necessary and sufficient condition that
p be sos is that p*(t) > 0 for t € {1} U [2,n]. (One does not have a clear idea what p*(t)
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means when ¢ is not an integer.) For the Robinson form, R*(t) = %(2 — t)(3 — t); since

R*(t) < 0 for 2 < t < 3, this gives another proof that R is not sos.

William Harris [30] has generalized this study to even symmetric octics (m = 8) and
to even symmetric ternary forms (n = 3). One surprising result is that every psd even
symmetric ternary octic is sos. Harris gives test sets which determine whether an even
n-ary symmetric octic or ternary decic (m = 10} is psd, and a complete list of the extremal
even ternary symmetric octics, as well as many new examples in A ;o and A4 8.

We mentioned [16] earlier, in the context of showing that R is psd. This paper contains
an extensive discussion of the Robinson form, and many other explicit examples. The
possible sides of a triangle can be parameterized (a,b,c) = (z2 +y%, 22 + 2%,y +2%) in
view of the triangle inequality, so any polynomial inequality satisfied by the sides of a
triangle can be interpreted as a psd even ternary symmetric polynomial and vice versa.
The inequality R > 0 is equivalent in this way to an 1820 theorem of Lehmus. Harris gives
all symmetric polynomial inequalities of degree <5 satisfied by the sides of a triangle.

6. PAOLya’s THEOREM

In 1928, George Pélya [55] (see also [29,pp.57-59]) gave an explicit solution to Hilbert’s
17th Problem for even positive definite forms p € Py 24; that is, for those positive definite
forms p which can be written p(z1,...,Zn) = f(z3,...,z%) for some f € Hq(R").

Suppose f(y1,..-,yn) > 0 for y on the simplex A, = {ZJ y; =1, y; 20,1 <j <n}.
Pélya first constructs a sequence of functions {f;} which converges uniformly to f on the
compact set A,; it follows that for t > to = to(f) and y € A,, we have f/(y) > 0.
Elementary combinatorial manipulations give

En i f,-+d(——La . _Cin_)
r4d’ ’
( yi) Flyr,-- - yn) =rli(r +d)* E T |r+d ye.
' al--ap!
=1 |la|=r+d
Since (—L:*_d, RN —Lrid) € A,, the above has positive coefficients when r > to(f) — d.

Another way of viewing this result is that any form f which is positive on A, can be
written as the quotient of two polynomials with positive coefficients, where the denominator
is a power of 5 y;. Without this last specification on the denominator, this result had
been proved by Poincaré [54] in 1883 (the date is wrong in [29]) for n = 2 and by Meissner
[48] in 1911 for n = 3.

Upon replacing y; by =2, A, becomes the unit sphere, and Pélya’s Theorem becomes
the statement that if p is positive definite and even, then for sufficiently large r,

(ii?)rp(xl,...,xn)

i=1

is a sum of monomials with positive coefficients. Since each monomial in the product
involves only even exponents, it follows that (3 x?)rp(xl,...,xn) is in fact a sum of
squares of monomials. And since the coefficients in the product evidently come from the
same field as the coefficients of p, Pélya's Theorem solves Hilbert’s 17th Problem in the
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special case that p is even and positive definite. Pélya remarks on the significance of his
result [55.p.144]: “Es kann schliesslich bemerkt werden, dass die Darstellung einigermassen
in Zusammenhang mit einer Fragestellung von Hilbert steht, die kiirzlich durch E. Artin
mit tiefgehenden Mittleln gelost wurde.”

In 1940, Habicht [25] (see also [29,pp.300-304]) used Pélya’s theorem to prove directly
that a positive definite form (not necessarily even) is a sum of squares of rational functions. .
The denominators are positive definite, but are no longer necessarily powers of ), z?; the
coefficients are still in the original field. A key step in reducing to Pélya’s Theorem is the
observation that, if p € P, 24 is positive definite, then

@(z1,...,za) = [] p(z1,€222,. ., €nTn), € Prona,
€p==%1

which is clearly positive definite, is also even.

There have been several generalizations of Pélya’s theorem. Motzkin and Straus [51]
extended it (without denominator information) to polynomials in several complex vari-
ables and to power series. Very recently, Catlin and D’Angelo [8] have extended it (with
denominator information) to Hermitian forms in several complex variables. Handelman
(see [26,27]) has completely solved a related question. Suppose a polynomial p in several
variables has non-negative coefficients. For which f does there always exist an r so that p” f
has non-negative coefficients? Recently, De Loera and Santos [47] have made an explicit
algorithm out of Pélya’s theorem, and made quantitative estimates for to(f).

The restriction to positive definite forms is necessary. There exist positive semidefinite
forms p which have the remarkable property that, in any representation p = ), 2, where
or = fir/gx is a rational function, each g; must have a specified non-trivial zero. The
existence of these so-called “bad points” insures that p - (3 z%)" can never be a sum of
squares of forms for any r. Habicht’s theorem implies that no positive definite form can
have a bad point. Bad points were first noted by E. G. Straus in an unpublished 1956
letter to G. Kreisel. An extensive history of bad points can be found in Delzell’s thesis [18],
and in his forthcoming [20]. An example from [18] is: w*z® + w?z®y? + y'® — Bw?z?y*2?,
which has a bad point at (w,z,y,2) = (1,0,0,0).

7. A NEW THEOREM

The final section of this paper is devoted to a sketch of the main theorem in [63]: if -

p € P, is positive definite, then for sufficiently large r, (3 z7)"p is a sum of squaresfe” e

that is, Pélya’s conclusion holds with Habicht’s hypotheses. Moreover, if p € Hn(K") is
positive definite, then for large enough r, (3_z?)"p is a positive linear combination over
K of a set of (2r + m)-th powers of linear forms, in which the linear forms depend only
on m, r and n, not p. (Ellison [22] showed in 1969 that for all (n,m), m > 4, there are
forms in £, which are not a sum of powers of linear forms, so the conclusion about
(3= 22)"p is stronger than that it is sos.) For much more on this subject, see (62,63]. The
construction is specific enough to give an explicit representation for Becker’s B(t) as a sum
of 2k-th powers over R, but not, unfortunately, over Q. Finally, it can be argued that
each component of our proof is, or could have been, familiar to Hilbert.
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We introduce two new notations: write Gp(Z1,...,Tn) = 24+ + z%, and let (r);
denote the falling factorial z(z —1)---(z — (t = 1)).

The proof depends on the existence of Hilbert identities. These arose as part of Hilbert’s
solution of Waring's Problem [36]: for every n and s, there exist 0 < A\p = Ag(n.s) € Q

and ak; = ag;(n,3) € Qforl < k<N = ("tr"_’l—l) so that

N
Gi(z1,... L) =(z]+ -+ ) = Z Ar(apizy + - + aknzn)?’
k=1

There are no known ezplicit Hilbert identities for arbitrary n, s. For s =1, 2,3, they are
far from unique and not hard to find (see [62,§8,9]). If we relax the conditions that the
coefficients be rational, then Hausdorff [31] gives explicit Hilbert identities involving the
roots of the Hermite polynomials. A simple non-rational trigonometric formula for n = 2
will be used below. A self-contained proof of the existence of Hilbert identities (and more),
which dots all i’s and crosses all t's, is contained in [63].

The idea of the proof is to differentiate both sides of a Hilbert identity. To be specific, if
h € Hy(R™), define the associated d-th order differential operator h(D) by replacing each
appearance of r; by 52_;; thus, Ga(D) = 3_; 58;2;; = A, the Laplacian. It turns out that

there are old formulas to describe the effect of A(D) on both sides of a Hilbert identity.

In the 10th century, Sylvester and Clifford developed the method of “contravariant
differentiation”. If h € Hy(K™) and d < m, then there is a simple representation for h(D)
applied to a sum of m-th powers:

h(D) Z(aklx.l + o agnTa)” = (m)g Z h(akyy. - 0kn)(apiTy + - + QknZn)™ %
k k

This identity is not hard to prove. It suffices consider a single m-th power, and by linearity,
it suffices to consider h(z) = z*. But then h(D) is a product of successive a—‘zj—’s, and the
formula is immediate by the chain rule.

It is somewhat more difficult to evaluate hA(D)GS. Each differentiation reduces the

exponent of G, by at most one, so G2~ ¢ divides h(D)G?%,. This suggests the notation
h(D)Gs, = &,(h)GY,

where ®,(h) has degree 2s — d — 2(s — d) = d. Thus ®, is a linear map from H4(R") to
itself. An explicit formula for @, follows from a theorem of E. W. Hobson. If h € Hq(R"),
and F is a sufficiently differentiable function of one variable, then

2¢ _

D)F(Gn) =) g A (W (Ga).
k>0

Observe that h on the right-hand side appears only in the sequence of iterated Laplacians.

(This is proved in [37,38], see also [39]; the formula was lauded by Hardy [28] as an “elegant

theorem in formal differentiation”.) Set F(t) = t°, so FU)(t) = (s);t*7 and

3 S)d— g S)d- 33—
h(D)G: = ;)gﬂ)%i—'A"(h)Gn d+k - (Z ézgfd;'ak(h)af,) Nerald
k>0 " ) k>0 )
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Thus,
«) _
®,(h) = %%A"(h)(?ﬁ.
k>0~ '

Putting this all together, we see that h(D) applied to a Hilbert identity gives:

N
}Z(D)G; = h(D)(Z /\k(akl‘rl + o+ akn.In)2s>;

k=1

AV
®,(R)GH " = (25)a ) Akh(akr,. s akn)(arizy + - + @knza) 7%
k=1

Set r = s — d. This equation states that ®,(h)G” is a linear combination of (2r + d)-th
powers of linear forms. If A happens to be psd with coefficients in K, so d is even, then
®,(h)GT, is a positive linear combination over K of (2r +d)-th powers of linear forms, each
of which is, per se a square. Thus Hilbert’s 17th Problem is solved, but for &,(h)!

The final step is to invert ®,. The formula given below is apparently new, but is well
within the grasp of Hobson’s techniques. If s > d, then

iy L (1) 0 b

(I)s l(p) - (3)d2d g 22[6!(% + 85— l)gA (p)Gn
_ 1 ( A(p)Gr A(p)G: L )
T (5)a2¢\" T 2(n+25-2)  8(n+25—-2)(n+2s—4) '

We see that, if p € Hq(K™), then so is ®;!(p). It is not hard to prove that

lim (5)424®,(p) = p,

and it follows that if p is positive definite, then so is ®;!(p) for sufficiently large s.
The preceding can be made quantitative. If p is positive definite, let

inf{p(u):u e S™1}

“P) = o (p(u) u e 57 1)

measure how “close” p is to having a zero. After some pleasant analytical estimates,
omitted here, including one comparing the L., norms of p and Ap on S™~!,| we prove that

if p € P, m is positive definite and s > (ZI;';';):(IIZ) — 251 then ®;(p) € Ppm.

Theorem. Suppose p € H,(K™) is positive definite. If r > (Z;’;;";):(l;) — 2™ then pGT,
is a non-negative K -linear combination of a set of (m + 2r)-th powers of linear forms in

Q[z1,...,zn|. This set depends only on n, m and r.

The last sentence above is based on the fact that the linear forms come from the Hilbert
identities. Interestingly, the analysis of Pélya’s theorem in [47] also shows a dependence

of to(f) on e(f)~1.
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Let P,(f,)n be the set of p € Pnm so that €(p) 2 € observe that Pp ,m = U€>0 P,(f,)n

nm(m-—1) nt+m
dlog2je — a1 even and

(p))(D) and clearing fractions,

For each € > 0, the Theorem implies that if p € P'(:f)"’ r2
Gm+r = S (ak - 2)?™*?7, then after applying (874

r+m

— A (ak12y 4o o) T ’
[)(l‘l,...,l'n)—; k(P) (1‘%++1’%)r/2 s

where Ax(p) > 0 is linear in p. There has been considerable interest in the representations
of p as a sum of squares of rational functions with continuous dependence on p; see [19,21].
Such a formula cannot hold over all of P, m. It is not hard to prove that if p € P, » has a
non-trivial zero, then pG”, cannot be written as a positive linear combination of (2r +m)-th
powers. The reader is referred to [63] for details, as well as many explicit examples.

The Theorem also gives new, concrete information about representations as a sum of
2k-th powers of rational functions. The following corollary (without the specification of
the denominators) can be given an Lb_s_t_r_a\.jc%;).ro,of using Becker’s methods.

Corollary. Ifp € K[z1,...,Zn]isa po\gitive definite form of degree m = 2kt, then p is a
non-negative K-linear combination of 2k-th powers of rational functions in Q[zy,...,n)
whose denominators are powers of G,. If p and q are positive definite forms in K[z1,...,Tx)
and the degree of the rational function p/q is a multiple of 2k, then p/q is a non-
negative K-linear combination of 2k-th powers of rational functions whose numerators
are in Q[z1,...,zn) and whose denominators are products of powers of G, and gq.

We conclude with a sketch of an explicit formula for B(t) as a sum of 2k-th powers. We
start with the familiar observation that

_ 1+t2 B (1 +t2)(2+t2)2k—1

T24¢2 (24+t2)2F

hence if we can write (1 + ¢2)(2 + t?)*~! and (2 + t?)* as a sum of 2k-th powers of linear
forms, then their product is a sum of 2k-th powers of quadratics, each of which can be
divided by (2 + t?) to give B(t) as a sum of 2k-th powers of rational functions.

Although there are no known families of Hilbert identities for (z? + y?)* over QJ&they
are easy to find over R. The simplest one holds forv>s+1:

B(#)

92s V-1 : o
(2t +y%)° = NED) Z(cos(lvz)z + 51n(-7;"-)y)23.
s/ ;=0

By taking s = k, v = k+2, 2z = V2, y = t and applying the explicit formula for
®;! given above, we obtain (after several pages of computation) a formula for B(t). Let
Lj(z,y) = (cos &)z + (sin 45 )y and A; = 3k—(k+1) cos(%ﬁ%) for 0 <j <k+1. Then
2k
B(e) = 1462 2%k? ’f"fA (L;(ﬂ,t)Lj(\/i,t)>
2+t kk+2) (%) == 2+t
Although this gives B(t) as a sum of 2k-th powers in R(t), the summands are not in Q(%).

Such a representation cannot yet be found by our methods, because there is no known
family of Hilbert identities with coefficients in Q.

progc!

————
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