Math. Z. 171, 1 - 26 (1980) gmnzm.-smnmm.n:m
Zeitschrift

& by Springer-Verlag 1980

Real Zeros of Positive Semidefinite Forms. I

Man-Duen Choi,"* Tsit-Yuen Lam2** and Bruce Reznick ¥ ***

' Department of Mathematics, University of Toronto, Toronto M5S 1A 1, Canada
%3 Department of Mathematics, University of California. Berkeley, California 94720, US.A.

1. Introduction

A real polynomial peR[x,,....,x,] is called positive semidefinite (psd) if
pla,....,a,)=0 for all real a; (we write p=0 for short). A form (homogeneous
polynomial) in n variables of degree m is called an n-ary m-ic. This work (and its
sequel) will be occupied with the study of psd n-ary m-ics, and the properties of
their real zeros. Note that if an m-ic p+0 is psd, then degp=m must be even.
Throughout this paper, the cone of all psd n-ary m-ics will be denoted by P ..
An important subcone is Z, ., the set of all n-ary m-ics which are sums of

n . . .
squares of real polynomials A:mnmmmm:_w n-ary %J_an. The set theoretic differ-

m:nnm_.sl.m...si:_vnao:oﬁoagm:.s.ﬁowéa55& cases, one usually
assumes n,mz=2))

In [13], Hilbert showed that 4, =2 if and only if n=2, or m=2, or (n,m)
=(3,4). Artin, in solving Hilbert’s 17th Problem (see [1]), showed that if peP,
then there is an n-ary d-ic h such that h*pex, . ., Several recent papers [ 20, 4,
5. 19] have dealt with various aspects of 4,

For any n-ary m-ic p, the zero set of p:
3p):={(ay,....a)eR" pla,.....a)=0}

may be viewed as a subset in real projective space. (In particular, we regard
(0,...,0)¢ 3(p) for purposes of counting I13(p).) In this paper, we shall be
interested in psd forms p for which |3(p) is infinite, or, say, relatively large.
Recall that the “basic” cases for 4, . *2 are given by (n,m)=(3,6) (ternary
sextics) and (n,m)=(4,4) (quaternary quartics). All known examples {20, 3, 4] of
forms p in 4, , and 4, , happen to have | 3(p)|< xc. A main result of this paper
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states that this is the case for all forms p in d; ¢ and 4, ,. In fact, our result can
be stated more quantitatively, as follows:

Main Theorem. (A) If PePR o und | 3(p)| > 10, then peX, .. In fact, p is a sum of
three squares of cubics.
(B) If peP, , and |3(p)|> 11, then PEX, 4. In fuct, p is a sum of six squares of
quadratics.

In both cases, we must have |3(p)] = co.

The results (A), (B) above are peculiar to ternary sextics and quaternary
quartics. In fact, beyond these two cases, it is easy to see that, if 4, | + &, then
forms with infinitely many zeros abound in 4,

The proof of (A) above is relatively easy, using the classical theory of plane
curves and Hilbert’s Theorem [13] for ternary quartics (cf. Sect. 3). The proof of
(B) is, however, much harder, and occupies thé entirety of Sects. 5-6.

In Sect. 4, we study the numbers B, .=sup|3(p) where p ranges over all
forms in P, with |3(p)l<co. It is shown that B, . is always finite; in fact
By <=4, By (=10 and for m26, m*/4<B, <(m—1)(m—2)/2. Asymptotically,
we show that 8= lim B, ./m? exists, with 5/18 < B=<1/2. For quartic forms, we

m-

show that B, , is either 10 or 11, but for n>5, we do not know if B, , need be
finite in general. The study of B, . and B, , appears to be related to Harnack’s
Theorem on real curves and Hilbert’s 16th Problem; see the discussion at the
end of Sect. 4.

One of the main ingredients of the proof of the Main Theorem is the
following important fact about biforms: If a psd biform p(y,z;x,,...,x,) is
quadratic in x,...,x,, then p is a sum of squares of biforms. This result has
appeared in the literature (see [18, 17, 21] or [10]), but, for the sake of
completeness, we offer a new proof in Sect. 7. (In fact, we shall prove a stronger,
inhomogeneous version.) Another reason for re-proving this result is that it
plays a very special role in the study of psd “multiforms™. In Sect. 8, we show
that the type of biforms described above constitutes essentially the only kind of
multi-forms for which “psd” is equivalent to being a sum of squares of
polynomials (see Theorem 8.4). This provides a further generalization of
Hilbert’s work [13].

Several of the results in this paper have been announced by two of the present authors in [5).
We would tike to thank Professors R.M. Robinson and R. Hartshorne for making several valuable
comments on the manuscript.

2. Preliminaries

We adopt a few notational conventions. When the number of variables is small,
we shall denote them by x, v,z w,...; otherwise, the vector x will abbreviate the

variables (x,,...,x,). The symbol y will often denote a specific n-tuple

(ris y)ER™ I we use (x, ¥,2,...) for the variables instead, then a specific tuple
will be denoted by (%, 7,3,...).
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The phrase “linear change™ will be short for “invertible (homogeneous)
linear change of variables™, If T is a linear change in (x,....,x,). then member-
shipin P, . X, or 4, . is unaffected by T. and | 3(po T) 1J3(pY; such a linear
change will often be used to put zeros of p at convenient places.

For tuples of natural numbers, define a partial ordering by (a,,...,a,)
2(by,....b) if a;zb, for all i, and write (@y,...,a)y>(b,,....b) if at
least one of these inequalities is strict. These notations will be used in (2.2), as
well as later in Section 8.

We now begin the analysis of |3(p)l. This is rather straightforward in a
situation where Bn=Z,. Wpeh  and p£0, then clearly | 3(p)l £4m since any
(real) linear factor must occur in p to an even multiplicity. If peP, ,, thenup to a
linear change, Ekvuxw+.:+3~. Hr=n 3(p)=w;if r=n—1,|3(p)=1; other-
wise | 3{p)| = co. Finally, if peP, ,, we shall show in (4.3) (1) that either 13PN =0
or else [3(p)| <4 (and 4 is the best bound).

Consider now the situation where F ,.#+Z, .. The “simplest” forms in 4,
in the basic cases (n,m)=(3,6) or (4,4) are given by

Sty ) =xty?+ytz? + 28 x2 ~3x2y222

21) QU yzow)=w+x2pt 222 4 7252 dxyzw;

see [4] for a quick proof that they are in 4. Using the well-known condition for
the arithmetic mean to equal the geometric mean, the zeros of § and Q can be
explicitly determined; in particular, (38N =13(@)=7. A large portion of this
paper will be devoted to proving that 3(p) is always finite for ped, , and
ped, 4. This contrasts with the following easy proposition:

Proposition 2.2. If (n,m)>(3,6) or (n,m)>(4,4), then there exists ped, . with
13(p)l = co.

Proof. Suppose (n,m)>(3,6). Then clearly PX(ho X )=X770S(x ), x5, x5)€4, 0.
If m=6, then n>3 so (LLLxy, .., x )e3(p) yields |3(p)l=0. If m>6, then
0,x,,....x)e3(p) yields |3(p)|=c0. Finally. if (n,m)>(4,4), use instead
P(xyy . x,)=x77*Q(x,,...,x,). QE.D.

Via the basic forms Q and S, the above constructions show, in particular,
that A, + & for (n,m)=(3,6) or (n,m)2(4,4). A similar procedure will be used
later in Theorem 3.9, as well as in Sect. 8 for investigating sums of squares
properties of multiforms.

We close this section by recording a few basic facts to be used in later
sections (sometimes implicitly). The first conclusion of the proposition below has
already been used in the proof of (2.2):

Proposition 2.3. Let p be an n-ary polynomial and A% 0 be an n-ary linear form. If
3(DES 3(p), then A|p. If. moreover, p is psd, then A2p.
(Vertical line indicates divisibility in R [x,, s x,)

Proof. We may assume, after a linear change, that A=x,. Write plxy, ..., x,)
m

=Y hilxy,...,x,)x\, then 0=p(0, x,. Xy =hy(x,,..0x,) 50 x,[p. If p=0, then
i=0
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ﬂoﬂ fixed x,,....%,. p(x,,%,,...,X.) is psd in x, so we must have h,(X,,...,X,)=0,
Le. h, =0so0 i*lp. Q.E.D.

Remark 2.4. The Proposition remains valid if we replace 1 by any irreducible
indefinite form; for a proof, see [7].

Proposition 2.5. Let f be an n-ary form withn=3. If |3(f)| <, thenoneof +f
is psd. (In other words, any indefinite n-ary form must have infinitely many real
zeros).

Proof. To prove the contrapositive form, assume f is negative on an open set A
and positive on an open set B. After shrinking 4 and B, we may assume that 4,
B are disjoint from the hyperplane x, =0. Thus, there exist (non-empty) open
sets Ay, B, in R"~! such that f(1, 4,) <0< f(1, B,). For any a,eA, and b,€B,,
we can find, by the Intermediate Value Theorem, a vector c¢,€R"~ ! such that
f{1,¢0)=0. This enables us to construct uncountably many points (1, c,)e 3(f) (if
nz3). Q.ED.

.

For a polynomial
PO X X) =X f (X X))+ 2xg(x X Hh(x LX)

E.EOT is quadratic in x, the expression D= h—g?eR[x,,...,x,] is called the
discriminant of p with respect to x. Viewing p as a polynomial in x, it is easy to
see that p=0iff /20 and DZ0.

Lemma 2.6. Pmﬁv vw as above and A(x,,....,x )eR[x,,...,x,]. Let p'(x,....X,,X)
=p(X(, s X X'+ A(xy, ..., x,)). Then the discriminant of p’ w.r.t. x' is the same as
the discriminant of p w.r.t. x.

wxow\.. By definition, p'=(X+A) 2 f+2(x' +Ag+h=x"2f+2(g+ A )x' +h+2)g
+A2f Thus, p’ has discriminant f(h+2ig+A2f)—(g+Af)> =fh—g>. QE.D.
Lemma 2.7. Let p be as above. If p is a sum of squares of polynomials, then so is
the discriminant D= fh—g?.

A,;a. converse is false; for example, the discriminant of the form @ in (2.1)
w.r.t. x is easily checked to be in Z, ¢, but Q¢Z%, ,)

Proof. Say p=Y (u;x +v))? where u,,v;eR[x,,....x,]. Then f=3 u}, h=) v} and

g=) uv;, s0
D= u o) = (L ue)
=) {ur;—up)’. QED.

i< j
The last lemma is, in fact, a special case of a much more general result: Let
A be any commutative ring with a formally real quotient field, and p(y,....,y)
H.M.::,.: y; be a quadratic form over A, with a;;=a;eA. If p is a sum of squares in

ij

A C;.. ...y ]. then det(a,) is a sum of squares in A. (Lemma 2.7 is the special case
of this for r=2 and A =R [x,,...,x,]) The proof of this will be left to the reader.
who may want to get a hint from the book of Hardy, Littlewood and Polya [16,

p. 16].
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3. Ternary Forms

In order to treat ternary sextics, we shall first derive some key results about
ternary forms in general. Each ternary form, when set equal to zero, defines a
curve in the complex projective plane, so the classical theory of plane algebraic
curves can be used to get insight into the structure of the form itself. This
algebro-geometric viewpoint will be important for the formulation of the results
in this section.

We start with an easy lemma which is a special case of [8}. We record a
proof here for the sake of completeness.

Lemma 3.1. Let p(x,,....x,) be an irreducible polynomial in R(x,,....x,]. Then p
becomes reducible in €[x,,....x,] iff one of Lp is a sum of two squares in
R[x,,.... %]}

Proof. The “if” part is obvious, For the converse, assume p factors nontrivially
into p=(r, +ir))(s,+is)) (i=) -1 ry.rp.s..5,€R[x,.....x,]). Since p is real,
taking complex conjugate yields p=(r, —ir,)(s, —is,) s0 pr=(r+ri)(s?+sd). By
the Unique Factorization Theorem, we have p=a(r?+r3) for some aelR. Since
one of +ais a square in R, the desired conclusion follows. Q.E.D.

Proposition 3.2. Suppose peP, ,, is irreducible in R[x,y.z]. Then

2 (m—1)m~2
(3 max (7, "D,

Proof. First, assume that p becomes reducible in €[x,y,z]}. Then, by the above
lemma, +p=r3+r2 for suitable ri,r,eR[x. y.2], which are necessarily forms of
degree m/2. We now have 3(p)=3(r,)n 3(ry) (recalling that * 3~ denotes real
zeros only). Since p is irreducible, r, r, must be relatively prime, so the plane
curves r, =0, r,=0 cannot have any common component. According to

. . mm
Bezout's Theorem [23, p. 591, these two curves can intersect in at most 35

points in the complex projective plane. In particular, 13(p) =13(r ) 30
<m?/4.

For the remaining case, we assume that p remains irreducible in €(x,y,z],
so p defines an irreducible plane algebraic curve, say C. Since p is psd, each real
zero (%, 7,Z)e3(p) must also be a zero of ép/ix, ép/dy and 0p/dz, so (%,3.2) is a
singular point on C. By classical curve theory, the irreducible curve C has at
most (m—1)(m—2)/2 singular points [23, p. 65), so |3(pS(m—1)(m-2)/2.
Q.E.D.

An interesting corollary can be drawn from the above arguments in the case
m=4:

Corollary 3.3. If an irreducible psd ternary quartic p has |3(p){ =4, then p is a sum
of two squares in R[x,y,z].

(Recall that Hilbert [13] has shown that any q&P, is a sum of three squares
in R[x,y,z])
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Proof. The form p cannot remain irreducible in € [x, y, z], for an irreducible plane
quartic curve can have at most three singular points. Thus, p is reducible in
Cx,y.z] and we can invoke Lemma 3.t. Q.E.D.

ﬂo—, oo:<n:mn=nn let  us write, in the following, x(m)
P (m=1)(m=2) . . "
=max T IN'IV We shall be interested in a«(m) only for positive

integers m. As is easily verified, x(m)=m%/4 when m<S5, and a(m)=(m—1)-
(m—2)/2 when m=6. By a straightforward computation, one checks that the
function m.maﬁv is monotonically increasing. From this, we can deduce the

“superadditive™ property of the function x:

(34) a{m )+ x(my) S a(m, +m,)
The argument is standard: we have x(m,) ME fori=1,2, so
m; m,+m,
m, m, )

a(m)+a(m,) < Alll!.* V.RAE_.TSNVHRAE_.*.ENV.

m,+m, m,+m,
We are now in a position to prove the following result for psd ternary forms:

Theorem 3.5. For any peP, ,,, the following are equivalent:

(1) 13 (P> x(m).
(2) 13 =c0
(3) p is divisible by the square of some indefinite form.

Proof. (2) = (1) is trivial, and (3) = (2) follows from (2.5). Thus, it suffices to
show that (1) = (3). We shall do this by induction on m. For m=2, a{m)=1; the
form p in question is a psd ternary quadratic with at least two zeros. Up to a
linear change, p(x, y, z)=x?, as asserted in (3).

In general, suppose |3(p)|>«(m). Then by Proposition 3.2, p is reducible in
R[x,y.z], say p=q,q,...q, (r22) where each g,eR[x, y,z] is irreducible. First,
assume that all q; are semidefinite. Adjusting them by + 1 if necessary, we may
assume they are all psd. There must exist an index i such that {3(q,)|>x(m,),
where m;:=deggq,. For otherwise, by (3.4), we would get

I3EIST I3 Y 2m) S (Y m) =a(m

a contradiction. Say |3(q,)|>a(m,); since m, <m, we are done by invoking the
inductive hypothesis for g, .

We may now assume that one of the q.s is indefinite; in particular, by (2.5),
[3(p)] = 0. If we assume the truth of Remark 2.4, then the desired conclusion (3)
follows. Since we have not proved (2.4), however, we shall present an alternative
argument to get (3). Assuming that p(x, y, z) involves x, consider the plane curves
defined by p=0 and ép/0x=0. The intersection of these curves contains the
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infinite set 3(p), so they must have a common component [23, p. 59]. Thus, p
and Jp/dx have an irreducible real common factor, say h. Write p=h-g; we have
Op/dx="h-0g/cx +g-Chfox, so h divides g-Ch/Cx. There are the following two
cases:

Case 1. 0h/ox=0. Then h=h(y,z). If h(y,z) has a zero, then p is divisible by
some ay+bz+0 and hence by (ay+bz)’ according to (2.3). Now assume
h(y,z) has no zeros; upon a sign change, we may assume h is psd, so g is also
psd. As a ternary form, h(y,z) has a unique zero (1,0,0), so |3(p)l=co implies
13(g)l = o0, and we are done by induction.

Case 2. 0h/Ox+0. Since h was chosen to be irreducible, we have hig-dh/dx =
h|g, so we may write p=h?q. If h is indefinite we are done, so assume h is (say
positive) semidefinite. By (3.2), we have |3(h)} <o so we must have |3(q)l=
Since q is also psd, the induction proceeds. Q.E.D.

The above factorization theorem is, of course, peculiar to ternary forms. For
four variables or more, simply note that x?y? +z2w? is irreducible, but vanishes
on all (x,0,2,0,...).

The corollary below suggests that the study of psd ternary forms can be
reduced, in some sense, to the case where the ternary form has only finitely many
real zeros.

Corollary 3.6. For any ternary form p, the following are equivalent :

(1) p is semi-definite (i.e. one of +p is psd);

(2) p has a factorization p=h*q where |3(q)l<x and h is a product of
indefinite forms. (This product may be empty, in which case we agree that h=1.)

Proof. (2) = (1) follows from (2.5). For (1) = (2), we assume p is psd and again
induct on deg p. If |3(p)l < o0, we are done by choosing h=1. If | 3(p)| = oc, the
theorem yields a factorization p=#?y where h is indefinite. Now apply the
inductive hypothesis to q. Q.E.D.

We can now prove our Main Theorem for ternary sextics:

Theorem 3.7. If peP, , and |3(p)> 10, then | :E_Igo and p is a sum of three
squares of cubics.

Proof. Since «(6)=10, the first conclusion follows from (3.5). From the same
result, we have a factorization p=h*gq(degh=1). If degh=2, then degg <2, and
so q is a sum of three squares of forms of degree <. If degh=1, we have
q€p; 4, and, according to Hilbert [13], q is a sum of three squares of
quadratics. Q.E.D.

To show an application of Theorem 3.7, let us consider the ».o:oi_:m
question for n-ary m-ic forms:

Question 3.8. Suppose vmw m and there exists an n-ary — R. h such that p<h?.
Does it follow that peZ, .

Theorem 3.9. The answer 10 (3.8) is YES iff n=2 or m=2, or (n,m)=(3.4) or (n, m)
=(3,6).
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Proof. For the “if” part, we need only consider the case (n,m)=(3,6). From
0<p<h? we have 3(h) = 3(p). The cubic h is clearly indefinite, so 1313
= by (2.5). From (3.7), it follows that peEX, (-

For the “only if” part, assume first that n,mz4. Take the form Q defined in
(2.1), and let N=maxQ(x,....,x,) on the sphere xt+...+x}=1. By homo-
geneity, we have Q SN(x? +... +x2)2 so

Z_2
TR0 %0, X3 X )S[YN X7 (x2+x2 4 x4 x9))2.

But x774Q(x,, . X4)¢Z, .. Thus, (3.8) has a negative answer for n, mz4. Now
assume n=3, but m>8. Using the form S in (2.1} and repeating the above
argument, we have S(x,y, 2) S N'(x? + y2 +z%)* for some N’'>0. Thus,

X" 788(x, y,2) SX™8 (x2 4 32 +23)8(x,y,2)
SOV (x4 2 42927,
but x""°S(x.y,2)¢Z, . Q.E.D.

Remark 3.10. Although it is unimportant for the above proof, the maxima N, N’
of Q and S on the respective unit spheres can be explicitly determined. The
answers are: N =1, and N'=4/27. In fact, it is not difficult to check directly that

(X+y +22+w?)? = Q(x, y, 2. w)ez, ..
and
x4yt +22)=278(x, y, DEX, 6.

while 0(0,0,0, 1)=1, 5(0,)/2/)/3, 1//3)=4/27.

4. The numbers B, , and B, _

We define B, ,, (resp. B, ) by sup|3(p)l where p ranges over all forms in P .
(resp.in X ) with [ 3(p){ < o0. The determination of these numbers seems to be a
rather awesome task. In this section, we shall present some partial results.

To begin with, one has B, = 2m=m/2 and B, ;=B ,=1, as we have
already noted in Sect. 2. For general m, n, however, we do not know if B, . need
be always finite. The following lower bound shows, in any case, that
B, .2B, , - if either n — o0 or m— co.

am="n

nm=—= N

Proof. Let m=2r and consider the following n-ary m-ic:

n—-1
Proposition 4.1. B’ vva :

n-1 r

p= M : AH_. Il.\.k‘.vaM..:.i.

i=1 j=ol

m

n—1
Clearly, 3()={(y. .. ¥a_ . D: pi€{l,....r}}, s0 &;w&@:ni - QED.
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We can also make the following simple observations about the relationship
between the various numbers B, , (resp. B, ,):

Proposition 4.2. (1) B, ,, , .ZB, ,. B
ANV w:.::;.:-u Wwa.i.n*lw:.:.w.

(3) For any natural number k. B, . . 2k""'B, .
These three inequalities also hold if B is replaced everywhere by B'.

nz.m*

Proof. 1t will suffice to prove the inequalities for the B-numbers. (The arguments
below carry over verbatim for the B'-numbers.) Also, in the following, we shall
assume that B, .. B, . and B, ,, are all finite, the argument for the infinite cases
will be completely similar. ,

(1) Take peR, ,, with | 3(p)| = B,_,.. Write p,=p,(x,, aXg)and py=pyx, ...,
Xuy4n,-1)- After a linear change (one for p, and one for p,), we may assume
that (%,,...,%, )e3(p,) = X, #0, and that (%,.....%, ,,, . )ed(p,) = %, *0.
Then 3(p, +p,) consists of all (%,,...,1, Xy 4 ay 1) Where (X, ..., De3(p,) and
(1,....%, .y VE3(P,)- This yields |3(p, +p,) =13(p,)}- (3Pl =B,, B, n With
Pr+DEE i

(2) Take pel, . with |3(p)| =8B, .. Replacing p,(x) by p,(Tx) (for a suitable
linear change T), we may assume that 3(p,)n3(p,)=2. Then 3, p2)
”wg_vClwAﬁNv _aﬁ__nm _wAV—.@N: “W:.i. + W?in.

(3) The estimate in (2) yields only B, ,.>kB, ., so we need a different
argument to get the better lower bound k"~ !B, . For a fixed pe P, ,, with [3(p)|
=B, ,., we may assume, as in (1) above, that (%,, ..., ¥,)e 3(p) = %,+0. By scaling
the variables, we may further assume that 3(p)={(a{,...,a ,,1): 1Si<B, .}
where all of”| < 1. Let T,(t) be the k' Chebyshev polynomial (deg T, =k), defined
for —1=t=1 by T(t)=cos(k-arccost) and extended for all r. For —1<u<l,
the equation T,(t)=u has exactly k distinct solutions (see, e.g. [2, Sect. 15.15]).

t . .
We homogenize T, (¢) by taking T,(t,u) =t*T, A~v a binary k-ic. Now define
1

Pleys o x ) =p(Tux 1. X, - o Til(X, L 1, X, XDER, .

Clearly, (%, ..., %,)e 3(p) implies %+ 0, so x,+0 and we may assume that x,=1
For each i (1£i<B, ) and each j(l £j<n—1) there are exactly k values of x
such that T,(x;, 1)=a{". Accordingly, |3(p)|=k"""'8, ... Q.E.D.

We shall now study the number of zeros of psd ternary forms. The results
above, together with the results in the last section, lead to the following facts
about B, ,:

Theorem 4.3. (1) B, ,=4, (2) B, ,=10.
(3) For m26, m*/4<B,  <S(m—1)(m—2)2.
(4a) B, ¢, 210k% (4b) By oy, ,210k*+1 and  (4c) By ek, s 2 10k* +4.

(5) Let f(m)=B, , /m®. Then B= lim fi(m) exists. Moreover, Bmy< B for all
m, and 5/18<B<1/2. m-we

J
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Proof. For any m, (4.1) gives B, 2z B ,2m?/4 and (3.5 gives B, ,<a(m)
=max(m?/4, (m—1)(m—2)/2). For m=4, this proves (1). For m=6, the maxi-
mum is given by (m—1)(m—2)/2, so we have (3). For m=6, the bounds in (3)

give 9< B, (<10, but it is known that Robinson’s psd sextic
(44) R(x,y,2)=x%+y°+z0 —x*(p2 +zY) — y* (22 +x) =z (x2 + y?) + 3x2y?2?

has |3(R)|=10 (see [20, 4]). Thus, B; (=10. From (4.2)(3). we have then
B, o 2k*B, (=10k?, and (4b), (4¢) follow similarly from (4.2)(2), (4.2)(3). and
By ,=1, By ,=4. It can be readily checked that (4a), (4b). (4c) give better
lower bounds than (3) in case (a) for all k, (b) for all k=26 and (c) for all
k=12

Finally, to study the asymptotic behavior of B, ,, we look at f(m):=B, ,/m?
(£1/2 by (1) and (3)). For k,520, we have, by (4.2):

B B
» — . km+s > 3.km
“ Blem 4 ) = S kem o)
x -
S k*m? mu.alA km
“T(km+35)?2 m*  \km+s

VNEé.

Let unﬂm?_v and f'= lim B({m). Consider any positive ¢ < /2, and fix an m,

such that B(mg)= p—¢. Pick a large integer k, such that A|v W\w|m
—¢

rl for all

kzk,. For any mzkomg, let m=kmgy+s where 0Ss<mgy—1. Then k2 k, so by
k 2
(*) above, mﬁszA]ﬁwtlv Bimy)=p—2¢e. This shows that f'=f8-—-2¢ (for
kmy+myg

every £>0) and so f'=f. From (%), we also have (km}= B(m). so f(m)<p for all
m. Finally, from B(6k)= 10k2/(6k)*, we get f=5/18. Q.E.D.

While the above analysis does not pinpoint the exact values of B, ., a
complete determination of the numbers B; , is possible. The answer is simply:

.

y.m=m?*/4 for all (even) m. Note that we already have B, ,, =2 m?%/4 from (4.1), so

we shall only need the reversed inequality. This will be shown in (4.6), which
requires the following lemma.

Lemma 4.5. Let f,eR[x,,...,x,] (0Zi<1) be a set of t + 1 polynomials which have
no common factor (other than scalurs). If f %0, then there exists a,,....a R
such that there is no common factor between f, and a, f, + ... +a,f,.

Proof. Let fy=p,p,...p, be a factorization of f, into irreducible real poly-
nomials. Let

H={(b,,....b)eR": b f,+... +b,f, is divisible by p,}.

Each H;is alinear subspace in R, and H; SR’ for otherwise p, will divide f,.....
as well as f,. Since IR’ cannot be covered by a finite number of proper linear
subspaces, there exists a vector (a,....,a,) in R'—(H, u... UH,). Now a, f, +...
+a,f, is relatively prime to each p;, and therefore to f,. Q.E.D.
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Theorem 4.6. B, , =m*/4.

Proof. As we have observed already, it is sufficient to show that, if peX, . and
13(p) < oc, then | 3PN £r2, where r=m/2. This will be deduced below from the
Theorem of Bezout.

(A) Write the given p as fg +fl+...+f? where each f is a (non-zero)
ternary r-ic. We first assume that {foSir---n )} have no common factor. By the
lemma above, we can choose ¢,€R such that f, is relatively prime to g:=a, f,
+...+a.f,. By Bezout’s Theorem, 13fo)n 3(8) S (deg fy) (degg)=r®. But 3(p)
= QwSmuQ&D@@. s0 3Pl =r?, as desired.

iz

(B) For the remaining case, we assume that {f,.f,.....f,} have a greatest
common divisor f of positive degree k<r. Write f,=g,f, where degg,=r—k.
Setting p=g2+... +g2 we have p=pf> By the analysis in the last paragraph,
13(P)l < (r —k)*. On the other hand, 13N L13(p)| < 00, so by (2.5), f is semidef-
inite. Using now (3.5) (and its notation), | 3(f)| Sa(k). From p=pf2 we get

13@)SI3BI+HISUNS PP —2rk +k* +atk)
<ri—kP+afk)

since r=k>0. But certainly x(k)=max (k¥/4, (k—1)(k—2)/2)<k? so we get a
strict inequality |3(p)l<r®. Q.E.D.

Note. In case t =0, i.e. p=fZ we can skip the argument in (A) and use a small
subset of the arguments in (B). Here, f=f, and so 13N =13NLx{ry<r.

Corollary 4.7. (1) If peP, ,, and | 3(p)} >m?/4, then either p is not a sum of squares
of forms, or p is divisible by the square of some indefinite form. (2) Any peX, ,,
with |3(p)i=m?/4 is a sum of two squares of m/2-ics. (For m=4, cf. (3.3).

Proof. (1) follows from the Theorem above and (3.5). The proof of (2) will be an
application of Max Noether’s *Fundamental Theorem™ for algebraic curves
(see, e.g. [11, p. 120] or [23, p. 120]). Let p be as in (2), say p=fE+.. .+ [ we
may assume that t22. As in the proof of (4.6), choose g=a,f, +... +a,f,
relatively prime to f,, so |3(fo)n 3(g)l Sm?/4. But the subset 333
already has cardinality m?/4, so

13N 3@ =m¥/4, and 3(fo)n3@)=3(P<I(f) (for all ).
By Noether's Theorem, each f; is a C-linear combination (hence also E..::nmn
combination) of f, and g Say f,=b.f,+c.g (b,. ceR, i20), so wH.M.cS..\o
+¢,g)*. The psd binary quadratic form M (bu+c;v)* can be Rilzﬂwlwm (au
by +(cutdu)?, so by substitution, p—(af, +bg) +(cfy+dg)’. QE.D.

Corollary 4.8. If a ternary sextic p has exactly 10 zeros, then one of *p is psd but
not a sum of squares of cubics.

Proof. This follows from (2.5), and the calculations B =9, B; (=10. Q.E.D.
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Recall Robinson's ternary sextic R in (4.4). In view of the last corollary, the
fact that [3(R)} =10 proved in [20]) already precludes R from being a sum of
squares of cubics. In [4, Th. 3.8]. two of the authors have shown that R is (up to
a scalar multiple) the only form in P, , vanishing at the 10-point set

3R)={(0, £ 1, 1.(LO £ 1), (£ L, LOW(1, L D.(=L 1),
(1, =L (LL =D}

It would be of interest to determine, if possible, all forms peP, , with exactly 10
zeros. From a combinatorial point of view, it would already be of interest to
determine (or classify) all configurations of 10-point sets S <IP? for which there
exist pe P,  such that $= 3(p). Once one solves the combinatorial problem, one
can consider, for each legitimate configuration S, the cone of all peP, ¢ vanish-
ing on S, and then study the extremal rays of this cone in attempt to classify the
forms p with 3{p)=S. We suspect (on the basis of [4, Th. 3.8]) that these cones
are always of very small dimension, and that their extremal rays are few in
number, We should not fail to observe, however, that the only 10-point
configuration known to be possible so faris the one in (4.9)!

What can be said about B, , and B, , for m=4, i.e. for quartics? If a quartic
p has a zero, we may assume that this zero is at (1,0,0,...) after a linear change.
Then x} does not appear in p, and, if p happens to be psd, p will be at most
quadratic in x,. The following convenient lemma will be used repeatedly to
“control™ the zeros of p in terms of the zeros of its discriminant {w.r.t. x,):

(49)

Lemma 4.10. Let p(x,,...,x,, x)=x>f+2xg+h=0, where f.g.h are (real) poly-

nomials in x,,...,x,. Let D=fh—g?*>0 be its discriminant wrt. x. If
p(X,....,%,, %) =0, then D(%,....,%,)=0. If D(X,,...,X,)=0 and f(X,,....X,)*0,
then there is a unique X such that p(%,,....%,X)=0. If D(x,....,%x,)=0

=f(%,,.... %), then g(%,,...,X,)=0, 50 p(X,, ...,
all x or for no x.

X, X)=h(X,,...,%,) =0 either for

Proof. This is clear from the “completion of square” identity:
(4.11) fp=(xf+g)*+D.

Corollary 4.12. Assume that p above is a form, and thar |3(p)l<. Let
(%,,.-,X,) 0. Then there exists X with (%,,%,,...,X,. X)€3(p) iff (x%,,....%,)€3(D)
and f(%,,...,X,)>0.

If the p above is a quaternary quartic, then the discriminant D will be a ternary
sextic, for which we can use the results B, (=10, B} (=9. This idea leads us to
the following estimates on B, , and B ,:

Proposition 4.13. 8<B, ,<10<B, ;1L

4.4 =

Proof. Consider peP, , with 0<|3(p)l < 0. After "putting” one zero at (1,0,0.0),
we can write p as x> f+2xg+h where f, g h are forms in {y,z,w} with degrees,
respectively, 2,3 and 4. Let D=fh—g?eP, . If [=0, (410) gives J(p)
={(1,0,0,0)}, so we may assume f£0. If rank f22 (as a quadratic form), then f
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has at most one zero so | J(D)} <. From this, we get [J(pisS1+13DNsS
1+ B, ¢=11. For the final case, assume rank f =1, so after a linear change, f=y
We can write g=yg,, and D=y*h, where h,:=h—gieP, ,. Moreover, p=(xy
+g,)*+h,. Consider any zero (X,.2. w)e 3(p) distinet from (1,0,0,0). By (4.12),
we have §+0; also, h,(},2, wy=0. If {3l <oo, then 13N L+13is
1+ B, =3, so assume {3(h,)l=o0. Only finitely many zeros of h, have y-
coordinate #0, so h,(0,z,w) has infinitely many zeros. This says that

2=

h,(0,z,w)=0, so h; =y?h,. For (X,7,%,W) above, we have h,(5 3 w)=0. 1I
|3(h,) < oo, then, as above, 13 L+ By ,=2.10|3(,) =0, then again h, =¢y?,
so h, =ty*. In this case, clearly |3(p)l =1. We have thus shown that B, <11
If. in the above argument, pe X, 4, then (2.7) gives DEX, . so using B =9
instead of B =10, the same arguments yield B, ,S1+B) ,=10. Fora lower
bound, (4.1) gives W&LWNunm. The lower bound on B, , depends on our
forthcoming work [6] on psd symmetric quartics. In this work, it is shown that,
for any B between 1 and 2. the symmetric quartic Zx?y*+pZx’yz +(4p2—-4p
—2)xyzw is psd, and has exactly ren zeros. Therefore, B, ,z210. QED.

Our results on ternary forms and quaternary quartics presented above seem
to have certain connections with Harnack’s Theorem on real curves, and
Hilbert's 16th Problem for algebraic curves and surfaces [15]. According to
Harnack’s Theorem (see. e.g. [22, p. 337]). a complete non-singular plane curve
C of degree m has at most g + 1 real components (or “ovals”) where g=(m—1)
(m—2)/2 is the genus of C. This theorem does not apply directly to curves defined
by psd ternary forms p since these curves may have singularities. However, by
analogy, the zero points in 3(p) may be viewed as “degenerate” ovals. For m=26,
Harnack’s Theorem predicts a maximum of 11 ovals, but for peP, , with finitely
many zeros, we have the better bound |3(p) £ 10. Heuristically, this may be
reconciled by the fact that the 11 ovals of a sextic plane curve cannot lie
externaily to one another - a theorem of Hilbert [14]. In generalization to
Hilbert’s Theorem, Petrovskii has shown (see [22, p. 341], [12]) that a non-
singular plane curve of degree m=2r has at most 3r(r—1)/2+1 ovals not
containing each other. Assuming this result, it is possible to improve our upper
bound wu.aMmeAEN\P (m—1)(m—2)/2) 1o mu.sszgile\w*‘ 1. This implies
that the limit g=Ilim m_.s\zm studied in (4.3)(5) will fall within the closed
interval [5/18, 3/8] (instead of [5/18, 1/2]).

In general, the Hilbert 16th Problem of determining all possible con-
figurations of the maximal number of ovals of curves of arbitrary degree m
seems to have remained unsolved. There is also an analogous problem for the
configuration of the sheets of algebraic surfaces in 3-space. Recently, Petrovskii
and Oleinik have proved that a fourth order (nonsingular) surface which consists
entirely of ovals can contain at most ten ovals (see the Introduction to 2.
Assuming this, one can show that B, ,= 10. Also, by applying Bezout's Theo-
rem to quadric surfaces in projective 3-space, it seems possible to show that B 4
=8, though the details are too tedious to present here.

For further modern work concerning the number of components of real
algebraic varieties, see e.g. [9] and the references therein.
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5. Quaternary Quartics

This and the next section wilt be devoted to the study of psd quaternary quartics
p with a large number of zeros. By the latter, we shall mean |3(p)|> 11; since
B, ,s11 (see (4.13)), this has the same effect as |3(p)] = 0. Unlike the case of
ternary forms, the hypothesis | 3(p)) = x for peP, , will not imply the existence of
a square factor for p. Nevertheless, we can draw some interesting conclusions:

Theorem 5.1. If peP, , and |3(p)l= x, then peX, ,. Indeed, p is a sum of six
squares of quadratics.

The proof of this occupies two sections, and will involve several cases whose
analysis requires substantially different techniques. We start with a lemma:

Lemma 5.2. Suppose peP, , and (1,0.:...,0} is an accumulation point for 3(p)
(viewed projectively). Expand p as a polynomial in x,:

p{xy, - x) =) Tlxy, ... x,)xT
)

i=

where h; is a form of degree i. Then hy=h, =0, and h, is a psd quadratic form of
rank <n—1.

Proof. Since p(1,0,...,0)=h,(0, ...,0)=h,=0, x™ does not occur in p. Since pis
psd as a polynomial in x,, p(x.,¥%,,...,x,) has even degree, and has a non-
negative leading coefficient. Thus, h, =0 and h, is a psd quadratic form; by a
linear change, h, =x%+...+x?. Assume r=n; let

M, =Max {|h(x,, ..., x): x2+... +x2=1}.
Then, for x3+... +x2=¢?, we have

P(Lixg o X)=Y hlxy, ..., x,)
i=2

=¢? ? -y >\~..m_.|~v.
i

For a sufficiently small ¢4>0, we have therefore p(l,x,, ...,x,)>0 whenever
0<x3+...+x?<el. This says that (1,0,...,0) is (projectively) an isolated zero
for p, a contradiction. Q.E.D.

Remark.  Similarly, if hy=...=h,_ =0 and h,+0, then s is even, and
hy(x,. ..., x,) must have a nontrivial zero.

Consider the form p(x, y, z, w) in Theorem 5.1. View 3(p) as a set lying on the
unit sphere x*+y*+z2+w?=1. Since |3(p)| =0, the set 3(p) must have an
accumulation point. By a linear change, make this accumulation point (1, 0,0, 0).
By the lemma above, we can write p as

(5.3) plx,y,z,wy=f(y, z, wix2 +2g(y, z, w) x + h(p, z, w),
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where f is a psd quadratic form of rank 2. In the following, we shall write
D(y. z, w)= fh—g?; this discriminant is a psd ternary sextic.

Proposition 5.4. For p=/Sx*+2gx+heP, ,.if f(y,z,w)has rank <1, thenpisa
sum of four squares of quadratics.

Proof. If f=0, then clearly g =0 also so p(x,y,z,w)=h(y.z.w). By Hilbert [13],
this he P, , is a sum of three squares of quadratics. Now assume rank /=1, then
after a linear change, f(y,z,w)=y° From y*h=g? we can write g=yg(). 2, w)
so now D(y,z,w):=h—g*eP, ,. By Hilbert [13] again, D is a sum of three
squares of quadratics, s0 p=(xy +8)*+D is a sum of four squares of
quadratics. Q.E.D.

In (5.3), it thus remains to treat the case rank f=2. Henceforth, by a linear
change, assume that f(y,z,w)=y* +z*. The analysis now divides into the follow-
ing two subcases involving the discriminant D: Case 4. |3(D)| <. Case B.
|3(D)} = co. (Of course, 3(D) is understood to be in projective 2-space rather
than projective 3-space). Using a certain theorem which is “essentially™ known
in the literature (see (5.6) below). we shall first dispose of Case A:

Proposition 5.5. Suppose p=fx*+2gx+heP, ,, where f=y>+z2. If |J(p) =0
but {3(D)) < 00, then p is a sum of six squares of quadratics.

Proof. Recall that (%,7,%, w)e 3(p) implies (7,Z, w)e 3(D), and if (¥,z, w)e 3(D),
f(3,7)%0, then there is a unique X with (X, 7, Z, w)e 3(p) (see (4.10)). Since | 3(p)|
=00 and |3(D)| < co, there must be infinitely many (%, y. Z, w)e 3(p) with f(7,2)
=72 +4372=0. Hence p(x, 0,0, w) =0 ie. g(0,0, w)=h(0,0, w)=0, which means that
deg,g<2 and deg, h<3. But h20, so deg, h<2, and from (y?+z?)h—g*20,
we deduce further that deg, g <1. Thus, p is a quadratic polynomial in {x, w}
whose “coefficients™ are forms in {y, z}. We are done by the foilowing theorem:

Theorem 5.6. Suppose q(y,z;x;.....xX,)€F, ,, . is « .?:: necessarily homo-
geneous) quadratic polynomial in {x,...,x,} with “coefficients™ which are forms
in {y,z}. Then q is a sum of 2(n+1) squares in Ry, z;x,.....x,].

This can be easily deduced from results of [18, 17, 21, 10]. The derivation
will be given in Sect.7; in fact, we shall prove a slightly more general result,
(7.9), in which g need not be homogeneous.

We shall now begin the analysis of Case B, when the discriminant D= fh
—g2eP, ; has infinitely many zeros. By Theorem 3.5, D can be factored into k*g
for suitable k and q. The remaining arguments will be carried out in the
following three subcases: (B,) degk=1. (B,)degk=2, and (B;)degk =3.

We first deal with (B,), which depends on a result in [8] on sums of two
squares. For convenience, we shall state the result we need:

Theorem 5.7 [8]. Let r, s and p be polynomiuls in R [x,,...,x,]. If (r* +s) pisa
nonzero sum of two squares in R[x,....x,], then so is p.

This has the following remarkable consequence which certainly subsumes

our case (B;):

Theorem 58. Let p(x,,...,x,, x)=x>f+2xg+h where f.g,heR[x,,....x,. x]. If
D=fh—g? is a perfect square. und f is a nonzero sum of two squares in
R{x,,...,x,, x], then p is ulso a sum of two squares in R[x,,...,x,, x].
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Proof. Say D=k? and f=r?+s% where k. r, seR[x,....,x,,x]. As in (4.11), we
have

(59) S =0+ p=(xf+8>?+D=(xf+g)* +k*
so the desired conclusion follows from (5.7). Q.E.D.

We remark that the constructive methods of [8] will actually give an explicit
expression of p as a sum of two squares of polynomials, starting from the Eq.
(5.9).

Having disposed of Case (B,), we shall now proceed to Case (B,). For this
case, we need a crucial lemma:

Lemma 5.10. For g4(x,, ..., XJER[x, ..., x) (n=2), the Jollowing are equivalent:

(1) qlix,, x5, x5, ..., x,) is a perfect square in Tlx,, .., x,Ji=}) —1);
(2) There exist polynomials y and A in Rx,....x,] such that g= +A2+(x?
+x3)

Proof. (2) = (1) is obvious. For the converse, consider a polynomial g satisfying
(1). By first working modulo x?+ x2 and then lifting, we can write

G g, x)=(x2+xYa(x,, e X)X b(xX g, x ey, L x ).

Suppose q(ix,,x,,...,x)=(s+ir)? where $,teR[x,,....,x,]. Then ix,b+c=
(s+it=s?—1242ist,s0c =52 2 and x, b=2st. We have the following two (not
mutually exclusive) case:

Case (i) x,|t. Say t=x,u (ueR[x,, ..., x,]). Then b=2su and g=(x}+x%)a
+Nx_u,:+m~lxw=~HQT..«WVEI:J+A.«_=+$~.

Case (ii) x,|s. Say s=x,v (beR[x,,...,x.]). Then b=2tv and g={(x}+x3)a
+walc+chmIIHAxm+xWXQ+:NVI?.cICN. Q.ED.

Corollary 5.12. Suppose q(xy,...,x,) (n22) is a psd polynomial such that
qlixy,x,. ..., x,} is a perfect square in Clx,, ..., x,). Then there exist polynomials
poand £ in R[x,, .o, X,] such that QH»N+C&+XWVF If. moreover, q is a
quadratic form, then A may be chosen to be a linear form, and p is a non-negative
real number.

Proof. Keep the notations in the above proof. Suppose we are in Case (i1) so we
have ¢ = — A} +(x}+x2) .. Then 0<¢(0,0, X3 X)=—2,(0,0, x5, ..., x,)% im-
plies that 4(0, 0, X3,...,x,)=0. From (5.11), we see that X,le. But c=s2—¢? 50
X,ls = x,|r. Thus, we are back to Case (i) and have the desired equation gq=,2
+(x?+x3) . Now suppose q is a quadratic form. Then clearly A(0,...,0)=0. We
may assume A is a linear form and peR by replacing 4 by its linear part and Jr
by its constant part. Now take any X =(X,, ..., X,)€ 3(4) such that (x,. X;)%(0, 0).
Evaluation of ¢ at % clearly shows that n>0. Q.E.D.

We now prove the following theorem which is analogous to (5.8), and which.
in particular, settles the Case (B,):
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Theorem 5.13.  Let  p(x,,...,x,, X)=x> f+2xg+h :,.rmwm i \.., g. :mh." =
R[x,,...,x,, x]. Assume that f=x}+x} and that D:=fh—-g* fuctors into
k?q(k, ge A} where q is a psd quadratic form. d-w:_ p is a sum of (n) squares in A
where y(n)=n+2 if nis even, and y(n)=n+3 if nis odd.

Proof. We shall try to make a reduction to the situation in (5.8). From (x? +x3)h
—g?=k?q, we have

—glixy, Xgy oo, X0, X)) =k(ix,, X5, ..., X)? qlix; X5, .00, X).

Case 1. k(ixy,x5.....,x,, X)¥0. In this case, q(ix,,x,,....x,.x) is a perfect
square in €(x,,....x,, x), hence a perfect square in €[x,....,x,.x]. By the _.mmn
part of (5.12), we can write g = pu(x? + x3)+ A%, where i€ 4, and peR, =0 mw_sm
this expression for g, we have fh=g? +k*(uf+ 1%), ie. \Q.I:»JHWN +(k A). Set
p=x?f+2xg+h where h=h— uk®. For this new polynomial, the corresponding
D= fh—g? is a perfect square, (k2)%. By Theorem 5.8, j is a sum of two squares

in A. Since =0, it follows that num+:\m£~ is a sum of three squares in A.

Case 2. k(ixy, x,,...,x,,x)=0. This means that f=x2+x? divides k in A.
Writing k= fk,, we have fh=g?+f2k2q. Since f is :Ea:nwzm over Em. reals,
this implies that we can write g = fg, and hence also h= fh,, «<_45 a nn_m:oa hy
=go+kig. Now we have p=f(x2+2xg,+hy)=f[(x+g,)+kiq). Since
q(xy, ..., X,,x) is a psd quadratic form, it is a sum of n+1 squares of linear
forms. Using the two-square identity, we see that p is a sum of squares of n+2
polynomials if n is even, and n+3 polynomials if n is odd. Q.E.D.

Remark. In applications, the polynomials g and h will be free of x, 0 g
=q(x,, ..., x,) will require only n squares. Thus, p will require n+2 squares if n
is even (no change here), and n +1 squares if n is odd (better bound here).

Summing up the information implied by Theorems 5.8 and 5.13 for quater-
nary quartics, we have now proved:

Theorem 5.14. Let p=x’f+2xg+heP, , where g, heR[y, z.w] and f=y? +22.
If D=fh—g* factors into k*q where degk=2 or 3, then p is a sum of Jour
squares of quadratics.

6. The Final Case B,

The only case left to be considered now is when the quaternary quartic
pix, y, z, w) has the shape x* f + 2 xg + h(f =y? +z% g, he R [y, =, w]) with discrim-
inant D =(linear)? (quartic). This *Case B,” will be completely analysed in the
present section (see (6.5)). We start with an important special case.

Proposition 6.1. Let p(x,y,z,w)=x2f+2xg+h €P, , with f=y?+z% Suppose
that p(x,0,z, w)=(xz+w??. Then pis a sum of five squares in R[x, y, z, w].

Proof. D(0,z,w) can be computed as the discriminant of p(x,0,z, w) Aum. a
quadratic polynomial in x). Thus D(0, z, w)=z2w*—(zw3)? =0, s0 we can write



18
M.D. Choi et al.

Dy, z, w)=yp2q(y, z, w) (see (2.3)). Viewing p as a polynomial in y, write
(62)  p=(xz+w)?+ 2a5(x, 2, W)y +ay(x, z, w) yita,(x,z,w)y + ayy*.

Zomn.SIE if X2+W?=0, then p(%, y, 3, W) is divisible by y and hence by y? ie.
:.:..K.AN. W) =0. Thus, QQN.I\JO@AFL. From this, it is easy to see that a, is
divisible by xz + w?, say ay(x, z,w)=(xz +w?){(x, z, w).

‘ Tam V,:E\Smm p has a zero (%, 3,3, w) with y=1. Consider the linear change:
X=x—=Xy y=yp 2'=z-37y, W =w—w}). which clearly preserves the property
that p(x, 0, 2, w)=(xz+w?)? (This change does alter f(y,z), so we shall give up
the restriction f(y, z)=y?+z% in this paragraph.) After the linear change, we
have (0, 1, 0, 0)e3(p). Thus, ao=0and a,(x, z, w)=0 (since p is psd), so .

(6.3) plx, y, z, SH?N+%JN+N.£XN+€~v\+a~\<~
=[lxz+w?)+ /]2 +y¥a,—¢?).

As a vn_v\:oa:m_ in y, the discriminant (xz+w?)?(a,—¢% is psd. The ternary
quadratic form a,—¢2 is therefore psd. and so a sum of three squares. From
(6.3), p is a sum of four squares. . .

_.= the discriminant Dy, z, wh=y2q(y.z,w), assume that 3@=2. Let A
=minq(y, 2, w)/y*(y* +2%) on the unit sphere y?+z24+w?=1, and let p=p
—4y* This is psd, since it has discriminant

D'=D~ay*y*+ 29 =y*(g-ay*(y? + 22) >0,

. ZoSo<.2. q: HQI\C\NC\N.TNJ has a non-trivial zero. If P’ is a sum of r squares,
then p is a sum of r+1 squares. Replacing p by p', we may thus assume that
,wETv 2. (Note, of course, that P'(x,0,z, w)=p(x, 0,z w).)

) amwx a zero (7.2, &.vm,rw?:. If $40, then by (4.10), there exists ¥R such that
(X, 3.2, w)e 3(p). In this case, p is a sum of four squares by the earlier argument.
Thus. we may assume =0, ie. (0,7, we J(g).

Before we proceed further, let us first compute ¢(0, 0, 1) and q(0, 1,0). These
are, respectively, the coefficients of y?w* and y2z*in D(y, z, w). Let us write

a3(x z,w)=(xz+wh)(cox +c,z+c,w)

ay(x,z,w)y=c,z2+ ...

Then 2a,y contains the term 2¢,x?yz. Since we do assume f(y, z)=y? + 22 we
have ¢, =0. By inspection, we read off

g0z, w)y=zw? +z{c,z4+c,w)y (mod »?)
hy, z, wy=wt 4+ 2w, ZHe,wy+e 2’ +..) ¥ (mod )

Thus, in g(y, z, va. y*w* does not appear, and y*z* has coefficient ¢?. On the
o%m.n hand, in Sh=(*+2)h(y, z,w), y?*w* has coefficient 1 and p?z*% has
coefficient ¢;. Therefore, Diy.zow)=fh—g?=y2w* £ (¢, — 2y )2 *+ i

F:D.O, :”~. QAO. ~.Ov”ﬁu|h~. A 3 _vsc 4 L., Le.

1
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We now return to the zero (0,Z, W)e 3(gq). Since ¢(0,0,1)=1, we must have
Z+0, so assume Z=1. Now use a linear change x =x"— A(z', w), y=y,z=:=",w
=w' +wz where A(z',w) is a linear {orm to be determined. We have a new form
PIX,y,Z w)=p(x' =4z, w), ¥y, 2, w +Ww2) with

’

P, 0,2 w)=p(x' =2z, w),0,2,w +Wz)
=[(X =A@z, W) 2 + (W +Wwz)? ]
Choosing A(z,w')=2Www'+ Wz, we can guarantee that pPx, 0,2, w)y=(x'z
+w?)% Of course, the coefficient of x'? in p' is still y'2+2'% By (2.6). the
discriminant of p’ with respect to x’ is:

Dy, z,w)=D(y,z,w +wz)
=y2q(y. 2. w +w2).

For (y,z,w)=(0,1,0), the second factor becomes ¢(0, 1, w) =0. Thus, dropping
the “primes” altogether, we may assume that 9(0.1,0)=0, i.e. ¢, =c2. Now, write
p(x,y,z,w) as a polynomial in z; we have, by inspection

Pl y, 2, w)=(x*+2¢, y+c3y?) 22+ 2g%(x, y. w) 2+ h*(x, y, w).

Since ¢y =c}, the coefficient of z* is now a perfect square. By (5.4), p is a sum of
four squares in R[x,y,z,w]. Q.E.D.

The complete proof of the Case B, will ultimately depend on a reduction to
the important special case considered in the Proposition above. To achieve this
reduction, one more lemma is needed.

Lemma 6.4. Let Ex_.x?xuvu\l??xuvxw+wwA.x~,.«:x_ +h(x,,x;)eP, ,. Sup-
pose that for every (y,,y,)eR?* with y,+0, there exists ViER with p(y,, y,, ¥,)

=0. If f has rank 1, then Plxy, xp, x3)=c(x, x,,x302 If f has rank 2, then D
=f-(x,+a,x,+a;x,)* for some x,, a;€R.
Proof. The hypothesis implies |3(p)] =0, so by (3.5) p has a factorization

ctd(e,deR[x,, x,, x,]). First assume ¢ is quadratic; say d=1!. Then ¢
=Xy7(x3,X3)+5(x3,X3),50 f = r(x;,x,)? has rank < 1. Now assume ¢ is linear:

P(xy. x5, x3)=(ax, + Bx, +yx,) d(x, X, x,).

If =0, then for every (y,,y,) not proportional to (y, —f), with y,+0, there
exists y, with d(y,.¥,,73)=0, so | 3(d)| = . Since deP, ,, this implies that d is a
square, so we are back to the first case. If x40, then, since p is at most quadratic
in x,,d=d(x,, x,). We have xd = so p=f(x, +Bx,/x+yx,/2% QED.

We are now in a position to seitle completely the outstanding “Case B,":

Theorem 6.5. Let p(x,y, z, w)=f(y, 2)x*+2g(y, z, W) x + h(y, z, w)eP, , where f
=y?+ 22 Suppose the discriminant D =fh—g? factors into k*q where k =ay+fz
+ywFO0(x, B, yeR). Then p is a sum of six squares of quadratics.

Proof. There are two cases, depending on whether y=0 or y+0.
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Case 1. y%0. After the linear change w'=ay+fz+yw (with x, y, z fixed), we
may assume that D(y, z, wy=w?q. By (4.10), for every (y,Z)#(0, 0), there is an ¥
such that (X, 7,2, 0)e 3(p). Let

pi(x, y. 2y =p(x,y. 2, 0)= f(y, 2) x* +2g(y, 2, 0) x + h{y, z,0).

By the preceding lemma, we have p,(x,y,z)=f(y, 2{(x+ o,y +a;z)%. Using the
change x'=x+a,y+x,z (with y,z,w fixed), we may thus assume p(x,y, z0)
=xf{y,z). Hence g(y.z.0)=h(y, 2. 0)=0, so wig and w?}h (see (2.3)). Now

plx,p.sw)=f(32)x*+2xwg,(y. 2, W)+ wlh (v, z, w)

may be viewed as a quadratic polynomial in {y, z} with “coefficients” which are
forms in {x, w}. By a theorem cited earlier (see (5.6)), p is a sum of six squares in
R(x,y, 2z w].

Case2 y=0, ie. k=xy+fz. After an orthogonal change y'=ay+fz, 2’ =fy
—xz (and scaling x if necessary), we may assume that k=y without perturbing
S =y*+z% We now have D(0, z, w)=0, so lor every (Z, W) with Z+0, there exists
X so that (%, 0, Z, W)e 3{p). Thus, Lemma 6.4 can be applied to

pilx,z,w)=p(x, 0, z, wy=z> x2 +2g(0, z, w) x + h(0, z, w).

The conclusion drawn from the Lemma is that p, is a perfect square, so by
inspection, it is (xz+d,z2+8,zw+d;w?)? for suitable 5,eR. After a further
change x'=x+05,z+d,w (fixing y.z,w), we may assume that p,(x,z, w)=(xz
+48,w?)%. Two (final) cases may arise, depending on whether §,=0 or 8, +0.

Subcase (i). 5,=0. Here, p(x, 0, z,w)=z2x2, so g(0,z, w)=h(0, z, w)=0. As be-
fore, we can write

px,y, 2, w)=x3(y? +2%)+2xyg, (v, 2. W)+ y by (y, 2, w).

Since h, is at most quadratic in w, and (y*+z%)h,2g,(y,z, w)%, g, is at most
linear in w. Therefore, p is a quadratic polynomial in {x, w} with coefficients
which are forms in {y,z}. Appealing once again to (5.6), p is a sum of six
squares in R [x, y, z,w].

Subcase (ii). 51+ 0. Scaling w and taking x’= —x if necessary, we may assume
that p,(x, z, w)=(xz+w?)%. Now we are reduced to the situation investigated in
Proposition 6.1. Q.E.D.

The proof of the Main Theorem stated in the Introduction is now complete.
7. A Theorem on Biforms

In the last two sections. we have repeatedly used Theorem 5.6. We shall now
furnish a proof of this (and in fact a somewhat more refined) result. The proof
will be based on a certain known result on biforms, stated in (7.1) below. Recall
that a biform of bidegree (m,m,) in the two sets of variables {y,....y,},
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{x, x,} is a polynomial in R [y, x] which is an m,-ic in y when x is viewed
v vy X al | Yy heh X v
as constant, and an m,-ic in x when y is viewed as constant. The following

theorem concerns the situation when r=2 and m, =2.

Theorem 7.1. Let p(y, z: X, ..., X,) =2 a,;(y, 2) X;x; be a biform of bidegree (m,2).
ij R
If p is psd, then p is a sum of 2n squares of biforms.

This result has appeared before in [10, 17, 18, 21]. For the u,mw.n of
completeness, a new proof will be given here. We believe this new proof will be
useful since it is shorter and completely constructive, which seems to be an
advantage considering that the result has applications to diverse areas such as
the theory of nonlinear regularization, optimal control, and differential games.
Also, the very special role played by (7.1) in the study of psd “multi-forms™ wiil
be apparent in Sect. 8.

We shall first prove two useful lemmas.

Lemma 7.2. Let D;, E, be vectors in R** (1 £i<n) such that
(7.3) D;-D;=E;E, D;E;+D; E=0 for all i, j.
Then, after an orthonormal change of basis, we can urrange that

Di=(siys iy ooes Siun L)

4
(7.4) E; =(—t;1, 51 -00s —ligsSig)-

Proof. We induct on n. The case n=0 is vacuous, so assume nz 1. By hypothesis,

D, and E, are orthogonal with the same length, say s. If s=0, we are done by

1 1 .
msaco:o:,mowwmcanw%o.Cwim<b,m:alm_mwvm:o::o::osoqam_cmﬁm,
n m

we can arrange that

D,=(5.0,0,...,0), D,;=(s;;,t;,.D) (iz2).
E, =(0.5,0,...,0), E,;=(si,.6;,, E) (i22),

where D;, E,eR2“- Y, Putting j=1 in (7.3), we see that f;, =s;, and s}, = —¢,, for
i=2. With this information, (7.3) yields the same inner product equations for
w._; m_. (2<i<n) so the induction proceeds. Q.E.D.

Lemma 7.5. Let a;j(y,z) be forms of degree m, with a;;=a; (15 jsn) and let
a(y,z) be a nonzero psd form. Suppose there exist vectors of forms A(y.:z
=(a"(y, 2), ..., d?¥(y, 2)) such that a(y,z)a,(y,2)=4,(y,2)- A;(y. 2} for all ij
Then there exist vectors of forms B,(y,z)=(b"(y,2),.... 03"y, 2)) such that
a,(y,2)=B(y, 2)- B(y.2) for all i,].

Proof. The strategy of the proof is to “peel off” the psd factors of a(y, z) one at a
time. Thus, we need only treat the following two cases: (1) a(y. z)=(ay + Bz)A ()
a(y, z) is an irreducible psd quadratic form. The first case is easily handled by
Proposition 2.3: taking i=j, the hypothesis implies that each-coordinate of
Ay, z) is divisible by ay+ fz. In the second case, we may assume, by a linear
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change, that a(y,z)=y>+2z2. From a(y,z)a,(y, z)=Y a(y, z)%, we see that
k

a*'(y, 2) are forms of degree r=3(m+2). Following the idea used in (5.11). write

(7.6) A )= +2°) C(y,2)+y ' 2D, +y'E,

where D;, E.cR?% and C,(y, z) is a vector of forms of degree r—2. For y=1,
2=y ~L we have A(L,YV-1)=E+)—1D, and from 0*+z%a,(y, 2)
=A;(y,2) A;(y, 2), we get (E;+V —1D)-(E;+V —1D;)=0. Comparing the real
and imaginary parts, we have the equations (7.3), so after an orthonormal
change, we may assume that the vectors D;. E; are as in (7.4). Note that an
orthonormal change preserves the equations a-a;=A;-A;. Substituting (7.6)
into these equations and cancelling y? + 22, we get

Q:HQ~+NNV C; G\.+‘<T _NAQ...U\..T ﬁ.\.b_.v
+y'(C;-E;+ C;-E)+y*~?D,-D,.
Define vectors of forms F,=F,(y,z) by
NMQQNFTNGM:,Nﬁmclxﬂ_f e yCED 4z 124~ Yz Gy cl2d- 1)

so Fi-Fi=(y*+2%)C;- C;. Now set Bi(y.2)=F.(y,2)+y~'-D,. These B;’s will
satisfy a;;= B;- B, provided that

F;-D;=C,-(vE, +zD)).

To check this, it suffices to show, by symmetry, that C!' and C{® occur with the
same coeflicient in the two sides of the equation. This is checked since, by
inspection,

(v ﬁ,MS.TNQ.::: +(z ﬁ,mﬁlkﬁmsv Ly

=C =yt +z5,)+ CP(zt, +ys;,). Q.E.D.
It is now easy to give the

Proof of (7.1). We induct on n. If n=1, we have py. z;x)=a,,(y,z) x?; since
a,(v,z)is psd, it is a sum of two squares of forms and so is p. For n> 1, we may
assume that a;;=a;, and write

p=a; (y,2)xi+2() ay;x)x, +B(y, z; x5,..., x,).
iz2

We may assume that ay,(y, 2) %0, for otherwise p=p(y, z; X3, ...,x,) and we are
done by induction. Now a,,(y,2) is psd, and so is the following discriminant
(wrt x,):

D=a, (y, NVWC\.NTKN. ...../\..VIA.MU m:.x...vn.

jiz2
By the inductive hypothesis, D is a sum of 2n -2 squares of biforms in {y, z;
X3, .., X,}. As in (4.11), we have

ay(y.2)-p=(a,( , 2} X + M n:.f.v~+bQ.wa~, ey Xy)

iz2

.‘ A .
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which is a sum of 2n— 1, in particular 2n, squares of biforms. Say

2n n 2
(1.7) a,, (y.2)p= ). AM a®(y, z x_.v .

k=1 M=1
Let A,(y, 2) be the vector of forms @y, 2), ... a®®(y, 2)). Then a nan»:mos_.on.
the ?oo sides of (7.7) yields a,,-a;;=4;-4;. By Aw.wy we have a:.um..rm\. or
suitable vectors of forms B;(y z)=(b{""(y,2),....bi*"(y,2)). Thus, we have p

N: : ~
MM AM vM:C\, vi_.v .O.m.D.
k=1 M=l

In general, we cannot improve the bound N.x for the number of squares
needed to express p. However, in the case m=2 (i.e. when lmCr 23X, .., X,) 18 A

. y3i- _u_ : see [7]

biquadratic form), the bound can be improved to T\w: +l||~ 1 see .

Our next goal is to derive a version of (7.1) which allows :o:..:oaomn:n:v\ in
the variables {x,, ..., x,}. First we make an elementary observation:

Lemma 7.8. If p(x,, ..., x) =p,lx;, ... x )+ ... +p,(x,, ..., x,} is a psd polynomial
arranged in homogeneous components of increasing degree, then p, and p, are psd

Sforms.

Proof. Note that p,(x,,...,x,)=limp(ix, ...,Ax,)/A* and pUx,,....x,)
e A~

= lim p(Ax,, ..., Ax,)/2"% ¢

A-s

We can now prove the following result which was stated in part as (5.6):
Theorem 7.9. Suppose p(y, z; x,, ....xLH.M.::.Q, Z)x;x;+2Y a(y.2)x;+a(y,2) is

")
psd, where a;(y, 2}, a;(y, z) and a(y,z) are Jorms of degrees r,t and s. Then r+s
=2t, and p is a sum of 2(n+1) squares in Ry, z;x, ..., x,].

Proof. Fix (v.z;x.,...,x,) and consider p(y.z;4x.,...,4x,). From
0<p(y,z; A%y, s Ax,)=A2 Y a;x;x;+ 21 ) a;x; +a, we have

D(y,2; Xy ey X,) i =a(y, 2) Y a4y, 2) x;x,— (3 a;(y, 2) x,)* 2 0.

This is a polynomial with homogeneous components of degree r+s+2 and
2(t + 1). If all the a,(y, z) are zero, we may agree that their degrees are (r +5)/2 (r and
s are both even since 4;;20, a20). Now assume a,(y, z) are not all zero. Then we
must have r+s=2t for otherwise IAM a,(y. z)x;)* would emerge as one of the
“end” forms of D(y,z; x,,-..,x,), contradicting Lemma 7.8. We have now two

cases, depending on whether s2r or r2s.
Case 1. szr. Then d:=t—r20. Introduce a new variable x,,, and let
x .fxv

— 2 Vg
QA\FNHXT,.JX=+_V|R=+_QA\«.N,k=+_....,x

n+t

=y¥Y a (. 2)xx; 40y a2 xx,,  +alyyx,
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which is a biform of bidegree (d +1, 2) in {y.z;x.....x, . }. This biform is 20
for all {y.z;x,. ..., x,, \} with x,,, %0. so it is psd by continuity. By Theorem
1.1, q is a sum of 2(n+ 1) squares, and therefore so is

AU I X X Y =y (2 Xy LX),

By repeated use of Proposition 2.3, it follows that p itself is a sum of 2n+1)
squares.

Case 2. s<r. Then e:=t—520. and we can apply a similar argumeat to the psd
biform

Ay mey — y2e.2 A Xy X,
q A.-.r.«z_‘....k=+_v|.< H=¢_EAv.:,vﬂ«l,....vﬂ|lv
n+ 1 \.n=+_

=24y xx+y Y ) xx,,  +y*a(y.2) X2,
with bidegree (¢ +1,2). Here ¢’ is a sum of 2(n + 1) squares, and. therefore. so is

Je . M -
y¥yg A.‘.u“f. :.../.,..lp.v =y*p and sois p. Q.E.D.

y

Remark. When we used Theorem 7.9 in Sect. 5 and 6, p(y,z;x,,...,x,) s itself a
Jorm in {y,z,x,,...,x,} (in fact of degree 4). This corresponds to the situation ¢
=r+1,s=r+2; in particular, we are in Case | with d=1.

8. Multiforms as Sums of Squares

The notion of a biform can be easily generalized to that of a multi-form: Let X
=X, Y=y Yoy 2=(244 .00, 2, ) be independent sets of variables.
By a multiform of type (n,....,n,; m,...,m,), we shall mean a polynomial p
=p(x,y....,z) which is an m-ic in x when y, ...,z are viewed as constants, ...,
and an m -ic in z when x, y, ... are viewed as constants. Just as for forms, we can
define d(n,...,n; m,,...,m) to be the set of psd multiforms of type (n,....n,;
ny.....m} which are not sums of squares of polynomials (or, equivalently,
multiforms). The main question studied in Hilbert [13] has an obvious analogue
for multiforms: For which tuples (n,,...,n;m,,....m,) is it true that a(ny....n,;
m.....m)=g?

Henceforth, we shall impose two mild restrictions on the type (n.....n,;
my.....m,) of multiforms we study. We shall always assume m,.....m, are even,
and n,....n_are z2. The first restriction is harmless because if p+0 is a psd
multiform of type (n,,....,n,; m,,....m,), then m,,...,m, are necessarily even. On
the other hand, if one of the n, is I, say n, =1, then p is just x7* times a psd
multiform of type (n,,...,n,; my,....m) and it suffices to study the latter form.

Lemma 8.1. If A(n,,....n; m,,...m)=gp, then for any subset {i,.....i}
< {l,....r}, we have ulso u?:.:..::“E_._,...,E:VHQ

Lemma 8.2. Suppose (n,....n; m', ... .m)=(n,,...,n,; my,....,m} (ie. m;zn; and
mizm; for all i) Then A(n,,...n; m,,....m)+z implies 4. ...on
my, ... m)* g,

.
r>
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The proofs are easy (cf. the arguments for (2.2) and (3.9)), and will be left to
the reader. . . N
We shall now examine a few basic cases for which A(n,, el my,...,m)is
non-empty. By the second lemma above, one basic case will generate many
other new cases.
Lemma 8.3. There exist forms in A(3,3; 2,2), A(2,2; 4,4), A2, 3; 2,4) und
4(2,2,2; 2,2,2).
Proof. The first case is already in [C], where it was shown that the biquadratic

form 202024 w202 4 22
Ext.«?kuuféffvuxmﬁ+xw.<w+xw§+x_\<~+.4~:+xu.f

—2X, X, ), Y= 2X X3 Y Y3~ 2Xa X358, ¥,

ties in 4(3,3; 2,2). For the remaining cases, define the following “variations” of
the Q and the S in (2.1):

2
pi(xy, X2s y1, vy =xtyiyi+xixiys + X3yt = 3xixiyiya,
2
Pa(xy X33 ¥y ¥ = X2yt xiyiyi + xdyiyi + X33 - 4x X y1Ya)ss

. o 2u2,2 g2y, 22,2 2222
Py(X1, X253 Y1, V0 21,22 =XV YT E XY 2+ X3 Y12+ X3 )2

—4x,X,Y Y22, 23

Each is psd by the arithmetic-geometric inequality. We claim :ﬂ: none of these
is a sum of squares of polynomials. In fact, say p, =) h{. By letting y, =x,, we

have
E_Ax_,x&x_LNNVHMUF?_.XNHK_L\LNme,ﬁx_;.m.kb

which implies that the form S in (2.1) is a sum of squares of polynomials, a
contradiction. Thus, p,€4(2,2; 4,4). o
The proofs that p,e4(2,3;2,4) and p;e4(2,2,2;2,2,2) are similar, upon
noting that py(ys, ¥ Y. ¥z ¥3) =S(y(»¥3.¥2) and that p3(x, .y y20 20.%)
=5(x,z,y,) QED. ) o .
In spite of the above examples, we did know about one positive case: by

(7.1), a psd biform M..::.C.uvx_, x; is always a sum of squares of polynomials, ie.

A2, n;m2)=g. It _&n:m out, moreover, that this is mwmn::m_;. ﬁ.ro only ..wnom:
case, i.e. for any other type of multiforms, psd is a weaker ooz.a:_os. than being a
sum of squares of polynomials. Thus, even Hilbert’s beautiful discovery [13]
that 4, , =@ has no legacy for multiforms.

Theorem 8.4. Suppose r=2, n;22 and m;=evenz2. Then A(n,.....n;my, ey iny)

. . b
=g iffr=2,and (n,.....,n;m,....m) equals (2,ny; m,2) or (n.2; 2,m,).

Proof. As we have observed above, the “if” part is H:n.o:wa 7.1. For En
converse, assume that A(n,,...,n; my,....m)=g2. If r= 3, this would contradict
4(2,2,2; 2,2,2)% & by repeated use of (8.1) and (8.2). Thus, we must have r=2.
Assume, without loss of generality, that n,<n,. If n, 23, then (n,,n,;
my,m,)2(3,3; 2,2); this contradicts 4(3,3;2.2)% & by (8.2), s0 we must have n,
=2 By (8.1), we have A(n,;imy) (=4,,,,,)=2. 50 (1.my) 15 (3. 4), :_N.wv.oa
(2,m,). In the first case, we have (n,,ny;my,m;)=(2,3;m,492(2,3;2,4), which
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contradicts A4(2,3;2,4)+ 2. In the second case, we have (n,,n,;m,,m,)
=(2,n,;m,2), which is as predicted. In the third case, we have 4(2,2;m ,m,)
=g. Since A(2,2;4,4)%+ 2, we must have m, =2 or m, =2, which are also as
predicted. Q.E.D.
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