Short algebraic proofs of theorems of Schmüdgen and Pólya

by
Thorsten Wörmann
Universität Dortmund
Fachbereich Mathematik
Lehrstuhl VI
44221 Dortmund

Email: thorsten@emmy.mathematik.uni-dortmund.de

Abstract: The aim of this note is to give short algebraic proofs of theorems of Schmüdgen and Pólya by means of the representation theorem of Kadison-Dubois. The proof of the latter is elementary and algebraic but tricky. Due to its use no theory from functional analysis is needed. For the notions used here see [BS] and [KS]. For an overview of this and related questions see [R].

1) Prelimenaries: All Rings R are commutative with 1 and contain \mathbb{R} . A subset $P \subset R$ is called a preprime iff

$$P + P \subset P$$
, $P \cdot P \subset P$, $\mathbb{R}_+ \subset P$, $-1 \notin P$,

where \mathbb{R}_+ denotes the nonnegative real numbers. A preprime P is a preorder iff $a^2 \in P$ for all $a \in R$. For $g_1, \ldots, g_m \in R$ we denote by $\langle g_1, \ldots, g_m \rangle_{PP}$ ($\langle g_1, \ldots, g_m \rangle_{PQ}$) the preprime (preorder) generated by the g_i , i.e.

$$\langle g_1, \ldots, g_m \rangle_{PP} = \{ \sum_{finite} a_i g_1^{i_1} \cdot \ldots \cdot g_m^{i_m} \mid a_i \in \mathbb{R}_+ \}$$

$$\langle g_1, \ldots, g_m \rangle_{PO} = \{ \sum_{\epsilon \in \{0,1\}^m} h_{\epsilon} g_1^{\epsilon_1} \cdot \ldots \cdot g_m^{\epsilon_m} \mid h_{\epsilon} \text{ sums of squares in } R \}.$$

Finally a preprime P is called archimedean iff for all $a \in R$ there exists an $n \in \mathbb{N}$, such that

$$n-a \in P$$
.

Theorem 1 (Kadison-Dubois): Let R be a ring, $P \subset R$ an archimedean preprime.

$$X(P) := \{ \phi \in Hom(R, \mathbb{R}) \mid \phi(P) \subset \mathbb{R}_+ \}$$

the representation space. If for $f \in R$ $\phi(f) > 0 \; \forall \; \phi \in X(P)$, then

$$\forall n \in \mathbb{N}: \ 1 + nf \in P.$$

Proof: See [BS].

Remark: In the case of an affine \mathbb{R} -algebra $R = \mathbb{R}[X_1, \ldots, X_n]/\sigma$ and a finitely generated preprime/preorder $P = \langle g_1, \ldots, g_m \rangle_{PP/PO}$ the representation space X(P) ca be identified with the semialgebraic subset $\{g_1(x) \geq 0, \ldots, g_m(x) \geq 0\}$ of the real variety $Hom(R, \mathbb{R})$.

<u>Lemma 1:</u> Let $R = \mathbb{R}[y_1, \dots, y_n]$ be an affine \mathbb{R} -algebra, $P \subset R$ a preprime. Then

$$P$$
 is archimedean $\iff \exists N \in \mathbb{N}: N + y_i, N - y_i \in P \ \forall i = 1 \dots n.$

Lemma2: $R = \mathbb{R}[y_1, \dots, y_n]$ an affine \mathbb{R} -algebra, $P \subset R$ a preorder. Then P is archimedean $\iff \exists N \in \mathbb{N}: N - \sum y_i^2 \in P$.

Proofs: straightforward

2) The theorems

Theorem 2 (Pólya): Let $f \in \mathbb{R}[X_1, \ldots, X_n]$ be homogeneous, $f(x) > 0 \ \forall x \in S' := \{x \in \mathbb{R}^n | x_1 \ge 0, \ldots x_n \ge 0, \sum x_i \ne 0\}$. Then for some $N \in \mathbb{N}$ $(\sum X_i)^N \cdot f$ is a positive linear combination of power products of the X_i . In other words $(\sum X_i)^N \cdot f$ belongs to the preprime generated by the X_i .

Proof: Consider the ring $R := \mathbb{R}[Y_1, \dots, Y_n]/(1 - \sum Y_i)$ and the preprime $P := \langle y_1, \dots, y_n \rangle_{PP}$ generated by the residues y_i of the Y_i . By lemma 1 P is archimedean. The set X(P) consists of all evaluations at points of the simplex $S = \{y \in \mathbb{R}^n | y_1 \geq 0, \dots, y_n \geq 0, \sum y_i = 1\}$. Obviously there exists an $n \in \mathbb{N}$ such that f = 1/n is still positive on S, hence by theorem 1

$$n \cdot f(y_1, \dots, y_n) = 1 + n \cdot (f(y_1, \dots, y_n) - 1/n) \in P \Rightarrow f(y_1, \dots, y_n) \in P.$$

This means that as functions on S we have the equality

$$f(y_1, \dots, y_n) = \sum a_i y_1^{i_1} \cdot \dots \cdot y_n^{i_n} \ (a_i \in \mathbb{R}_+).$$

Since $x/\sum x_i \in S$ for all $x \in S'$ by plugging in this for y and multiplying denominators, we get:

$$(\sum x_i)^N \cdot f(x) = \sum b_i x_1^{i_1} \cdot \dots \cdot x_n^{i_n} \text{ (for some } b_i \ge 0)$$

as functions on S'. Since S' is a Zariski dense subset of \mathbb{R}^n , this is also an identity of polynomials, hence Pólyas theorem.

<u>Remark:</u> Since Pólyas theorem is wrong for arbitrary real closed fields (see [DS]) this implies, that theorem 1 is also not true for general real closed fields.

Theorem 3 (Schmüdgen): Assume the basic closed semialgebraic set $S := \{x \in \mathbb{R}^n | g_1(x) \geq 0, \dots, g_m \geq 0\}$ to be compact. Then any $f \in \mathbb{R}[X_1, \dots, X_n] =: R$ with $f_{|S|} > 0$ belongs to the preorder $P := \langle g_1, \dots, g_n \rangle_{PO}$ generated by the $g_i \in R$.

Proof: Assume w.l.o.g. that $S \subset \{x \in \mathbb{R}^n | \sum x_i^2 < 1\}$. The extended preorder

$$P' := P + (1 - \sum X_i^2)P$$

is archimedean by lemma 2. With the same reasoning as above we conclude from theorem 1 that any f positive on S belongs to P'. Due to the Positivstellensatz there exist $p, p' \in P$ with

$$(1+p) \cdot (1-\sum X_i^2) = 1+p'.$$

By adding $p \cdot \sum X_i^2$ to the left hand side we see that

$$(*) \quad 1 - \sum X_i^2 + p \in P.$$

On the other hand we have seen, that any polynomial positive on S belongs to P'. This shows that (1+p)g belongs to P for any such polynomial g. Since S is compact there exists $N \in \mathbb{N}$ such that $(N-p)_{|S} > 0$ which yields

(**)
$$(1+p)(N-p) = N + (N-1)p - p^2 \in P$$
.

Finally the following square lies in P

$$(***)$$
 $(N/2 - p)^2 = N^2/4 - Np + p^2 \in P$.

Adding these three elements of P, we get

$$(*) + (**) + (***) = (1 + N + N^2/4) - \sum X_i^2 \in P$$

This shows that P itself is archimedean und hence by theorem 1 any polynomial positive on S belongs to P.

Remark: The technique used in these two proofs allow to state a large variety of Schmüdgen/Pólya type theorems, e.g. it can be used to generalize a theorem of Habicht (see[H]). This will be subject to a forthcoming article.

References:

[BS] E.Becker, N.Schwartz: Zum Darstellungssatz von Kadison-Dubois, Archiv der Mathematik, Vol. 40 (1983), 421-428.

- [DS] J.A. de Loera, F Santos: A effective version of Polya's theorem on positive definite forms, preprint.
- [H] W.Habicht: Über die Zerlegung strikt definiter Formen in Quadrate, Commment. Math. Helv. 12 (1940), 317-322.
- [KS] M.Knebusch, C.Scheiderer: Einführung in die reelle Algebra, Vieweg Braunschweig/Wiesbaden (1989).
- [P] G.Pólya: Über positive Darstellung von Polynomen, Vierteljschr. Naturforsch. Ges. Zürich, 73 (1928), 141-145.
- [R] B.Reznick: Some concrete aspects of Hilbert's 17th problem, preprint.
- [S] K. Schmüdgen: The K-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), 203-206.