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Y , Introduction
.deals. A
guadratic forms. § For any natural number n = 2 and any even natural number d = 2 we

' consider the ceonvex cone P(n,d) consisting of the positive semidefinite
(= psd) forms over IR in n variables Kqoooos X of degree 4, and the
. convex subcone L(n,d) consisting of the finite sums of squares of forms
du spectre reel. of degree d4/2 in the variables x,,...

£{(n,d) # Pin,d) excent for very special pairs (n,d), namely the pairs

' X As is well known

‘= topos étale " withn=2o0rd=2or (nd) = (3,4) (Hilbert, cf. (CL] for an elemen-

tary proof).

->scher Rdume. . In this paper we ask for relations between the sets EP(n,d) and
EIXI(n,d) of extremal elements of the ccnes P(n,d) and I{(n,d). Notice
zcpology over a ’ that, since our cones are closed (after adding the origin), every ele-
taigebraic spaces. : ment in P(n,d) resp. I(n,d) is a finite sum of elemknts in EP(n,d)
- resp. EZ(n,d}. Thus the seEs'EP(n,d) and EX(n,d) deserve special

attentica.

izures and reduced Cur main result, Theorem 6.1 in §6, is the determination of ail
—z2rg 51 149-195 pairs (n,d) such that EI(n,d) is contained in EP(n,d), which means
EZ(n,d) = EP(n,d) N Z(n,d). This answers Problem B in the survev arti-
1 en KoOrpern. cle [CL1].

In order to obtain the result a general cbservation turns out o

W

al algecravlc
be helpful:

i

cry and
rry
a) Let H be ar 1irreducikle indefinite form in E![x1,...,xn] of degree

r. Then for any F € P(n,d)

) .
F € EP(n,d) eme F4° € EP(n,d+2r),

N

F € EZ(n,d) e= FH" € EZ(n,d+2r),
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cf. Theorem S.1. We also feel that the following observation sheds

. light on the problem:
*'} ': 2

b) 1f F € EP(n,d) then F~ € EI(n,2d),

cf. Theorem 5.2.

our "“counterexamples" G € EX{(n,d), G £ EP(n,d) are of the form
G = H2F2 with H a product of irreducible indefinite forms and F an
irreducible psd form of some degree e which is'ggs extremal in P(n,e).
Basic counterexamples will be explicitly constructed in §6 for

(n,d) = (3,12) and (n,d) = (4,8).

The observations a) and b) rely on the nresence of "transversal

zeros" for some forms coming up in the proofs. A transversal zero of a
polynomial F(x1,...,xn) over IR is a point c € R’ such that F changes

Z 3ign in every neighbourhood of c. If F has no multiple irreducible

: factcrs then a point c of the zero set I(F) < R" turns out to be a
.ransversal zero if and only 1f Z(F) has local dimension n-! at c,

. cf. Theorem 3.4.

a4

¥ The first half of our paper is devoted to a ceometric study of

transversal zeros and to the guestion how far a rolyncmial is deter-
mined by its transversal zeros. We try to do all this on a natural
level of generality. This leads us to study the set lD]IR of real
points of an effective Weil divisor D on a normal algebraic variety X
over IR. But for the applications of the theory of transversal zeros

e
H

L TR D P

made in §5 and §6 it suffices to consider the case when X 1s a projec-

. a=-1 . C s :
tive space KHR , Or - if one wants to study also muitiforms - a direct

product of projective spaces.

% : :
) We suspect that many of our considerations on transversal zercs
o
o

are more or less "folklore", well knowa %0 the exnmerts. However, to
y our knowledge, no coherent account of this useful theory seems to

exist in the literature. Thus we feel that these Prcceedingcs are a

good place to explicate the basic facts.

In the wnole raper we admit any real closed field R as ground field
instead of the field IR of real numbers. Using some standard results
from semialcebraic topology, all contained in {CK]) and §1 of the pre-
sent paper, this does not cause additional difficulties. Thus we never
need Tarski's principle to transfer elementary statements from R to

other real closed fields.
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§ 1 The pure dimensional parts of a semialgebraic set

We start with a variety X over a real closed field R, L.e. a re-
duced algebraic scheme over R. The set X(R) of rational points of X is
a semialgebraic space in the sense of [DK], and we use freely the
language of "semialgebraic topology” developed in that paper. In par-
ticular we make use of the dimension theory in [DK, §8].

Let N be a semialgebraic subset of X(R). For any point x of N the
local dimension dime of N at x is defined as the infimum of the di-

mensions of all semialgebraic neighbourhoods of x in N (DK, §13]. We
introduce the sets (k =0,1,2,...)

- = | i >
Zk(N) ;= {x € N ,dlme > k.

Of course Zk<N) is empty if k exceeds the dimension d of N. It is
clear from [DK, §8] that every Zk(N) is a closed subset of N (in the
strong topology, as always). We shall need some 2lementary facts
about the sets Zk(N) (actually only about Za(N)), not covered by the
paper [DK].

Proposition 1.1. Zk(N) is semialgebraic for every k = O.

It is trivial to verify this lemma using the theorem that every
affine semialgebraic space can be triangulated [DK1]. A more elemen-
tary proof, which also gives additional insight, runs as follows. Let
d = dim(N). For k > d there is nothing to prove. We now deal with the
case k = d. We may assume that X is affine. lLet Y denote the Zariski
closure of N in X, and let S denote the singular locus of Y. Then

N' := (Y(R)~S(R}} N N

.S an cpen senmialgebraic subset of N anéd the complement in N, i.e.

"M n S{R]), has dimension at nost d=-1. Suppose we Xnow already that

:d<x') is semialcebraic. Let L pe the closure of Ed(N‘) in N. This 1is
igain a semialgebraic set. N~L is open in N and has dimension at most
i=1, Thus N~NL is disioint from Zi<N)' On the cther hand L is con-
tained in Zd(n), since Zd(N) is closed and contains Zd(N'). Thus

I4(N) coincides with the semialgebraic set L.

Replacing N by N' and X by X~ S we assume now that Y is smooth.
Let Y1""'Yt dencte the connected components of Y. The set zd(N) is
the union of the sets Id(N n YL(R))' and it suffices to prcve that

these sets are semialgebraic. N N Yi(R) is Zariski dense 1in Yi- Re-=
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placing N by anyone of the sets N N Y, (R) we assume that in addition
Y ts connected, hence irreducible.

We have N = N1 U ... Vv Nr with non empty sets

N, = {x € Y(R) !qi(x) = 0, fi

{ (X) >0, J=1,...,51,

3
where gi’fij are functions in the affine ring R[Y]. If 94 is not zero
then dim Ni < n-1, But if 94 is zero then Ni is open in Y (R}, hence

N, c‘zd(N), since Y is smooth and thus Y(R) has local dimension d at
every point (DK, §8]. It is now clear that Zd(N) is the closure of the
union of all Ny with g; =0 in the set N. Thus Ed(N) is indeed semial-

gebraic.

Consider now the cpen semialgebraic supset N, := N\~Zd(N) of .
Clearly
Ig- (N} = Zd(N) U Zd-1(N1)‘
We know £rom the proof already civen that Zd_1(N,) and Zd(N) are semi-

algebraic. Thus Zd_1(N) 1s semialgebraic. Repeating this argument we

see that all ZK(N) are semialcebraic, and our lemma is proved.

Proposition 1.2. For every k = O the semialcebraic set

zk(N) := Zk(N)‘\£k+1(N),
consisting of all points x € N with dime==k, is pure of dimensicn X,
N o - & D - o
1L.e. d‘.mx ZK(N) x for every x € Zk(N).

. = <O, .
Proof. Let x be a point of kaN) and let UO be an oner semialgebraic
aeignbournocd of x in N wich din U = K. For any open semialcebraic

\

neighbourhood U < Ly of x in N we then also nave dim U = X, Mcreover

for ewvery sucn U tnere exists an cran semialgetralic sucset V of U
which is semialgepraically isomorphic to an open non emptv subset of
Kp o - e o SN . .

R™[CK¥, §8]. Cieariy ¥V is contained 1in L (Nj N T. Thus

dim(Zi(N) n Ty = x. Q.2.o.

Q... . o - o
We call Zk{&) the nure k-dimensional nar: of N. More specifically,

if dim N = 4d Qe call ZS(N) = zd(N) the pure part of N.

Example 2.3. 1If X is irreducible of dimension n, and if the set

X(R)req of regqular points of X in X(R) is not empty, then the pure

part Zn(X(R)) of X(R}) is the closure of X(R)reg in X(R).
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Indeed, X(R)rea is pure of dimension n, and X(R) has local dimen-

sion at most n-1 at every singular point which is not contained in the

closure of X(R)reg°

§ 2 Transversal zeros of alegebraic functions

We assume in this section that the variety X over R is irreducible,
that the set X(R) of real points is not empty, and that X is regular
at every point of X(R). Then X(R) is an n-dimensional semialgebraic
manifold [DK, §13] with n = dim X. We also assume that X is atfine,
and we denote the ring R{X) of reqular functions on X by A. On the
space X(R) every f € A takes values in R. We are interested in the zeros
and the sign behaviour of the functions £ : X(R) - R.

Definition 2.1. Let L be a subset of X(R) on which £ does not vanish

everywhere. We say that f is positive semidefinite (resp. positive
iefinite) on L 1f £(x) 2z O (resp. f(x) > O) for all x € L. In the same
way we use the words "negative semidefinite" and "negative definite".
If there exist points x € L and y € L with £(x) > O and f(y) < O, then
we call f indefinite on L.

Definition 2.2. Let £ be a non zero element of A. A transversal zero

of £ is a point x € X(R) such that f is indefinite on every semialge-~
braic neighbourhood V of x in X(R). Notice that f cannot wvanish every-
wnere on V since dim V = n.

We denote bv Z(f) the set of zeros of f on X(R) and by zt(f) the
set of transversal zeros of f. We finallv denote by N{f) the clcsed
reduced subscheme of all zeros of £ on X. Thus I (£) is the set of
real points of N{f) and Zt(f) is a subset of I (f). The set I(f) is
closed and semialgebraic in X(R). The setlt(f) is the intersec+tion of
~ne clocure of the set of points of X(R) where € is zositive with “he
closure of the set where £ is negative. Thus I, (f) is also closed and

-
semialcebraic in X(R).

Proposition 2.3. For every non zero recular function £ on X the set

Zt(f) of transversal zeros is either empty or pure of dimensicn n=1.

Proof. Let a be a given point of Zt(f). We choose an open neighbour-
hood V of a in X(R) with a semialgebraic isomorphism ¢ : V = V' onto
an open semialgebraic convex subset V' of R". (Recall that X(R) is a

semialgebraic manifold.) We then choose a noint Xq € V with f(xo) > 0

-
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and an open semialgebraic subset U < V such that f(y) < O for ecvery
y € U and such that U' := @(U) is convex in R". We finally choose a
hyperplane H of R™ with H N U' # @ and not containing the point

xé := w(xo). Now consider the central projection
-n 1
n .R\(xo}—oﬂ
onto H with center xé. We claim that
(s) w-wutu)ﬂ V) oH N U'.

Indeed, let y' € H N U' be given and let v' : [0,1] - V' be the

straight path from xé to y',
Y'(t) = (1-t)x<') + ty'.

Then vy := w-1o v' is a semialzebraic path in V running from the point
xg to the preimage y of y'. ~ce f(xo) > 0 and f(y) < O there exists
some point T € ]0O,1{ where tne semialcebraic function foy on [0O,1]
changes sign. v(7) is clearly a transversal zero of f. The point
Y'(t) lies in w(Zt(f) N V) and maps under n to the point y'. Thus the
inclusion (s) holds true. This implies that

dim Zt(f) nv=n-1,
since dim (H N U') = n-1. But Z{f) N V has dimension at most n-1 since
this set is contained in N(f). Thus Zt(f) n v has dimension n-1 for

every open semialgebraic neighbourhood V of a.
Q.E.D.

Corollary 2.4. Let £ and g be non zero recular functions on X. Let
2 (£) N U is con-

a € X(R) be a transversal zero of f and assume that e
tained in Z(g) for some neighbourhood U of a. Then £ and g have a nen
. &Recall that

trivial common facter in tihe regular local ring CX

Oy 5 is a unique factorization domain.}
’
Proof. For every affine Zariski neighbourncod W cf a in X the semi-

algebraic set W N U N zt(f) has dimensicn n-1 by Proposition 2.3

above. Our hypothesis implies that this set 1s contained in the inter-
section N(f) N N(g) N W of the hypersurfaces f = O and g = O on W.
Thus the (algebraic!) dimension of N(f) N N(g) N W cannot be smaller
than n-1 for any Zariski neighbourhood W of a. This implies that
there exists some h € A which is a prime element in Ox’a and has the

property that
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N(h) N W< N(f) n N(g) N W

for small Zariski neighbourhoods W of a. By the local Nullstellensatz
h divides both £ and g in Ox a’
’

In the same vein we cobtain

Corollary 2.5. Let again f and g be non zero functions on X. Suppose
that for some open semialgebraic subset U of X(R) the set Zt(f) nuis
not empty and contained in I(g). Then the complex hypersurfaces N(f)

and N(g) have a common irreducible component. In particular, if A is
factorial then f and g have a non trivial common factor in A.

Proposition 2.6. Let £ and g be non zero regular functions on X, and

assume that the hypersurfaces N(f) and N(g) have no irreducible compo=-

nent in common. Then

2, (fq) = I (£) U I ().

Proof. a) Let a be a point of X(R) which is not contained in

Zt(f) v Zt(g). Then there exists a neighbourhood U of a in X{(R) such
that both £ and g are semidefinite on U (ccsitive or negative). Then
also the product fg is semidefinite on U, and a is not a transversal
zero of fg. This proves that Zt(fg) 1s contained in Zt(f) v zt(g).
(Qur hypothesis, that N(f) and N(g) have no common component, is not
vet needed for that.)

b) We show that the set M := Zt(f) is contained in Zt £g), which will
finish the proof. We may assume that M is not empty. By Propositicn
2.3 M is pure of dimension n-1. On the other hand the set

N o= 2_(£)n Z,(g) has dimension at most n-2, since N is contained in
the ingersectién of the hypersurfaces N(f) and N{(g) wnich have nc
coemmon irreducible component. ' Thus the set M~ N is dense in M (a
“rivial argument, cf. [DK, §13]). Since Zt(fg) is cloced it suffices

o verify that M~ N is contained in Zt(fq).

Let x be a point of M~N, which means that x € z,

(£), x £ 2,.(9).

we choose a neighbourhood Uo of x on which ¢ is semicdefinite. Now £ is

indefinite on every neichbourhood U < UO of x. Thus also fa is indefi-
nite on every such U. This implies that x € Zt(fg).
Q.e.d.
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Corollary 2.7. Assume that A is factorial. Let f be a non zero ele~

ment of A and let
e e

- 1
£ u P, <o Py
be the decomposition of f into powers of pairwise non associated prime
elements Pys.. /Py v with u a unit of A. Then Zt(f) is the union ot
the sets Zt(pi) with e, odd.

t

. e
proof. Apply Proposétion 2.6 and observe that Zt(pi j') is empty if

i .
e, is even and Z,(py ) = Zt(pi) if e is odd.

In the same vein we obtain for the semialgebraic set germ Zt(f)a
of a non zero function £ € A at any point a € X{R}:

Corollary 2.8. Let

be the decomposition of £ into prime elements in the fac+torial ring

bx,a' Then Zt(f)a is the union of the set germs Zt(pi)a with e, odd.

§ 3 Purely indefinite divisors

We still assume that X is an irreducible n-dimensional variety
over R and that the set X{R) is not empty and contains no singular
points of X. But we no longer assume that X is affine. Qur
terminolocy from §2 then rakes over from functions to effective divi-

sors D = C on X, by which we always mean effective Weil divisors.

Definition 2.1. Let D be an effective divisor on X and let a be a

voint of X(R). Let £ be the local equaticn of D on some affine Zar:ys:

open neighbournood V of a. we ~all D indefinite at a, Lf £ is indef:

rite on everv neighbournood of a in V(R). Similarly we call D semicz2

finite (resp. definite) at a, if £ is pcsitive cr negative semidef-
oi

rncs

nite {(resp. definite) cn some neighbourhcod of a in V(R). The p

'y

of X(R) wnere D is indefinite are called -he transversal £oints ©

and the set of these points is denoted by ‘D:,- This set 1s a closec
semialgebraic subset of the set of real points iD{R := |Dj N X(R) of
the support 'D' of D.

Let D = e,D, + ... + etDt be the decomposition of D into irredu-
cible components.
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Proposition 3.2. |D|t is the union of all sets \Dilt with e, odd. \

This is clear from Proposition 2.6 in §2, or its corollary 2.8.

Definition 3.3. We call an effective divisor D indefinite, if ID|t ig
not empty, i.e. if D is indefinite at some point of X(R). We call D
semidefinite, if lDlt is empty, and we call D definite if [DIR is
empty. Finally, we call D purely indefinite, if D # O and there does
not exist a semidefinite effective divisor E # O with E € D. This
means that D is non zero, has no multiple components, and that all
irreducible components of D are indefinite.

It is clear from Proposition 2.3 in §2 that for every effective
divisor D on X the set :D!t is either empty or pure of dimension n-t.

This result can be improved.

-

Theorem 3.4. Assume that D has no multiple components. Then the semi-

ilgebraic set fot of transversal points of D ccincides with the pure

{n-1)-dimensional part Zn_1(§D§R) of the set 5DtR of real points on
‘Di.

Proof. It remains to verify that D is indefinite at any given pcint

a of D R with diﬂla D‘R = n=-1. We chocse a local equation £ of D on

some affine Zariski open neighbourhood W of a in X. Let U be any semi-
algebraic open neighbourhood of a in W(R). The set U N }D;R has di-
mension n-1, but the set of points in 5D!R which are singular on iDI
nas dimension at most n-2. Thus U0 ‘D!, contains some regular point b

R
of 'Di. There exists a regqular system of parameters 51,f2,...,51 of

the regular local ring Ox 5 such that f1 defines the germ of the
’

variety ‘D at b. The functions f1 and f differ in AX 5
r
un:it, hence we may assume that £ = 51. By the implicit function theo-

cenly by a

rem the svstem (51""’fn) vields a semialgebraic isomorphism of some
open semialgebraic neighbourhood U' < U of b in X(R) onto some open
semialcebraic subset of R7. Since Fl(b) = 0 certainly £ = f1 changes
sign on U'. A forticri £ is indefinite on U.

Q.e.d.

We mention that the thecrem now proved implies a generalization oz
the "Sign-Chanaging Criterion" cf Dubois and Efroymson for extending an
ordering P of a field k to a given function field over k ([bE, Th.2.7]),
cf. also [ELW, §4 bisl
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Corollary 3.5. (Dubois - Efroymson for V = A%). Let k be an ordered
fielc R be a real closure of k with respect to the given ordering.
Let Vv an absolutely irreducible variety without sinqular points
over k and D a prime divisor on V. Let VR denote the variety over R

obtained from V by base cxtension and let D denote the effective divi-
sor on vR obtained from D by base extension. Then the ordering :f k
can be extended to the function field k(D) of O if and only if D is
indefinite.

Proof. The ordering of k extends to k(D) if and only if there exists
a field composite of k(D) and R over k, whi . is formally real. These
field composites are the function fields R(D1),...,R(DS) of the irre-
ducible components Dl""'Ds of the divisor B. The prime divisors Di
all occur with multiplicity one in D. Thus D is indefinite 1f at least
one Di is indefinite. By Theorem 3.4 a given Di is indefinite if and
only if the set of real points Di(R) of Dy has dimension n-1 with

n := dim V = dim VR’ But dim Di(R) = n=-1 means that the variety DL nas
nonsingular real points, cf. §t. Now it is a well kruwn face, due to
Artin, that Di has nonsingular real points if and only if the field

R(Di) is formally real ([A, §4], cf. also [E}]).

We returrn to our irreducible variety X over R.

Proposition 3.6. Let D be an effective divisor # O without multiple
components. Then IDlR is Zariski dense in |D| if and only if D is

purely indefinite. In this case even §D!t is Zariski dense in ‘D/.

Proof. Let D1""'Dr denote the irreducible components of D. Clearly
‘D! =
D D1(R) U ... U Dr(R)

is Zzariski dense in D if and cnly if every Di(R) is Zariski dense 1in

Di' This means that Di(R) has tie semialvebraic dimensicn n-1, L.e.

that £ D.
n-1( 1(

21-1(Di(R)) is zZariski dense in D,. The proposition ncw iollows Irom

: i

~ne oreceding Theorem 3.4.

R)) is not empty, and in that case cf course already

This is perhaps the appropriate place to indicate a relation ce-

tween our investigations and the real Nullstellensatz of Dubois-Risler-
Stengle [S, Theorem 2]. Assume that X is an affine variety over R and
that W is a closed subvariety of X. Let A denote the affine ring of X
and L the ideal of functions in A vanishing on W. Then the real Null-
stellensatz says in particular that W(R) is Zariski dense in W if and
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only 1f the ideal s is "real”, i.e.

2 2

h1 + L.t hr €4l =« h €41,...,hr € €U

1

for arbitrary elements h1,...,hr of A. (This is essentially Risler's
version of the real Nullstellensatz [Ri], [Ri1].) Thus if X is irre-
ducible and has no singular real points then the proposition we just
proved says the following:

Corollary 3.7. Let X be affine and I(D) denote the ideal of functions
in R(X] vanishing on |D} for D an effective divisor # O without multi-

ple components. Then I(D) is real if and only if D is purely indefi-
nite.

If D is a prime divisor then clearly I(D) is real if and 5nly if
the function field R(D) is formally real, and we are back to the arqu-

ments which led to the Sign-Changing Criterion above (Corollary 3.5).

Definition 3.8. We call a semialgebraic subset M of X(R) pure and

full of dimension k in X, if dim M = k (hence the Zariski closure Z of

M in X has dimension k) and M is the pure part ZK(Z(R)) of Z(R).

In this terminology we can say according to Thecrem 3.4 and Prono-
sition 3.6 that for every non zero purely indefinite divisor on X the
set {Dit is pure and full of dimension n-t1 in X. We now prove a con-
verse of this statement.

Theorem 3.9. Let M be a pure and full (n-t1)-dimensional semialcebraic

subset of X(R). Then there exists a unique nurely indefinite diviscr
D on X such that M coincides with the set ;Dat of transversal points

of D. The variety D is the Zariski clocsure of M in X.

-
denote the irreducible comocnents of 2. The set M is the union ¢f the
closed semialgebraic subsets M; := M0 Z,(R), i=17,...,r. Dencting by
2! che Zariski clcsure of M, in X we have Z; = Z, and
Z: U ... U2 = 2, U ... U2
1 r 1 r’

and we conclude that Zi = zi for i =1,...,r. This means that every Mi

is Zariski dense in zi. Since zi is not contained in the union of the

Zj with j # i, also Mi is not contained in the union of the Mj with

j # i. Thus




N ”‘-‘}WK-} Ao

>
N

L
o

284

' oam ~
M1 M j:1 Mj
L; a non empty open subset of M, which is therefore pure of dimension
n-1. This 1implies dim ML = n-1 and dim Z.L = n-1 for every 1t =1,...,n.
The set ZL(R) contains ML' hence has again dimension n-1. We now con-

clude from Theorem 3.4 that for every i =1. ..,r the prime divisor ZL
is indefinite. We introduce the purely indefinite divisor

By construction [D| is the Zariski closure Z of M. Since M is pure and
full, M coincides with I__,({D|p). By Theorem 3.4 this last set is
!D\t. It is now also clear that D is the only purely indefinite divi-
sor with ‘D;t = M, since by Pronosition 3.6 for any sucn divisor 3'
the wvariety 'D'' is the Zariski closure of M in X.

!

Q.e.d.

A mild generalization of these results is nossible. Assume cnly
that X 15 an irreducible n-dimensional variety which 1s normal ac
every recal point, and that X(R) has dimension n. Let X' dencte tae
open subvariety of all regqular points of X. Then X(R) ~X'(R) has di-
mension at most n-Z. In particular X'(R) is not emnty. Let D be an

effective divisor on X and let D' denote the restriction of D tc X'.

Definition 3.10. We call D indefinite (resp. semidefinite, resp.

purely indefinite) if D' is indefinite (resp. semidefinite, reso.
purely indefinite). We denote by ?th -ne closure of the semialcebraic

set ED"t in X(R).

It is evident that all the theorems, propositions and cecrollaries
in this section, except Corollary 3.5, remain true word kty word in tRhe
present more general situation. Ccrollary 3.5 remains true for a nor-

mal irreducible variety V over k 1instead of a recular variecv.
§ 4 A remark on semidefinite prime divisors

As before let X be an irreducible n-dimensicnal variety over R
such tnat X({R) is also n-dimensional and conéains only normal =oints.
We regard on X(R) beside the strong topology also the coarser Zariski
topology. This is the topology on X(R) induced by the Zariski topology
of X. Every Zariski closed subset M of X(R) is a finite union of irre-

ducible closed subsets M ..,Mr with Mi & Mj for i # j. We call these

1"
subsets M. the irreducible components of M. They are uniquely cdeter-~

i
mined by M.
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Every irreducible Zariski closed subset M of X(R) which has dimen-
sion n-1 is clearly the set of real points of an indefinite prime di-
visor D on X uniquely determined by M (cf. Theorem 3.9, which says
much more than this.) We now prove a weak analogue of this statement
for lower dimensional irreducible Zariski closed subsets of X(R).
Uniqueness of the prime divisor D can no longer be expected. Thus the
following theorem is less valuable than Theorem 3.9.

Theorem 4.1. Suppose that X is also quasiprojective, i.e. a locally
closed subscheme of some projective space m:. Let M be an irreducible
zariski closed subset of X(R) of dimension at most n-2. Then there

exists some semidefinite prime divisor D on X such that M = D(R).

For the proof we replace X by its normalization, which does not
change anything for the space X(R). Now the zero divisor div(f)_ and
the pole divisor div(f)_ of any non zero rational function f on X are

nonestly defined as Weil divisors.

The set X(R) is contained in the affine open subscheme V of P§

which is the complement of the hypersurface xé + ... 0+ xé = Q. We
introduce the Zariski closure x1 of X N V in V. Then X(R) = x1(R) and

x1 is an affine variety. Let W denote the Zariski closure of M in Xy
We choose regular functions gqr-+esg, ON X, such that W is the reduced
subscheme Nx (91) n...n Nx
X

(gr) of all common zeros of gys+--+9, ON
For the }egular function

7°

g:=g

2 + ...+ 02
1 °r

on x1 we have

M= {x € X, (R) “g(x) =0},

We ncw extend <he recular function ¢ "X N V to a rational function £
on X in the unigue possitle way. The domain of definition of f ccnatains
X N Vv, hence X(R). Thus the pole divisor E := div(f)_ has in its sup-
Port nc real points, i.e. E is definite. On the other hand we have ZIor
the zero divisor D := div(f)

iDig = {x € X(R) l £(x) =0} = (x € X(R) | g(x) = O} =M.
Let D = eID1 L est be the decomposition of D into prime divi-
sors. M is the union of the Zariski closed subsets D1(R),---,DS(R).
Since M is irreducible, M coincides with one of these sets, say

The prime divisor D1 is semidefinite according to Theorem

M =D,(R).

3.4, or already Proposition 2.3, and our theorem is proved.
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‘ ;. § 5 Extremal positive semidefinite forms and extremal squares
Y'Q{ .
¥y Let X be the (n-1)-dimensional projective space P2-1(n z 2). Every

effective divisor D on X is the divisor div(F) of a form F(x1,...,xn)
: with coefficients in R uniquely determined by D up to a multiplicative
In this way the prime divisors correspond with the irreduct-

A constant.
;; ble forms, the indefinite divisors correspond with the indefinite forms
e in the usual sense - notice that X(R) is connected -, and the semidefi-

nite (resp. definite) divisors correspond with the positive semidefi-

1

T,
iﬁ nite (resp. definite) forms, of course also with the negative semidefi-
&

nite (resp. definite) forms.

We call a form F € R[x1,...,xn] purely indefinite, if the divisor
div(F) is purely indefinite. This means that F is not constant, all
irreducible factors of F are indefinite, and no irreducible factors

3 occur with multiplicity > 1.

For any integral number r z O we denote by F(r) the set all non
zero forms of degree r in R[x,,...,xn] and by F the union of all F(r).
For any even number d = O we denote by P(d) the convex cone in F(d)
consisting of all psd (= postive semidefinite) forms of degree d in
R[x1,. .,xn], and by P the union of all ?(d). Similarly we denote by

£(d) the convex subcone of P(d) consisting of all finite sums of

R

%ﬁ squares of non zero forms in R[x1,...,xn] of degree %, and by I the
B union of the sets I(d).
”ﬁ_
5 The cones P(d) U {0} and Z(d) VU {0} are well known to be closed
§ semialgebraic subsets of the vector space F{d) U {0O}. Our theory in §2
i has some applications to the theory of the sets E(P(d)) and E(Z(d)) cf
. extremal points of the cones P(d) and I(d). We refer the reader to the
& paper [{CL] for the backoround, some results, and concrete examples in
i this theory. Let again E(P) denote the unicn of sets E(P(d)) and E(I)
N the unicn ¢f =he sets E(X(d)).

If nothing else is said all forms in the sequel are understood to
be forms in Xqy-w.rX, OvVer R. For any two such forms we mean by
"F z G" that F-G lies in P U {0}. In particular then F and G must hav:
the same deagree. Similarly we mean by "F >>G" that F-G lies in
Z v -{0}. Clearly an element F of P lies in E(P) if and only if
F =2 G = O implies G = AF with some constant \. Similarly an element F
of ¥ lies in E(Z) if and only if F>>G>>0 implies G = AF with some
constant A. Of course in both cases the constant )} lies in the inter-
val [0,1]).
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Theorem 5.1. i) Let F and G be psd forms. Assume that F € E(P) and §
divides F. Then G € E(P).

41) Assume that F € E(L) and F = G-H2 with some forms G and H. Then
G € E(X).

iii) Let G be a psd form and H a purely indefinite form. Then G lies‘
in E(P) if and only if GH2 lies in E(P). .

iv) Let again G be a psd form and H a purely indefinite form. Then G
lies in E(I) if and only if GH® lies in E(I).

proof. i) We have F = G H with some psd form H. Suppose that

G - G' z O. We have to verify that G' = \G with some constant X. Since
4 - O we have GH =z G'H =z O. Since F is extremal this implies
G'H = \GH with some constant and then G' = AG.

ii) We may induct on the number of irreducible factors of H and thus

assume that H is irreducible. Since F is an extremal sum of squares F

is actually a square L2. Now H divides L. We have L = HS with some

form S and then F = HZSZ. From this we obtain G = SZ.

In particular
G € L. We see now by the same argument as in i) that G is extremal in

z.

iiiy If GH2 is extremal then also G is extremal as has been proved
above. Assume now that G is extremal. It suffices to consider the case

that H is indefinite and irreducible, since we then obtain the full re-
sult by iteration. Let L be a non zero form with GH2 > L = 0. The set
of real zeros I(H) is contained in Z(L). By a mild application of
Corol. 2.5 we see that H divides L. (Restrict H and L to the n-stand-

ard open affine subvarieties of P%f’ JSince H is indefinite then also

HZ divides L, cf. Proposition 3.2. We have L = HZL' with some psd form

L' and obtain from GH2 = L'Hz > 0 that G = L' =z O. Since G is extremal

this implies L'=)G with some constant ) and then L = XGliz.

iv) We again retreat to the case that H is irreducible and indefinite.
1f G2
G € E(L£). Suppose that GH2 » L» O. We have

lies in E(E) then by ii) also G lies in E(Z). Assume now that

with some forms M1""'Mr of same degree. The set I(H) is contained in
every zero set Z(Mi). Thus by Corollary 2.5 we have M, = HN; with some
forms N and I.=H2L1, where

L. =N2+ ...+ N €I
1 1 r
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We can apply the same argument to the sum of squares GH2 - L ana have
GHz- L = HZS1 with some S1 € L. We obtain G = Ly + S1. Since G is ex-
tremal in T this implies L, = \G with some constant \ € {0O,1] and then
L = XGH2 . Thus GH2 is indeed extremal in . Theorem 5.1 is now com-

pletely proved.

We may ask for which forms F the square Fz is extremal in L or
even in P. By part iil) of Theorem 5.1 the latter is true for any pro-
duct F of irreducible indefinite forms. We also know from parts i) and
ii) of the theorem that

-
-

(F1F2)2 € E(Z) = F1 € E(Z), F, € E(Z};

N

[ S S}

2

(F,F,)> € E(P) = F2 € E(P), F
172 1

To pursue this quest:ion further we may <mit ‘in a given form F all %

ducible indefinite factors, according to Theorem 3.!, and assume :that

F is psd. We have the following partial result.

Theorem 3.2. Let F ke a form in E(P). Then F2 has the {oilowing
property: If F° = G2 + H with some nsd form H and some form G then
G2 = ch with some constant . (Of course & lies in the interval

[0%1].) In particular FZ € E(Z).

Proof We may assume that F # $C. We distinguish two cases.

- .

Case 1: F-G is semidefinite. If F -G would be necative semicdefinite
2
then also F + G would be necative semidefinite, since FZ-G“ = 0. Thu
the sum 2F cf F-G and F +G would be necative semidefinite, wnich is
bl )

not true. Thus F=-35 =z C. Since F*~G” = (F -G} (F +73) 1s osd, also
F+G =2 Q. from the relation

F = (F+ G)/j2 + (f - CG)/2
we obtain, since F is extremal,

(F - G)/2 = \F, (F + G)/2 = .F

with constants A > O, . > O such that ' + u = 1. This implies
G = (u=-3i)F and then G2 = (u- \)ZFZ, as desired.
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Case 2. F-G is indefinite. According to proposition 3.2 there exists
an lrreducible indefinite form P which divides F - G with an odd multi-
plicity. sSince Fz-Gz;z 0 the form P occurs in F2~-G2 with even multi-~
plicity, again by Propostion 3.2. Thus P divides also F+G, hence P
divides both F and G. Since F is psd even P2 divides F. We havr

F = PZF1 with a form E‘1 € E(P) by Theorem 5.1.i. We also hava 5 = PG’

with some form G' and the equation

P4F% = PZG'2 + H.

Thus H = PZH' with a form H' € P, and
PzFf = G'z + H'.

The zero set I(P) is contained 1in 1(G') and also in 2Z(H'). Thus by §2
the irreducible indefinite from P divides both G' and H', the latter
one with an even multiplicity. We obtain G' =P G1, H' = PZH1 with
H, € P, and

2 _ 2

F1 = G1 + H1.

The proof can now be completed by inducticn on the degree of F, since
Ty has smaller degree than F.
Q.e.d.

Remark. In all these considerations we could have replaced our pro-
n n
by a product ]PR1 x .. X IPRr ’

jective space m;" i.e. work with

multiforms instead of forms. Thus Theorems 5.1 and 5.2 remain true for

—ultiforms instead of forms.
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§ 6 Comparison of the sets EP(n,d) and EI(n,d). i

Looking again for forms F such that Fz is extremal in I or even in

P {t is natural to ask whether every F2 € E(X) actually lies in E(P).
In case of a positive answer we would know from Theorems 5.1 and 5.2
for any psd form F that F% lies in E(E) if and only if F lies in E(P),
and the relation between the sets E(I) and E(P) would be well under-

stood.

Unfortunately things turn out to be not that simple. Let us write
more precisely P(n,d) instead of P(d) and I(n,d) instead of x(d) to
indicate the number n of variables of the forms under consideration.
We ask for which pairs (n,d) with n 2z 2, 4 2 2 and even, the set
EZ{(n,d) of extremal points of the cone I(n,d) is contained in the set
EP(n,d) of extremal pcints of the cone P{(n,d). The following theorem

gives a complete answer to this question.

Theorem 6.1. Let n = 2 be a rnatural number and d be an even natural

number. Then EI(n,d) < EP(n,3) precisely in the followinag cases.

i) n = 2; iiy d < 6: iii) (n,d) = (3,8); iv) (n,d) = (3,10).

Thus the guestion, whether EX(n,d) is contained in EP(n,d) is

answered by the following chart:

d 2 4 6 8 10 12 14

n

2 v v % Vv % v V

3 12 12 v v v X X

4 v v v X x X b4

) v ' v X X X X

6 v 1 v X X X X
Legend: » = gositive answer
X = regative answer

The rest of the section is devoted to a proof of this theorem. If
n=2o0r é =2 then I(n,d) = P(n,d) and there is nothing to be proved.

Thus we assume henceforth that n = 3 and d = 4.

Consider now the case that d = 4 or d = 6. Let F be a form with
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pz € EI(n,d). Suppose that F2 does not lie in EP(n.,d). Cancelling out
in F all indefinite irreducible factors we obtain a form with the same
properties, as follows from Theorem 5.1. Thus we may assume that F has
only psd factors. Then F cannot have degree 3. Thus F is a psd qua-
dratic form. After a linear change of coordinates we have '

‘ 2 2
F=x3+ ... %X

with 1 < r = n. Now

2 2 2 2.2
(x2 + ... * xr) + (x2 LI 4 xr) .

2 4 2
F® = x, + 2 Xy

2 . . . C
we see that F~ is not extremal in Z(n,4). This contradiction proves

+nat EX(n,d) is contained in EP(n,d) for 4 < 6.

suppose now that F is a form of decree 4 in n variables such that
FZ lies in EI but not in EP. If F would contain an indefinite irreduc-
iple factor then taking out this factor we would obtain a form G with
GZ € EX(n,d) but G2 ¢ EpP(n,d) for some d < 6 (Theorem 5.1). This has
been proved to be impossible. Thus F does not contain an indefinite
¢actor and we may assume in particular that F is psd. If F would be
reducible then F = Q,Q, with psd quadratic forms Q, and Q,. But then
also the factors Q2 and Q3 of q2o2 would lie in EL (Theorem 5.1), which
means that Q1 and Q, would be squares of linear €orms. This contradicts
the fact that F has no indefinite factors. Thus F must be an irreduc-

ible positive semidefinite quartic.

It is known since Hilbert that P(3,4) = £(3,4), cf. [CL, §61 €or
an elementary croof in the case R = E!.). Thus in the case n = 3 our
form F has to be a sum of squares, but not a sgquare, and we obtain as
above a contradiction to the assumption that F2 is extremal in I(3,8).

We nave proved that EE(3,8) is contained in EP(3,8).

issume now chat F is a form in 3 variables of degree 5 such that
?2 is extremal in £(3,10). F contains an irreducible factor H cf cdd
ieq:eg, * = HG. 3y Theorem 3.1 the form G2 is extremal in I. Since
deg G° =3 we kKnow :hatG2 i3 extremal in P. Thus, again by Theorem 3.1,

the form Fz is extremal in P. We have nroved that EZ(3,10) is contained
in EP(3,10).

*)

This proof works equally well over all real closed fields R, taking
into account the rudiments of [DK, §9]. No appeal to Tarski's
principle is necessary.
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We now have verified all the affirmative answers in the chart
above. To get al. negative inswers it suffices to check that EI(3,12)
is not contained in EP(3,12) and EI(4,8) is not centained in EP(4,8).
Indeed, recarding a form F in the variables Xqreoer X, also as a form
it is an easy exercise to prove that-

in the variables x1....,xn+1,

F2 € Ef(n,d) = F2 € EL(n+1, d ),

and it is trivial that
2 2
F® € EP(n,d) = F° € EP(n+1,d).

Furthermore choosing some linear form L in the variables Xyreeor Xy it

is evident from Theorem 5.1 that

2 2.2

F° € ES(n,d) = F°L® € EI(n, d+2)

and

F%2 ¢ EP(n,d) =~ £°12 ¢ EP(n, d+2) .

We shall now exhibit a form in EI(3,12) which is not extremal in
F(3,12). Fortunately a counterexamnle for (n,d) = (4,8) can be con-
structed by similar zrinciples. Thus it will be sufficient -0 devote

our main efforts to the case (n,d) = (3,12).

We start with *the ternary sextic

5
S{x,y,2) = x4y2 e vta? a8 - 3x2y222

in [CL]. This form has seven zeros: (1,0,0), (0,1,0), (0,0,1), (1,1,1),
{(-1,1,%), (1,-1,1) and (1,1,-1). We shall look at an auxiliarvy form

T(X,y.,2) = (xzy + yzz - zzx - xXvz)

waich is chosen in such a way that it vanisnes on all zeros of S,

2xcept (=-1,1,1}.
. . 2
cnecrem 6.2. let f(x,v,2) = Si{x,v,z) + T{xX,y,2). Then o := £° lies in

EZ(3,12) Lut not in EP(3,12).

The fact that p is not extremal in P(3,12) will be deduced from an
easy lemma (Lemma 1), and follows by the wav also from Theorem 5.1. i,
while the fact that p is extremal in £(3,12) will be deduced from a

difficult lemma (Lemma 2).

.
%
’ .
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Lemma 1. The forms Sz, ST, Tz are linearly independent over R.

0, where a,B,y € R. Evaluating at

proof. Suppose asz + BST + YT2
(=1,1,1) € 2(S)~1(T), we get ¥ = O. pividing by S, wWe get a$ + BT = Q,
so clearly a = 3 = 0.

Q.e.d.

S2 + 28T + Tz, this lemma clearly implies that o

Since p = fz
cannot be extremal in P(3,12). It remains to be shown that p is

extremal in I(3,12).

Lemma 2. Let f be as in the theorem. If fz = h? L hi in R{x,y,z]

then eacn ‘n.L is an R-linear combination of S and T.

-
“

Using this lemma we can show that p = £° is extremal in Z(3,12) as
collows. If €2 = h% + ... + h2, we write h, = a S + b T with a;,b; € R.
1 r i L i 17
Ther
5 N r r r
2252 v2sT = a?)s2 + 2{(L£a.,b,) ST = (b 2,
1 T 1t
so by Lemma 1,
r r r
fal =16l =fab, =1.
P S I B
C . . 2 2 2 2
This implies that a; = bi for 1 < i = r, soO hi =ay (S+T)" = a;o., as

desiréd.

Qur job is now to nrove Lemma 2. For this we need a third lemma

which is true for arbitrary golynomials instead of just ternary forms.

. Suppose £ € R[xT,...,xn] is positive semidefinite and

el * hi with polynomials h, € R[x1,...,xn]. Let a € R be a
£, ~hen a is aiso a zero of n, and cI every rparcial derivative
< 3 v n).

£/

a zero of evervy f/°x., 1 T ] % n.

Proof. Since £ is psd clearly a

;
is
Cempuetine the cartial der:ivatives of £, we hawve

£
o] fZ = 25 -.‘L, ,
IX . X
3 j
22 g e L, ki
= e = = - 4 2 — —— ,
dxjoxk :xj'xk 'xk
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80 these partial derivatives all vanish at a. (In fact even the third
order partial derivatives of f2 vanish at a. We do not need this {n the
following.) From QO = h1(a)2 + i+ hr(a)2 we have of course
h1(a) = ... = hr(a) = 0. Computing (az/axﬁ)(fz) from the expression

2
52 = hf + ...+ hr' we get

r 2%h, m, roon,
0= I I2h1(a)ﬁ—-(a) + 2(-3-2— (a))“l1 = 2 = 33(—(&) ’
=1 j j 1=1 9%y
3hy L
so 3;—(3) = 0 for all i,j.
Q.e.d.

We now enter the proof of Lemma 2. Thus £ = S + T, and a decompo-

sition fz = hf L hi With forms hi € R{x,y,z] of degree 6 is
given. Let h be any of the forms hi' The first step in the nroof is to
determine which are the sextic monomials which may occur in h. This
can be done by inspection - but it is easier to invoke the general
method of "cages", cf. [R]t)Denotinq the cage of a form g by C(g) we

have by the latter method

cth) %C(fz) = c(f),

and C(f) contains the lattice points (4,2,0), (0,4,2), (2,0,4),
(2,2,2), (3,2,Y), (3,1,2), (2,3,1), (2,1,3), (1,2,3), (1,3,2). If we
represent the points of C(£f) by their first two coordinates, we have
the following picture of a "projection" of C{f).

(4,2

=

(2,0) "x

(Actually all lattice points of C(f) occur as monomials in £.) Thus we

may express the sextic form h in the following way:

—_———
A more detailed account of this method will be given in [CLR].

*)




ict even the third
~ot need this in the
~f course

1+ the expression

and a decompo-
: degree 6 1is

.1 the nroof is to
:zur in 2. This

.z the ceneral

=~ g by C(g! we

-, (2,0,4),
, (1,3,2). If we

r=inates, we have

rals in £.) Thus we
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hi{x,y,2) = ax4y2 + by‘z2 + cxzz“ + dx2y222 + ex3yzz + gx3y22 +

+ 1x2y3z + szyz3 + kxy322 + lxyzzl.

By Lemma 3 the partial derivatives 3h/3x, 3h/Jy, dh/3z must vanish at
the points (1,1,1), (1,1,-1) and (1,-1,1) of 2(f). This leads to the
following system of nine linear homogeneous equations in the ten
"unknowns" a,b,...,k,1l.

(1)  4a  +2c+2d+3e+3g+2i+29+ k+ 1=0 (f% at (1,1,1))
(2) 4a +2c+2d-3e+3g-2i=23+ k= 1=0 (.....(1,1,=-1))
(3) 4a  +2c+2d+3e-3g-2i=23j= k+ 1=0 (.....(1,=1,1))

(4)  2avdb  +2d+2e+ grli+ J+3k+21=0 (F at (1,1,1))

Y
ﬁ (5) 2a+4b  +2d-2e+ g-3i~ j+3k-21=0 (..... (1,1,-1))
(6) 2a+4b  +2d+2e- g-3i- j-3k+21=0 (..... (1,-1,1))
(7) 2b+dc+2d+ e+2g+ i+3j+2k+31=0 ({% at (1,1,1))
(8) 2b+4c+2d~ e+2g~ i-33+#2k=31=0 (.....(1,1,=1))
L (9) 2b+4c+2d+ e-2g- i-3j=2k+31=0 (.....(1,=1,1))

By explicit computation we shall show that this linear system of
equations has a solution space of dimension 2 (with a basis correspond-
ing, of, course, to S and T). We proceed as follows:

(1') = ill%izl: 3e + 21 + 23+ 1 =0
(2') = ill%ill: 3g + 2i + 23+ k=0
(3') = ill%iZl: 4a + 2c + 2d + 3g + k =0
(4') = Lil%iil, 2e + 3i + 3+ 21 =0
< (5" = iil%iél: g+ 3L+ j+3=0
(6') = iil%iél: 2a + 4b + 2d + o + 3k =0
(7') = LZi%iﬁl: e+ 1 + 3+ 31 =0
@) = {281 294 1+ 33+ 2k =0 '
(9') = lll%lﬁl, 2b + 4c + 2d + 29 + 2k =0
L
Note that (1')+(4;)+(7') gives (1") e + i + 3j +1 =0
(2')+(5é)*(8') gives (2"} g+ 1 + 3 +k =0



From (1%), (4') and (7'), we get i =3 = -e = -1.
From (2"), (5') and (8'), we get i = j = =g = =k.

Eliminating g from (3'), (6') and (9') and dividing by 2, we get

(3") 2a + c +d+ 2k =0,
(6") a + 2b +d + 2k =0,
(9™) b+ 2c+d + 2k =0,
s hick leads easily to a = o =c and 4 = -3a - 2k. Thus, a and k are

the free paransters,and tne solution space to -our linear system ct
equat:ons has dimension 2. Since § and T do ¢ive rise to independent
soluzions in the solution space, we can conclude that h = aS + 8T

{x,3 € R}. More explicitely, the general solution to the linear systen

is given oy

(a,b,c,d,e,g,i,3.,k,1) = (a,a,a,~3a-2k,k,k,-k,-k,k,k)
a(1l1l1'_3lol“'lo) + k(ololol-zl1l1l-1I-1I1I1)

"

(a+§-) (1,1,1,=3,0,...,0) -%(1,1,1,1,-2,-2,2,2,-2,-2)

So we are finished by noting that (1,%,1,-3,0,...,0) corresponds to §

ans (°,1,%,i,-2,-2,2,2,-2,-2) corresponds to T. We nov have proved
Lemma 2 and Tr2rem 6.2.
Tra counterexamnpie needed tO show tnat EI!4,8) is not contained in
EP 4,3 1s entirely analogous. We use p := (Q+U)2 wnere
4 2.2 2_2 2
Qlw, %, v,z = W + x°y° + yiz" + 22x% - axyzw,
2 2
e -
Ciw,R,ve2) =W F oxy - yz - ozX)T.
.

The €orm Q nas seven zeros: (0,1,0,0), {0,0,1,0), (0,0,0,1), (1,1,1,1),
(1,1,-1,-1;, (1,-1,1,-1), (1,-1,=-1,1), all of which are zeros of U
excepz the last one. By a cage consideration similar to the one used

pefor: we can see that, if o = h% + ... hi, then any of the h, 's has

.
“ne form

Nlw,x,y,2; = as  + bu"v" + cyiaTes d2TnT - XYW

D
+ gw vy - iwTyz ¢ JwT2H
. -

[P N - <
+ kaTxy o+ lmTyz ¢ omezx,

witn eleven possible torms. By Lemma 3 the four first partial deriva-
$ £ B Takd copv oy N . 0 i ]
tives of nomase vanisihv on (1,31,11, Y, (y,1,-1,=-1) ard {(1,-1,1,-1).

This <
11s gives us 12 lincar homoucneous equations in the 11 unknowns

———— o

a,b,....1,m. A calcu
solution space has d
corresponding to Q a

There remains on

of ideas of this par

Question. For whict
that F° € EP(n,2d)?

Notice that by ’

"

question is for a



"qus, a and k are

‘inear system of

-1 ge to independent
v+ n o= as + 3T

+he linear systen

-, =R, Kk, k)

SRR IPER IR R

i, -2,-2,2,2,-2,-2)

corresoonds to S

~oWw nave creved
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wnere

- dXY2W,
0,0, 0, SRR R R S
ire zercs oI U

“irst partial deriva-
and {1,-1,1,=-1).

'Y iarnnowns
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a,b,...,l,m. A calculation similar to the one we did shows that the
solution space has dimension 2, hence is spanned by the 11-tuples
corresponding to Q and U.

There remains one problem open which fits naturally into the circle
of ideas of this paper:

Question. For which (n,d) does there exist a form F € EP(n,d) such
that F% € EP(n,2d)?

Notice that by Theorem 5.2 the form F2 lies in EZ(n,2d). Thus the

question is for a "stronger" counterexample to the inclusion EL < EP.

i
i t
i
!
P
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