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ABSTRACT.
We give a concrete realization of the solution to Hilbert’s 17th problem for real positive
definite forms and Becker’s generalization to higher even powers. Suppose p = p(z1,...,Zn)

is a real positive definite form of degree m. Then p is a sum of squares of rational functions
with denominator (3 z2)" for sufficiently large r. This generalizes a theorem of Pélya for
real even positive definite forms. The proof gives substantially more explicit information.
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set of (m + 2r)-th powers of linear forms in Q[zy,...,za]. If p € K[zy,...,za] for a field

K C R, then the linear combination has coefficients in K. Further, if 2k|m, then p is a sum
of 2k-th powers of rational functions whose denominators are a suitable power of Zx? If
p and ¢ are both positive definite and deg(p)— deg(g) is a multiple of 2k, then the rational
function p/q is a sum of 2k-th powers of rational functions whose denominators are a suitable
product of powers of ¢ and ¥ z?.

a measure of how close p is to having a non-trivial zero. If

"';m, then p- (¥ z?)" is a non-negative linear combination of a universal

1. INTRODUCTION AND OVERVIEW

In 1888, Hilbert [H4] proved that if n > 3, then there exist real positive semidefinite
forms p = p(z1,...,2,) which cannot be written as a sum of squares of forms. He also
proved that for n = 3 such a form is always a sum of squares of rational functions.
Hilbert’s Seventeenth Problem asked whether a positive semidefinite form in any number
of variables must be a sum of squares of rational functions. In the 1920s, Artin solved
Hilbert’s Seventeenth Problem in the affirmative by using the Artin-Schreier theory of real
fields. This proof was not constructive. )

A few years later, Pélya [P1] presented a concrete proof in one special case: if p is both
positive definite and even, then for sufficiently large r, p- (3 z2)" has positive coefficients,
and so is per se a sum of squares of monomials. This fact implies that p is a sum of
squares of rational functions with common denominator (3} z?)/2. In 1940, Habicht [H1]
used Pélya’s result to write an arbitrary positive definite form p as a quotient of two sums
of squares. of monomials. It follows from his proof that p is a sum of squares of rational
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functions with positive definite denominator. In each case, if p has rational coefficients,
then so do the monomials. (See [H2, pp.57-59,300-304].) These results are stronger than
Artin’s in specifying the nature of the denominators, but weaker in that they only apply
to real positive definite forms.

The restriction to positive definite forms is necessary. There exist positive semidefinite
forms p which have the remarkable property that, in any representation p = Sk 93, where
@k = fr/gx is a rational function, each form ¢; must have a specified non-trivial zero. The
existence of these so-called “bad points” insures that p - (3" 22)" can never be a sum of
squares of forms for any r. Habicht’s theorem implies that no positive definite form can
have a bad point. According to Delzell’s thesis [D3], bad points were first noted by E. G.
Straus in an unpublished 1956 letter to G. Kreisel. Delzell’s thesis contains an extensive
history of the subject (see chapter V); this contains much material unpublished elsewhere.
-Another subject with an extensive history is that of “continuous” solutions to Hilbert’s 17th
problem over a real closed field R. These are formulas of the shape p(z) =Y i Ai(p) J2~,p,
where ¢;, = f;/g;,p, which hold for every positive semidefinite form p of fixed degree,
under the assumptions that 0 < A\;(p) € R, f; »(z) and g; () belong to R|zy,...,z,] and
Aj(p), f;p and g; , depend continuously on p. Such formulas exist in which the coefficients
of the parameters have the shape sup, inf, h ¢ for polynomials kg, in the coefficients of
p. See [D4, D5] for recent results on this subject.

In 1981, Becker ([B1,B2]) extended the Artin theory, giving necessary and sufficient
conditions for a rational function p over a formally real field to be a sum of 2k-th powers
of rational functions. Roughly speaking, p must be psd, its degree must be a multiple of
2k and all “zeros” must have “2k-th order”. A concrete application [B2,p.144] is that for
all k > 1, there exist 0 < A\, x € Q and polynomials [,k and g; x in Q[t] such that

_ 1+t2 _ . i],k_(tl 2k

Explicit versions of (1.1) are known for k¥ = 1,2, and there has been interest in finding
them for all k. Formula (1.3) is such an expression, but one in which fik> 95k € R[t].

One can deduce from recent work of Becker and Powers [B3] that there is an identity
(1.1) in which each g;  is positive definite. Schmid has also recently shown [S1, Cor. 4.1]
that if f and g are real positive definite polynomials in one variable with the same degree,
then an expression like (1.1) holds (with (f/g)(t) replacing B(#)), in which fix and g; &
are definite polynomials of the same degree.

Here is an overview of the paper.

The author’s memoir [R1] developed a set of notations for forms in several variables
over a field K of characteristic 0; in this paper, K C R. A brief review is given in section
two. Let Hy(K™) denote the vector space of forms in K([zy,--- ,z,] of degree d. This
usage of n and d is fixed and m will always denote an even integer. There are three
closed convex cones in Hn,(R") of particular interest: the cone of positive semidefinite
forms, denoted P, », the cone of sums of squares of forms, denoted Y n,m, and the cone of
sums of m-th powers of linear forms, denoted Q@ n,m- The solution to Hilbert’s Seventeenth
Problem amounts to the assertion that, if p € Py, m, then there exists h € Hy(R™) so that
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h2p € Y n m+24. The main result of this paper is that, if p € P, , is positive definite, then
for sufficiently large d, we can take h = (>;23)" and h%p € Qnm+ar C Pomtar

Let Go(zq,...,2,) =22+ .. + 2. As part of his solution of Waring’s Problem, Hilbert
[H5] established that GT, € Q@ 2, for all (n,7); in fact, G7, can be written as a sum of 2r-th
powers of linear forms with rational coefficients (see Proposition 2.6 and Theorems 6.9 and
6.12). Families of such “rational” representations are known explicitly for r = 1,2, and
for a few other (n,r). No general formula is known which applies to all (n,r), although
it is not difficult to find specific examples; see for example Dickson [D7, pp.717-724], or
[R1,§8,9]. (Hausdorff [H3] gave an explicit representation of G7, as a sum of 2r-th powers
of linear forms with real coefficients involving the roots of the Hermite polynomials.) Our
analysis of (1.1) will require a trigonometric representation of (z? +y?)" as a sum of 2r-th
powers (see (5.9)), which is not rational (except accidentally, for r = 1,3).
. Associated to a form g € Hy(R") is the d-th order differential operator g(D), defined
by replacing each occurrence of z; with 8—2," (For example, G,(D) is the Laplacian A =

> ai:?") In the 19th century, Sylvester developed (and Clifford exploited [C2,p.119]) the

method of “contravariant differentiation”. We use this to give a simple representation for
9(D) applied to a sum of r-th powers (Proposition 2.8):

r! —
9(D) D (amzi+ - + agnzn)” = (r—dy Doglaks,  akn)@i@s + - + agnza) "%
k Tk

An immediate consequence of these ideas is the first main result.

First Theorem (see Theorem 3.1).
IfheQnmim and f € Py, s, then f(D)h € Qnm CZnm.

We apply the First Theorem to h = G7 € Qnzs. It is easy to see that if f € HiyR"™)
and s > d, then G5~ must be a factor of f (D)G;, and the quotient must also have degree
d. Define ®,(f) € Hy(R"™) by f(D)G? = Dy(f)G574. If f € Hp(K™) is psd, then by the
First Theorem, ®,(f)G:™™ € @n,25—m; in fact, it is a non-negative K-linear combination
of the (25 — m)-th powers of linear forms whose 2s-th powers sum to G3,.

We give explicit formulas for ®,(p) and ®;(p) for p € Hy(R™) (see Theorems 3.7 and
3.9), written as linear combinations of {A*(p)G%}, where A* denotes the k-th iterated
Laplacian and A°(p) = p. (These are finite sums, because A¥(p) = 0 for k& > d/2.)
It turns out that a suitably normalized version of ®, converges to the identity. If pis
positive definite, then for sufficiently large s, ®.'(p) is also positive definite by Theorem
3.11. The proofs of Theorems 3.7, 3.9 and 3.11 are deferred until the fourth section. For
0 # p € P, 1, we need a measure of how close p is to having a non-trivial zero. Let

_ inf{p(u):u e S"~1})
(1:2) W)= ol ru e 57T

Second Theorem (see Theorem 3.12). Suppose p € H,(K™) is positive definite.

nm(m-—1) 4
Ifr 2 digoa — 5=

(m + 2r)-th powers of linear forms in Q[zy,...,z,]. This set depends only onn, m and r.

, then pG7 is a non-negative K -linear combination of a set of

As noted earlier, Pélya proved a similar but weaker result: if P 1s an even positive
definite form, then pG?, has positive coefficients for r sufficiently large. The condition on
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K also carries over; see [H2,p.304] for K = Q. Pélya did not provide estimates for r.
This has been done very recently by de Loera and Santos [D2], who also describe some
new algorithms for implementing the representations. Interestingly, their bound on r also
depends on e(p)~!.

Let P(e) be the set of p € P,y so that e(p) > €; Ppom = Ueso ,(,fzn For each € > 0, the

Second Theorem implies that if p € P\, r > '1(:’1(0':2)16) nim and GOt = 3 (ak )2,

then pGT = 3" Ai(p)(ag-)™* 2", where Mg(p) > 0 is linear in p. Such a representation
clearly cannot hold over all of P, ,,; see Corollary 3.18 below.

The Second Theorem gives new, concrete information about representations as a sum
of 2k-th powers of rational functions. The following result (without the specification of
the denominators) can be given an abstract proof using Becker’s theory.

Third Theorem (see Theorems 3.15 and 3.16). If p € K([zy,--- ,2,] is a positive
definite form of degree m = 2kt, then p is a non-negative K-linear combination of 2k-th
powers of rational functions in Q[z1,--+ ,zn] whose denominators are powers of Gn. If p
and q are positive definite forms in K[z;,--+ ,2,] and the degree of the rational function
p/q is a multiple of 2k, then p/q is a non-negative K-linear combination of 2k-th powers
of rational functions whose numerators are in Q[z1,- - ,25| and whose denominators are
products of powers of G, and q.

The Second Theorem also contains the hard part of a curious equivalence (Corollary
3.18): p € P, is positive definite if and only if pG}, € Qn m+2r for some r > 1. This is
not a trivial consequence of the existence of bad points: there exist positive semidefinite
forms p which are not definite and for which pG,, is a sum of squares of forms. (See for
example [R3,p.273] and [C1,p.579].) For that matter, we show in section five that there
exist positive definite forms p so that ®;},.(p) is not psd, but pG}, € Qn m+2r-

The fourth section contains proofs of the formulas needed in section three. The formula
for & ,( f) follows from an old theorem used by Hobson in his studies of spherical harmonics.
The formula for ®;(f) requires some tricky but elementary computations. In order to
give the estimate on s for which ®;!(f) is psd, we need a simple, but appa.rently new,
bound on the Loo(S™ ') norm of A : Hy(R™) — Hy_o(R").

Section five gives applications of the Second and Third Theorems to quadratic forms. We
generalize B(t) by considering quadratic forms in n variables and their dehomogenizations.

We show (Corollary 5.3) that if a >0, > 0 and 2k +1 > § 2 =35z, then ‘;—1’—:}—:—:—1‘—:; is a

sum of ("t‘k) 2k-th powers of rational functions with denommator b+t + .- +t2.

Fix k > 1 and let Lj(z,y) = (cos k+2):c + (sin k+2)y and A; =3k —(k+1) cos( k+2) for
0 < j < k+ 1. Using the known trigonometric identity (5.9) for (z% + y*)® and the proof
of Corollary 5.3, we obtain:

9 4k—2 k+1 k+1 ‘ . 2k
(13) B(t) — 1+1¢ — 2 2k . ZZ (L(\/Z”%(\/Zﬂ)

2+ k(k+2) i=0 j=0 2+1¢?

Although (1.3) gives B(t) as a sum of 2k-th powers in R(t), the summands are not in
Q(t). Such a representation cannot yet be found by our methods, because there is no
known analogue to (5.9) with coefficients in Q.
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Section six presents a self-contained proof of Hilbert’s theorem about G}, and more,
mostly using the ideas of [R1]. We give an integral representation for [f, G7,] which implies
that G, is interior to @, o, (a result essentially due to Hilbert). In fact, ®,(f) can be given
an integral interpretation, and if 0 # f € Py, and 7 > 0, then <I>m+r(f)G’ is interior
to Qn,m+2r (see Theorem 6.9). Finally, we show that any h € Ho(K™) in the interior
of Qn 2r is a non-negative K-linear combination of ("*27=1) 2r-th powers of linear forms
with coefficients in Q (Theorem 6.12). Theorem 6.12 may fail for A on the boundary of
Qnr,m: we have shown [R1,p.137] that for r > 2, (z + V292 + (2 — vV2y)* € Qlz,y] is
not a non-negative Q-linear combination of 2r- th powers of linear forms in Q[z,y].

I am happy to acknowledge much advice and many suggestions. Vicki Powers kept
asking me about B(t) until I finally realized how interesting it is; the methods in this
paper were originally developed for the study of (1.1). Chip Delzell patiently answered my
questions about the continuous versions of Hilbert’s Seventeenth Problem, and reminded
me about bad points, both grammatical and algebraic. Alex Prestel saved me from some
rashly incorrect historical assertions. Eberhard Becker helped sharpen the focus of the
paper on its main results and simplified some of the proofs. These colleagues also suffered
through an earlier (and much more oblique) version of Theorem 3.11. Finally, Norm
Levenberg and Doron Zeilberger gave me the valuable references [D6] and [S2], respectively.

2. PRELIMINARY MATERIAL

In this section we present some basic notations and facts about real forms in several
variables. For the most part, this material can also be found in [R1,§1,2,3].

Let K be a field of characteristic 0, and let Hy(K™) denote the set of homogeneous
polynomials in K[zy,--- ,%n] with degree d. (In this paper, K will always be a subfield of
R.) The index set for monomials in Hq(K™) consists of n-tuples of non-negative integers:

I(n,d) = {i = (ir, .. in) : éz‘k=d}.

Write N(n,d) = ("+d Y = |Z(n, d)| and for i € I(n,d), let c(i) = —7 be the associated
multinomial coefficient. The multinomial abbreviation u' means u{! ...u'n where u may
be an n-tuple of constants or variables. Every f € Hq(K"™) can be written as
(2.1) f(z1y...yzn) = Z c(i)a(f;i)z’.

i€Z(n,d)

The identification of f with the N(n,d)-tuple (a(f;¢)) shows that Hq(K™) =~ KN(d) 55
a vector space. For a € K", we define (a-)? € Hy(K™) by '

(2.2) (a)(z) = (Z ak:ck> = Z e(i)a‘z’
i€Z(n,d)
We define a fundamental symmetric bilinear form. For p and ¢ in Hy(R"), let

(2.3) pal= D eli)a(p;i)alg;i).

i€Z(n,d)
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For i € I(n,d), let D' = H(a—%)“ and define f(D) = Y c(i)a(f;i)D* to be the d-th
order differential operator associated to f € H4(R"). For any forms f and ¢ (possibly of
different degree), (fg)(D) = f(D)g(D) = g(D)f(D) since the 5—’s commute.

Lemma 2.4. Ifp, ¢ € Hy(R"), g € H.(R"), h € Hd+e(R"), a € R" and 1, j € I(n,d),
then: (i) [p, (a)%] = p(a); (i) [p,2] = a(p:1); (i) d [p,q] = p(D)a; (iv) di[p,g(DIA] =
(d + €)llgp, hl.

Proof. The ﬁrst two formulas follow from (2.1), (2.2) and (2.3), since a((a-)%;7) = o and
a(zl;j) = —cm if : = 7, and 0 otherwise. Slnce both sides of (iii) are bilinear in p and ¢, it

suffices to prove (iii) for monomials p = ¢(i)z!, ¢ = 7. In this case, [p,q] = 0 if 7 # j and
[c(¢)z?,z'] = 1 by (i). On the other hand,

o' (z ~
(2:5) ()Dw—c()H a,k = i LLO%- e = 1) G = G- 1)
It is easy to see from (2.5) that c(:)Diz’ = d!. If i # j, then D iy = ) jr = d implies that
i¢ > je for some £, and so ¢(i)D*z? = 0. Thus (iii) is true. Finally, two applications of (iii)
give (d + )llgp, h] = ((9p)(D))h = p(D)(g(D)h) = d![p, g(D)h}, proving (iv). O

Note that Lemma 2.4(ii) implies that the bilinear product is non-degenerate: if [p;, q] =
[p2,q] for p1,p2 € Hay(R™) and all ¢ € Hg(R"), then p; = p3.

A set C € RY is a closed convez cone if it is closed under addition, multiplication by
positive reals and is also closed topologically. Similarly, a set of forms B C Hq(R") is a
closed convez cone in Hg(R™) if it is closed under addition, multiplication by positive reals
and is also closed topologically. (Here, fU) — f if a(f);4) — a(f;1) for all i € I(n,d).)
If B is a closed convex cone in Hy(R™), then {(a(f;?)): f € B} is a closed convex cone in
RN(™4) and vice versa.

A form p € Hy(R™) is called positive semidefinite (or psd) if p(z) > 0 for every z € R™.
A nonzero psd form must have even degree m. The set of all psd forms in H,,(R") is
denoted by Py . It is easy to see that Pp n is closed under addition and multiplication by
positive reals, and that if { p9} is a sequence in P, m which converges to p, then p € Py, m.
Thus, P, m is a closed convex cone in Hp,(R™). A psd form p is positive definite (or pd)
if p(z) = 0 only for z = 0. Equivalently, p € Hx(R") is pd if there exists v > 0 so that
p(u) > v for all u on the unit sphere S™~ 1. Suppose pl¥) — p and p is pd. Then pY) is pd
for j sufficiently large. (Look at inf(p®)) on the (compact) set S*~!.) Thus, the pd forms
in H,,(R™) comprise the interior of the cone Pp m; the boundary of P, ., consists of the
psd forms which are not pd; that is, those psd forms with non-trivial zeros. i

A form p € H,(R") is called a sum of m-th powers if there exist ax € R", 1 < k<T,
so that p = zle(ak-)m; that is, if p is a sum of m-th powers of linear forms. There is no a
priori upper bound on T, but Proposition 6.1 implies that T < N(n,m). The set of all sums
of m-th powers in H,,(R"™) is denoted by @, m. It follows from Proposition 6.2 that Qn m
is a closed convex cone. If Ay > 0 and 3, = /\}c/mak € R™ then >, Ag(ar)™ = 2 (Br)™
every non-negative R-linear combination of a sum of m-th powers is in Qn,m.

The following proposition is central to the paper, and is a special case of a more general
result proved at the end of the paper; see Theorems 6.9 and 6.12.
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Proposition 2.6 (Hilbert). For all (n,r), G}, € Qn2r. Furthermore, there exist A\ =
Ai(n,r) € Q, 0 < Ae(n,r), and axe = ake(n,7) € Z s0 that

N(n,2r)

(27) G;(:El’ vrn) = ($§++$i)r: Z )\k(aklxl +"'+aknmn)2r-
k=1

Contravariant differentiation gives a simple formula for result of a differential operator
applied to a sum of powers of linear forms. It is convenient to use the falling factorial
notation: (¢)o =1, (t)x = t(t —1)-- (t — (k — 1)) for a positive integer k. If n is a positive
integer, then (n)x = n!/(n —k)! = k!(}) if n > kand (n) =0if n < k.

Proposition 2.8. Ifg € H(R") and h = 3_ Ag(ap-)?t® € Hyi(R™), then
k
(2.9) g(DYh = (d+e)e 3 Aeglar)(ar ).
k .

Proof. Since (2.9) is bilinear in g and h, it suffices to prove the formula when g(z) = 't

and h = (8-)%*¢ is a single (d + ¢)-th power; that is, D*(8-)**¢ = (d + €).3i(3)". But,
2 \" o \" (& de . ]
(671) (axn) (El ﬁjzj) =(d+e)---(d+1)8 - Bir (]; le.j) =

3. THE MAIN THEOREMS

We begin this section with an application of Proposition 2.8.
Theorem 3.1. Suppose h € Qn 2, and q € Py ;n. Then ¢(D)h € Qn 26—m-

Proof If h = 3, (ax)?*, then ¢(D)h = (28)m 3, q(ar)(ax-)?*~™ by Proposition 2.8.
Since q is psd by hypothesis, g(ax) > 0 for all k, and we are done. O

Theorem 3.1 suggests an inverse problem: given a form p, can we find suitable ¢ and h
so that p = ¢(D)h? Fortunately, G2 € @, 2, for all (n,s) by Proposition 2.6, and it turns
out that ¢(D)G¢ can always be explicitly computed. Before we state the general formulas,
we consider low degrees. Note that

(3.2) L(G:) = i(x% + “ee + m%)s — 231:];(1:% + e + x%)S*—ll.
It follows easily from (3.2) that

o2 (G) = 25(2s = Dzjza(al +- 422 £k

(3.3)
Z(Gy) =28(2s - 2)af(al 4+ +20) 7P+ 2s(af o+ 27) T
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More generally, if f € Hg(R") and s > d, then every monomial term in f(D) involves d
differentiations, hence G2~¢ divides f(D)G3, with quotient of degree 2s —d —2(s — d) =d.
Accordingly, for f € Hy(R™) and s > d, we define ®,(f) € Ha(R") by

(3.4) f(D)Gy, = @,(f)G".

It is clear from (3.4) that ®,(= ®,,q) is linear. By (3.2) and (3.3), s(zk) = 2sz4,
®,(z;zr) = 4s(s — Vzjzp if j # k and ®4(z}) = 4s(s — 1)z2 + 25Gn. Recall that
A = Gn(D)=3; 6%2;-. Since A(zx) = A(z;zx) = 0 and A(z?) = 2, we have by linearity:

(3.5)(1) ®,(f) =2sf, if f € Hi(R"),
(3.5)(ii) &,(f) = 4s(s — 1)f + s(Af)Gn, if f € Ha(R™).

Since A(Gp) = 2n and ®,(G,) = (4s(s — 1) + 2ns)Grn = 45(5 + 8 — 1)Gn, we can invert:

(3:6)() 7(f) = o fy i f € H(RY),

1 1

(3.6)(i) @;'(f)= ngs—_T)(f EETED)

(Af)Gn), if f € Hy(R™).
It turns out that, if p is psd, then ®7!(p) is psd for s sufficiently large. This result follows
from three theorems whose proofs are deferred to the next section. We first obtain closed

forms for &, and ®!; compare (3.8) to (3.5) and (3.10) to (3.6) for d = 1,2. Also observe
from (3.7) that mt—,_;;és(p) — p as § — 00, since (3()8"):’° = (s—d1+k)k — 0 for k > 1.

Theorem 3.7. If f € Hy(R") and s > d, then

) d
(3.8) | 2,(p) = 3 WL Ak p)6h,
k>0 ’

Theorem 3.9. If f € Hy(R™) and s > d, then

3.10 &1 (p) = — (=1)° Af(p)G?
(3.10) s (p) (3)d2d§22l€!(%+3—1)t (P)Gn-

Theorem 3.11. Suppose p € Py, m is positive definite and recall the definition of €(p)

from (1.2). If s > (Z;Zé'g):(l;) — 2=™ then ®;'(p) € Ppm.
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Theorem 3.12. If p € H,,(K™) is positive definite and r > (Zl—";é'—;);e(lg—) — 24m | then

pGT € Qum+2r; in fact, pGh is a a non-negative K-linear combination of (m + 2r)-th
powers of linear forms in Q[z1, -+, Z4,).

Proof. Let h = G7T™ and ¢ = r+m(p) Taking s = r + m in Theorem 3.11, we see that
q is psd, and by Theorem 3.1, ¢(D)h = ¢(D)G*™ = ®,1m(q)Gr, = pG}, € Qn,m+2r In
fact, Proposition 2.6 states that for suitable 0 < Ay € Q and ax¢ € Z,

(3.13) G;+m: Z Ak(aklzl+"'+akn$n)2r+2m-

Apply ¢(D) to both sides of (3.13) and use Proposition 2.8:

N(n,r+m)
(3.14) pGr, = (2m +2r)n Z )\kq(ak)(aklccl 4+ 4 aknmn)2r+m.
. k=1 '

Since the coefficients in (3.10) are rational, p € H,(K") implies ¢ = ®;!.(p) € Hn(K™),
so g(ay) € K, and (3.14) gives the desired representation. U

Theorem 3.15. Ifp € Hm(K“) is positive definite and 2k|m, thenp = }_. \; (fJ )Zk,
where 0 < \; € K and f; € Q[z1,...,Zxa). '

Proof. Let m = 2kt. By Theorem 3.12, for sufficiently large u, there exist linear forms L;
over Q and 0 < \; € K so that pGZF* = Z A L2kt+4ku or p= Z s (Lt+2“G w)2k I:l

Theorem 3.16. Suppose p € H,, (K™) and g € Hp,,(K™) are both positive definite, and
2k|my — mo. Then for sufficiently large v,

ZA (qG”)%

for suitable 0 < A\j € K and f; € Q[z1,...,Z4].

Proof. Let m; — mq = 2kr and pick u large enough that ka" m™1/2 and qGﬁu_ml/2 are
in Qn2ky and Q, 2k(u—r) respectively. Then by Theorem 3.12, there are linear forms L; ;
and L;» in Q[z1,...,2x] and pj,v; > 0 in K so that:

u—my R u u u—r k-
(3.17) Db _ PGﬁ /2 _ Z'NJ(L' )2 (E] pui(L} )2k) (Z VJ(L )Zk)2 K
: - ku—mq,/2 — L“ ™2k u—r\2k 2k :
7 qGn Z vj( (Z vi(L}3 )

The numerator in (3.17) is the product of 2k terms, each of which is a sum of 2k-th powers,

and so is a sum of 2k-th powers. The (common) denominator in (3.17) is (quu m1/2)2k7

p/q is a sum of 2k-th powers of rational functions with denominator ¢Gn ku-mi/2

One might hope that Theorem 3.12 could be extended to psd forms, since Theorem 3.1
only requires that @7 (p) > 0 at any n-tuple (a;,...,akn) used in (2.7). We shall see in
the next section that it is possible for pG:~™ to be in Qn 25—m, even though ®1(p) is not
psd. However, the requirement that p be pd (not merely psd) in Theorem 3.12 is essential.
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Corollary 3.18. A form p € Hp,(R") is pd if and only if pG}, € Qn m+2r for somer 2 1.

Proof. One direction is Theorem 3.12. For the other, suppose pG;, € @nm+2r; clearly,
p is psd; must it be pd? Suppose p(@) = 0 for u € S™7}; after an orthogonal change of
variables (fixing G ), assume @ = (1,0,...,0). Suppose there exist axe € R so that

T
(3'19) p(xl, sy wn)(fc% +---+ CU%)T = Z(amIl + .-+ aknzn)m“’.
k=1

Setting ¢ = @ in (3.19), we see that 0 = Zle aftt?" hence a; = 0 for all k. Thus z,
does not appear at all on the right-hand side of (3.19). Let z{p be the terms in p which

contain z; to the maximum exponent; possibly, a = 0 and p = p. Then z$*?"p appears

uncancelled in the left-hand side, a contradiction. O

4. PROOFS OF THEOREMS 3.7, 3.9 AND 3.11

In this section we give combinatorial proofs of Theorems 3.7 and 3.9 and an analytic
proof of Theorem 3.11. First, we prove Hobson’s Theorem, which dates to 1892 [H6,H7] and
can be found in [H8]. Another recent proof of Hobson’s Theorem is given by Strasburger
[S2]. We first need a lemma on the iterated Laplacian.

Lemma 4.1. (i) If ¢ € Hy(R"™) and k > 0, then

k-1
LAAR(

(4.2) Ak(mgq) =2 oy 9) + mgAk(q).

(i) If 0 < k < s, then
(4.3) AXGE) =2 (s)k(B + s — Gk,

Proof. If 2k > d + 1, then degree considerations imply that both sides of (4.2) vanish.
Otherwise, (4.2) is valid provided both sides have the same inner product with every
p € Hiy1-2x(R™). But by the product rule and repeated applications of Lemma 2.4(iv),

(d — 2k + 1)![A¥(zeq), p] = (d + 1)![zeg, Gip] = d![g, -ai?“”—)]

= di[g, 2k G5 1p] + difg, GE 2] = (d — 2k + 2)![A% 7 (g), 2kwep] + (d — 2k)![A%(a), Fen

= (d — 2k + )12k 2E @) p] 4 (d - 2k +1)![z,A%(g), p).

Thus both sides of (4.2) have the same inner product with (d — 2k 4 1)!p. For (ii), (3.3) '
implies that A(GS) = 43(2 + s — 1)G37", so (4.3) holds for k = 1. If (4.3) holds for &,
then
AMTYGs) = AKA(G) = 48K (5 +5 - DG
= 4s(s — 1225 (2 + 5 = 1)(F + 5 — 2kG ") =222 (6)in(§ + 5 — k1 Gom ¥,

so (4.3) holds for k + 1 as well, and the induction is complete. O
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Proposition 4.4 (Hobson). If p € Hy(R"), and F is sufficiently differentiable, then

Ld/2] 9d

(4.5) PDIF(Gn) = ), oAt F R (Gn).
k=0 ’

Proof. 1t suffices by linearity to prove (4.5) for rnonomials p € Hy(R™). It is trivial for d =
0;ifd = 1,let p = z;, amd 2= F(Gpn) = F'(Gn) 52> = 22,F'(G) = F5A%(pP)FU~0(Gy),
as desired. Now suppose (4 5) holds for monomxals of degree d. If ' € Hy (R™), then
' = zo2’ for some ¢, where 27 € Hy(R™). Then we have the following sequence of
identities, explained after the fact:

a(DjF(Gn)):Z 24 3(Ak(wj)F(d“k)(Gn)j

Oxy = 22k k! Oz,

D'F(G™) =

Zzszdk'Ak(xj)a(F(d—k)(Gn))‘i_ od a(Ak(xj))F(d_k)(Gn)

a.’E[ 22kk! a:l!g

k>0 k>0

2%k ip(d+i—k) e OCn 2224k +1) A(AM=)) L(ar1—(k+1))
- ; 22"I<:!A (a)F (Gn) Oz, + Z; 22%k4+2(k + 1) Oz, F (Gn)
>0 >0 f

2! - - 2d+19L H(AR-!
= 222kk'Ak(:z:J)F(d+l k)(Gn)2x3+Z ST ( axe( ))F(d+1 k)(G )

k>0 ) k>0
d+1 ) k=1(.J
221c ' <x5Ak(:I:’) + 2k3(A (z )))F(d+1—k)(Gn)
k>0 22kk! 6(13[
_ Z 9d+1 k(:l? :cJ)F(d‘H k) )_ Z Ak(wz)F(d+1 k)(G )
£ 92k £ n & 92k

The induction hypothesis is used in the first line, and the product rule is used to get to
the second line. In the third line, the chain rule is used in the first sum, and the second
sum is written in terms of k + 1, rather than k. In the fourth line, the index of the second
sum is shifted from k + 1 to k. The summation should now be taken over k£ > 1, but the
summand is 0 for £ = 0, so it can be taken over k > 0. Terms are combined in the fifth
line, and Lemma 4.1(i) is used in the last line to complete the induction. O

Proof of Theorem 3.7. Take F(z) = 2* above; FU4=F)(2) = (5)g_32° "4~ so0 by (4.5),

24
(46) 2,(p)65 = p(D)Gs = 3 IR pv )it
k>0

After cancellation of G¢~¢, (4.6) becomes (3.8). O
Proof of Theorem 3.9. By applying @, to (3.10) and scaling, we find:

(—1)¢ ¢
(4.7) (s)a2¢ &,(AYp)Gr)-
o §22‘e'( +s—1) P
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Since A‘(p)GE € Hy(R™) for each ¢ < d/2, by (3.4) and Lemma 4.1(ii),

®,(AY(p)GL)G™ = (AU (p)GL)(D)GL = (AYP))(D)(GL)(D)(G3)
(4.8) = (A‘@))(D)A‘(Gz) =2%(s)e( 2 + s — 1)e(AY(D))(D)(GTY)
= 2%(5)e(% + 5 — 1)@y o( Al(p)) G0~ 1420,

Upon cancellation of G4~ from both sides of (4.8), we obtain the formula
(4.9) 2.(A(p)GR) = 2%(s)e(§ + 5 — 1)e®s-e( AY ()G

We now plug (4.9) into the right-hand side of (4.7) and then use (3.8), keeping in mind
that Ae(p) € Hy_(R™):

222%( — 1), 24(A%(p)G) Z( 1) Vg, (Ae(p))G‘
(4.10) £2>0 £>0

— Z Z (—127(3)5 (3 — e)d_zg_kQ Ak(A[p)GﬁGi

22k !
£>0 k>0

Since (s)e(s — £)a—20—k = ($)d—e—k, We can stratify the final sum in (4.10) by w = k + ¢:

(e11) > (S EE(Y))@urteaper.

w>0 =0

The inner sum in (4.11) vanishes unless w = 0, in which case it equals 1, so the entire
right-hand side of (4.7) reduces to (s)42%p, which was the assertion. O

The proof of Theorem 3.11 requires a result which is interesting in its own right, but
perhaps for a different paper! A key step requires a 1928 inequality due to Szegd which
can be found in [D6,p.97], and is a sharpening of Bernstein’s Inequality.

Proposition 4.12 (Szegé). If H(6) = Y7 _, ax cos(k8) + Y 4_, bisin(k6) is a trigono-
metric polynomial of degree d and |H(6)| < M for 8 € [0,2x], then

(4.13) d*(H(6))? + (H'(8))* < d®M? for 6 € [0, 2r].

Theorem 4.14. If f € Hy(R™) and |f(u)| < M foru € S™71, then |A* f(u)| < n*(d)ox M
foru € ™1,

Proof. If we couid show that |§f—(u)| < dM, then since —‘?-I- € H;_1(R"), ]zé(u )| <

d(d = )M = ()M, hence |Af(w)] < Ty 124 ()] < A(d)eM. Then, [(AFf)(u)| =

|AA* () (u)| < n(d - Zk)gnk(d)sz = nk+l(d)2k+2M by induction, and we would be
done.
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We first prove for n = 2; let f € Hy(R?) and suppose | f(uy,uz)| < M when uf+uj = 1.
We define the d-th order trignometric polynomial H(8) = f(cos(8),sin(#)). The chain rule
and Euler’s PDE df = :z:lgi + xg—aL evaluated at (cos(8),sin(9)), give

oz

H'(8) = — sin(8) 2L (cos(8), 5in(8)) + cos(8) £ (cos(8), sin(9)),

dH(8) = cos(8) 2L ~(cos(6), sin(8)) + sin(6 )2L ~(cos(8),sin(9)).
We solve for a%(cos(H), sin(6)) in (4.15):
(4.16) 2L (cos(6),sin(8)) = dcos(8)H(6) — sin(6)H'(6).
Since |4 cos(#) + Bsin()| < vA? + BZ, (4.16) and (4.13) imply that
(4.17) | 2L (cos(6),sin(8))[* < d*(H(9))® + (H'(8))* < d*M?,
so that [a%-e(cos(e),sm(@))l < dM, and of course, similarly, |§£—(cos(9),sin(9))| <dM.

Now suppose f € Hq(R™), n > 3. For fixed £ = (£2,--+ ,&n) € S™72, let ge(z1,22) =
f($1,€2$2, tet a£n$2)' Then g$ € Hd(Rz) and, u%+u2 - U1+(262)u2, hence Igf(u17u2)| S

(4.15)

) . d
M. By the last paragraph, la—ii-(ul,ug)| < Md. Since —gﬁ- az1 |am1 (ui,82uz, -, Equz)]
- < Md for all (uy,&aus,- - ,€nuz). But every point in u G S™~! can be written in this way,

hence |§zfl—(u)| < Md for u € ™71, and, similarly, for each % . The argument of the first
paragraph completes the proof. O

This bound is not far from the truth. There exist pg » € Hg(R™) such that |pg(u)| <1
on $™7 1, but (A(p4,n))(1,0, - ,0) = max{1,n — 2}(d);. We shall discuss this elsewhere.

Proof of Theorem 8.11. Since €(p) = €(\p), scale p so that 1 > p(u) > €(p) for u € S™71.
Write € = €(p) and let ¥,(p) = (5)m2™®; !(p); we show that (¥,(p))(u) > 0. By (3.10),

(418) (1,(2))() = (287 0)) 2 p(0) = Y- gz sy =y, A PHWIGA ()
21

Since 1 > p(u) > € and G,(u) = 1, Theorem 4.14 and (4.18) imply that
nf(m)ye - 1

(4.19) (Tu(p))(u) > €~ ; TT + 5~ D

The sum in (4.19) is finite because Af(p) = 0 for £ > 2. We have (m)ze < (m(m — 1))¢
and (2 +s—1)e > (2 +s— 0> (252 + s)°. Thus, (4.19) implies

(420) @)z e 3 L(2mm=b )’
. s u -y = .
P T = i0\2(n— m) + 4s
Since s > 7;:'1(()';1;)16) — 251 we have %1_:—(_:__)—_'_1% < elog 2, and (4.20) implies
 (elog 2)* '
(4.21) (¥.(p))(u) >e—z(i%g!—) =e— (eS8 1) =14 ¢—2°.

=1
Let F(t) =1+t — 2" Then F" < 0 and F(0) = F(1) = 0, hence F(¢) > 0 on [0,1]. In
particular, € € [0,1], s0 1 + € — 2° > 0 and (4.21) completes the proof. [
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5. QUADRATIC EXAMPLES

This section on quadratic polynomials does not use Theorems 3.7, 3.9 and 3.11.

n

Lemma 5.1. If f(z1,...,2,) = Y axzi, then ®7!(f) is psd if and only if (2s+n—2)a; >
Z; yaj forallk,1<k<n.

Proof. Observe that Af =23 }_, ax, hence by (3.6)(ii),

1 n
tols = D7 () = f — 5856w = 3 a o ot
4(-2--{-5—1) kzjl kT 4( +s—1 le 7]k
= Z(Zs-}—n—— ak—zn:aj)m?. (]
2 k j=1

n
Theorem 5.2. If2r +1 > A > =5 and pi(z) = Az} + k¥2 z2, then pAG7™! € Qn 2r

Proof. If @7} (py) is psd, then @} (px)(D)Gt! = paG,™! € Qn2r by Theorem 3.1.
Since ) . a; = A+n—1 and ax takes the values 1 and A, Lemma 5.1 implies that @:jl(p)‘)
ispsdifandonlyif (n+2r)A>n—-1+AXandn+2r>n—-14A 0O

Let’s compare Theorem 5.2 with Theorem 3.11. If 0 < )\ < 1, then clearly e(px) = A.

By Theorem 3.11, ®,7},(p») is psd provided r+1> (413;’2))‘ 222 By Theorem 5.2,

®.},(pa) is psd precisely when A > —1, orr > 251 _ 2=l Theorem 3.11 is only off

by a factor of log 2. We show later that paG; € Q2,4 does not imply ®; 1(p,\) € Py,

Corollary 5.3. Supposea > 0,b> 0 and 2k+1 > ¢ > 53. Then there exist quadratic

polynomials {£;(ty,--+ ,tn)}, 1 <i < N(n+1,4k), so that
(5.4 a+td4-- 412 N("i’“) Elty, - ta) \*F
‘ bti4.+t2 b+ti 4. 4122
Proof. Suppose 2k+1 > A > =—2—+. Then by Proposition 2.6 and Theorem 5.2, there exist |
linear forms {B;(z1,.. :I:n+1)} and {ve(z1,...,Tnt+1)} so that
N(n+1,2k)
(5.5)(1) @3+ +220) = D (@ Tat);
£=1

N(n+1,2k+2)

(5.5)(i1) (A + a3+ 422 )@+ 422 )= Y BH(ey, )
j=1
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Multiply (5.5)(1) and (5.5)(i1):
M
(5.6)  (at+al+- i @i+l )P =) 9 zan),

where M = N(n+1,2k)N(n+1,2k+2) and the 9;’s are the (quadratic) pairwise products
{B;7¢}- By Carathéodory’s Theorem (see Proposition 6.1), a sum of M forms in Hyr(R"1!)
is a non-negative linear combination of N(n+1,4k) < M of them. By absorbing constants
into the powers, we can rewrite (5.6) as

N(n+1,4k)
(5.7) (Aef+ad+- - +ai )@t + - +an) T = Z ¢15 (21, Tny1),

Substitute z1 = \/B, Ty =11,...,Tn41 = tp, A = § into (5.7) and write qS,-(\/l;,tl, ceytn) =
§i(t1, e ,tn):

N(n+1,4k)
(5.8) (@+tf 4+ +2) b+t + - +2)* = 3 K, ta).

Finally, divide both sides of (5.8) by (b4t + - 4+ t2)%* to obtain (5.4). O

We now apply the argument of Corollary 5.3 in detail to B(t), with the goal of proving
(1.3). The first step is to find expressions for (322 + y2)(z? + y2)*~! and (22 + y*)* as
sums of 2k-th powers of linear forms. This uses a venerable formula which is proved in
[R1, Thm. 9.5]. Suppose s and v are positive integers and v > s + 1. Then

223 v

Z cos x +sm(j—)y)23.

(5.9) (2® +y%)° =

A pleasant non-trivial illustration of (5.9) occurs for s = 3 and v = 4: (22 +y?%)® =
(=% + (5\}'-—52)6 +y® + (%3‘)6), an identity which can be verified by hand.

Proof of (1.3). Two instances of (5.9) (taking v = k+ 2 and s = k and k + 1) give:

2k k+1

) e i)™

02k+2 k+1

(k+2)CED) o

(5.10)(1) (@®+y*) =

2k+2

(5.10)(ii) (z? +yH)! = (cos( ﬁ%)x + sin(ﬁ"—z)y).

Let Lj(z,y) = (cos %-%)x + (sin 2% 1275)y. The proof of Lemma 5.1 gives

sz% +y? _(Q+ 2)(z? +y?) _ (2k — 1)z? + (4k + 1)y?
4k(k+1) 16k(k +1)2 16k(k + 1)2

(5.11) &, (32" +y) =
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Then by (2.9), (5.10)(i1) and (5.11),

(30 +y")(* +yH) " =
(5'12) 22k+2 - 2k—1 2/ gmw 4k41 s 20 gm 2k
(k + 2)(2k+2) (2k +2)2 Z(ISk(kH)’ cos ('1511—2) + T6k(k+1)2 S (El+2))Lj($,y) .
k+1 j=0

Now multiply (5.10)(i) and (5.12), divide both sides by (22 + y?)2* and set z = v/2 and
y = t. Algebraic simplification gives (1.3); key substitutions are (2kk:12 = ‘*Ic—k_;tlg(zkk) and
(2k — 1) cos? 0 + (4k + 1)sin?8 = 3k — (k + 1) cos26. O

This construction is not designed to minimize the number of summands. We know from
Carathéodory’s Theorem that (3% +y?)(z? +y2)?¥~1 is a non-negative linear combination
of N(2,4k) = 4k + 1 of the (k + 1)? 2k-th powers of quadratics given in (1.3). However,
we don’t know which ones to choose. The identity (1.3) is also fundamentally defective,
in that B(t) is not given as a sum of 2k-th powers in Q(¢). The need for V2 could be
eliminated by writing (222 + y?)¥ as in (2.7); this is possible by Theorem 6.12. We can
find h(z,y) = ax? + by? so that h(D)(2z% + y2)**! = (22 4+ y?)(22% + y*)*~! and proceed
as above. Unfortunately, there are no known general explicit formulas for writing any
(Az? + y?*)¥, 0 < ) € Q, as a Q-linear combination of 2k-th linear forms over Q.

We can use the methods of [R1] (see (1.23), Corollary 3.17 and Theorem 5.1) to deter-
mine necessary and sufficient conditions under which (az? + by?)(z2 +y%)""! € Q22,. In
the interest of space, we shall summarize the results at the end of this section.

The case r = 2 can be done from first principles. By scaling, we may assume that
(@) = (1), T (A2 + )22 + 92) = Aot + (A + Da?y? + = S(cew + duy)t,
then A = 3 ci, 2 = 3" c2d? and 1 = Y d}, hence by the Cauchy-Schwarz inequality,
A> (—’\—63L—1)2, s0 A2 =34\ +1<0,0r 17— 12v/2 < A < 17+ 12v/2. On the other hand,

(((‘/5* De+y) +((V2£ 1) - y)4> = (17 £12V3)s? +y7) (22 + 4).

N

Thus, by convexity, (Az?+y?)(z?+y?) € Q2 4 precisely when 17 —12v/2 < X < 17+12V2.
By Lemma 5.1, ®;'(Az? + y?) is psd precisely for 3 <A< 3. Thus, if Aor A~ are in
(3,17 + 12v/2], then ®;'(Az? + y?) is not psd but (Az? + y2)(z? + y%) € Q24. ‘

It can be shown that gqa(z,y) = (Mz? + y®)(z? + y*)™"! € Q2.2 for A € (M, M,],
where M., is a zero of the catalecticant of gx. Theorem 5.2 with n = 2 implies M, > 2r +1. '
Calculations using Mathematica show that M; = 13 + 6V5 ~ 26.42, My = Eils%é ~
25.23, My ~ 25.64, Mg ~ 26.69, M; ~ 28.05, Mg =~ 29.60, My ~ 31.26, M;o ~ 32.99,
M ~ 34.78 and M, = 36.61. If k£ > 13, then My > 2k + 1 > 27 by Theorem 5.2, hence

we can draw the following conclusion.

Proposition 5.13. Let M = M, = %é. Ifa,b>0and 1/M < a/b < M, then for

all k > 1, %Lt—: is a sum of 2k-th powers of rational functions with denominator b + t2.
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6. A SELF-CONTAINED PROOF OF HILBERT’S THEOREM

In this section, we give a self-contained proof of a generalization of Proposition 2.6.
This requires more background from [R1]. We begin with Carathéodory’s Theorem, which
can be traced back to Hilbert [H4] (see [R1,p.27]).

Proposition 6.1 (Carathéodory’s Theorem).
Suppose V is a vector space over a field K C R and dimV = N. Suppose there exist
Ty €V and v, € K, v, > 0, so that y = E,Ic“:l vxxr. Then there exist A\ € K, Ay 20, so
N
that y = Y, AkTs,-
Proof. There is nothing to prove if L < N, and it suffices by induction to consider L =

N +1. Since {z1,...,TN+1} is linearly dependent, there exist cx € K, not all 0, such that
S ickzk = 0. Let Bx = ck/vr. We may assume that 0 < [Bn+41] = max |Bk|. Then

N+1 N+1 N+1 N
Y= Mok e > cze=) (1- E%)')’kxk =) (1- gﬁ*;;)vkwk,
k=1 k=1 k=1 k=1

and )‘k = (]. - ﬂk/,BN+1)'7k Z 0. a

Proposition 6.1, applied to (K,V) = (R, H,,(R™)), retrieves Hilbert’s result that every
P € Qn m is a sum of at most N(n,m) m-th powers of linear forms. Applied to (K,V) =
(K,Hn(K™)), we see that if p = 3 vi(ax)™, ar € Q™ and ¢ € K, then p is a non-
negative K-linear combination of N(n,m) m-th powers of linear forms in Q[z1,...,zx].

Proposition 6.2. For all (n,m), Qn,m is a closed convex cone.

Proof. We already know that Q, m is a convex cone. Suppose pW) € Qn,m and pl) — p.
By Proposition 6.1, we can write
N(n,m) ‘ .
p(z1,...,2,) = Z (0531)581 +---+ agn)xn)m.
k=1

(The linear forms are over R, so the coefficients can be absorbed into the linear forms.)
Let e = (0,---,1,---,0) denote the £-th unit vector, so p(er), the coefficient of zJ*,

equals Y k(ai’})m and converges to p(eg). Thus, for fixed (k,£) and j sufficiently large,
|a§c][)| < (2p(eg))t/™. Hence |a£]£)| is uniformly bounded over all {(j, k,¢)}, and there exists
a sequence {j,} — oo such that {ai][)} converges for each (k,¢), say to age. Then

N(n,m)
p(T1,-,%n) = Z (ak1z1 + -+ 0knZn)™ € Qum. O
k=1

The following material can be found in [R1, p.26]. If [, ] is an inner product on RV, then
the dual cone to a closed convex cone C CR"is C* = {z € RY : [z,y] > 0 for all y € C'};
C* is also a closed convex cone. Minkowski’s Separation Theorem implies that (C*)* = C.
We now show that P, ,, and Q, m are dual closed convex cones in H,,(R"), using (2.3)
as the underlying inner product; see [R1,p.38] for more discussion.
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Proposition 6.3. For all (n,m), P, ,, and Q, m are dual cones.

Proof. By definition, p € @}, ,, if and only if [p,q] > 0 for every ¢ € Qp m. Using Lemma
2.4(i), we see that this means [p, q] = [p, >.(ak)™] = >_ p(ak) > 0 for any set {ar} C R,
hence p(a) > 0 for all « € R"; that is,p € P, . O

There is a simple geometric criterion for £ € C to be in the interior of C.

Proposition 6.4. Suppose C C R is a closed convex cone with inner product [-,-]. Then
z € C is in the interior of C if and only if [z,y] > 0 for all non-zero y in C*.

Proof. Suppose z € C and [z,y] = 0 for some non-zero y € C*. Then for every n > 0,
[z —ny,y] = —nly,y] <0, hence x —ny ¢ (C*)* = C and so z is not in the interior of C.
Conversely, if [z,y] > 0 for all non-zero y in C*, then [z,u] > 6§ > 0 on the compact set
{u € C*: |lu||* = [u,u] = 1}. By linearity, [z,y] > 6lly|| for all y € C'*. Now suppose
z € RY and ||z — z|| < 4. Then by the foregoing and the Cauchy-Schwartz inequality, we
have [z,y] = [z,y] — [z — z,y] = éllyl| = ||z — 2|| - |ly]| = O for y € C*, hence z € C. Thus
C contains a é-ball around z. O

It is easy to show that the d-th powers span H4(R™). This is known (see [R1,p.30] for
references) and explains why @, q is not interesting for odd d: (—a-)? = —(a-)¢, so every
linear combination of d-th powers is a sum of d-th powers, and so @, 4 = Hq(R").

Proposition 6.5. For all (n,d), Hy(R") is spanned by {(a-)? : « € Q"}.

Proof. Let V be the subspace of Hy(R"™) spanned by {(a-)? : @ € Q"} and suppose
q € VL. Then 0 = [¢,(a-)%] = ¢(a) for all « € Q™. By continuity, g(a) = 0 for all « € R",
so ¢ = 0. Since V+ = {0}, we must have V = Hy(R"). O

We say that {ay,...,an(n e} € R™ is a basic set of nodes for Hg(R") if {(ax-)4} is a
basis for Hy(R™). (This is a classical term in numerical analysis.) Proposition 6.5 asserts
the existence in Q™ of a basic set of nodes for every (n,d). In fact, Biermann’s Theorem
(see [R1,p.31]) states that I(n,d) C Z™ is a basic set of nodes for Hy(R"™).

The following integral representation for G7, can be found in [R1, p.105], where several
other proofs are given.

Proposition 6.6. Suppose p € Hz.(R™) and let du be Lebesgue measure on S®™! C R™",

normalized so that [ --- [u?"du = 1. Then,
uesSn—-1

(6.7) .ol = [+ [ owan

ueSn—l

Proof. Since (6.7) is bilinear, it suffices to verify on a spanning set for H.(R"); namely,
{(a)* : « € R"}. That is, we must show that for p = (a-)?",

(6.8) [(a)*",GT] = / .- /(a1u1 + o+ anuy)? dp.

ueSn-l
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But the left-hand side of (6.8) is G7,(a) = (X_; a?)" = |a|?” by Lemma 2.4(i). On the right-
side, make any orthogonal change of variables in which v; = |a| "} aju; + -+ - + apu,).
The integrand becomes |a|?*"vi" and the right-hand side becomes:

WT/ / 2r gy = |af?". O

vesu 1

A standard integral formula (see e. g. [D1,p.374]) gives

/ / ¥ du = T (0N _2mn/2 Ty 2i +1

) T Ly

HES" 1

The following theorem gives a large class of forms in the interior of Qn m, as well as
presenting another interpretation to @,.

Theorem 6.9. Suppose r,s > 0 and 0 # f € P, 3. Then <I>2;+r(f)Gf, is interior to
Q@n 2r+2s. In particular, taking s =0 and f = 1, G}, is interior to Qn2r

Proof. If p € Py 27424, then pf € Py 97445, and by Proposition 6.6,

(6:10) 0 [ [ptde = [pf.G54)

uesu—l

with equality if and only if p(u)f(u) = 0 almost everywhere on S™~!. By continuity, this
implies pf = 0, and f # 0, so p = 0. But then by Lemma 2.4 and (6.10),

(6.11) 0 < (2r +4s)l[pf, G¥] = (2r + 2s)![p, f(D)GF*] = (2r + 25)![p, Br424(f)G),

with equality if and only if p = 0. This is true for all by p € Py 2r42s, hence (6.11) and
Propositions 6.3 and 6.4 imply that ®,42,(f)GF, is interior to @Qn 2r+2s. If f = 1, then this
argument simplifies and ®,42,(f)G}, = G, is interior to Qp 2. O

If0 # \; and f € Hy(R™), define f) € Hg(R™) by fa(z1, - ,2n) = f(A1Z1,- 7+, AnTn)-
Then it is easy to see that [p,q] = [pa,¢1/x]. It follows by Proposition 6.4 that, if 0 # A; € K
and h € Hp(K™) is interior to Qn m, then so is every hy. It is not hard to prove a
substantial generalization of this remark: If T is any invertible linear transformation in
R™ and p is interior to Qp m, then so is po T. See also [R1,p.40] and [R2, p.1065].

Our last major theorem, which is implicit in [H5], combines with Theorem 6.9 to prove -

Proposition 2.6. A sketchier proof of this result (applying only to GT/? and K = Q) can
be found in Ellison [E1].

Theorem 6.12. Suppose h € K|[z1,...,Z,] and h is in the interior of Qp . Then there
exist 0 < A\x € K and aj € Q" so that

N(n,m)

h(z1,..zn) = Y Ak(aki@i+ -+ Qknga)™
k=1



20 BRUCE REZNICK

Proof. Let {ag : 1 < k < N(n,m)} C Q" be a basic set of nodes for H,(R"). Since
{{(ax-)™} spans Hn(R") and is contained in Hn(K"), it spans that space as well. Thus,
if g € Hp(K™), then there exist unique A\; € K so that g = >, Ax(ax)™

Since h is interior to Q. m, there exists € > 0 so that h — e, (ag)™ € Qn,m. Thus
there exist 3, € R™ such that

N(n,m) N(n,m)
(6.13) h—ed) (ap)™= > (Be)™
k=1 =1

Now take 3¢ € Q™ close to B¢ and express (B¢-)™ — (B¢-)™ in terms of the basis {(ak-)™}:

N(n,m)

(6.14) (Be)™ = (Be)™ = Y k()™
k=1

We may choose B so close to B¢ that |6k ¢| < N(n;m)~'e. Now sum (6.14) over £:

N{(n,m) N(n,m) B N(n,m)
(6.15) N B = > Be)m+ Y bklar)™,
=1 =1 k=1

where 6; = 5,6k and |6x| < e. Combine (6.13) and (6.15) to get

N(n,m) N(n,m)

(6.16) h= S (e+oe)a)™+ Y (Be)™
k=1 =1

By construction, € + § > 0; we must check that e + 6y € K. But, Be € Q, so h =
h— 3 ,(Be)™ € Hn(K™), and so by the remark of the first paragraph, € + br € K.
Thus, (6.16) gives h as a non-negative K-linear combination of 2N(n, m) m-th powers of
linear forms, each of which is in Q[z4,...,z,]. It follows from Proposition 6.1 that h is a
non-negative K-linear combination of N(n,m) of these m-th powers. [
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