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1 Introduction

Fix a positive integer n and let R[X] := R[z1, ..., z,]. We write A, for the simplex {(z1,...,2Z) |
z; > O,Zizi = 1}.

Pélya’s Theorem ([6], (4, pp.57-59]) says that if f € R[X] is homogeneous and positive on
Ay, then for sufficiently large N all the coefficients of

(xl + "'+$n)Nf(.'L'1,...,.'En)

are positive. In this note, we give an explicit bound for N and give an application to some
special representations of polynomials positive on polyhedra. In particular, we give a bound for
the degree of a representation of a polynomial positive on a convex polyhedron as a positive
linear combination of products of the linear polynomials defining the polyhedron.

We use the following multinomial notation: For a@ = (ay,...,a,) € N™, let X* denote
zi' .. .z%» and write |a| for a; + .-+ + a,. If || = d, define c(a) := Wdl_a,." Let us fix
homogeneous f € R[X] of degree d,

f(X) = Z @ X = Y cla)ba X",
|aj=d |aj=d
and let L = L(f) := mglbal and A = A(f) := Juin F(X).
Our main theorem is:

Theorem 1. Suppose that f € R[X] is a form as above. If

dd-1)L
N i
> 5 \ d,
then (z1 + -+ )N f(21,...,2n) has positive coefficients.



Note in particular that the bound does not depend on n, the number of variables. This
bound improves (by a factor of roughly 4n) the bound in the paper [1], which in any case
contains an error in the proof, see [2]. In {7, Ex. 3.5], we considered a special case equivalent to
fz,y) = 2% — (2 - &)zy + y?, for which L = min{1,1 - %} =1 and

é
— s (1 — )2 P = min 1 — (4 — _pn=2.
A= orgtlgl(t A=) +ot(1 -ty = Otéltlgll 1-(4-6)x1-1) 7

thus Theorem 1 gives N > — —2. In fact, (z+y)" f(z, y) has positive coefficients precisely when
N > 2[2] — 3, so Theorem 1 is sharp.

The authors thank Markus Schweighofer for bringing his unpublished work to our attention,
and for useful comments and suggestions. The second author happily acknowledges useful con-
versations with Matthias Aschenbrenner, John D’Angelo, Zoltan Fiiredi and Doron Zeilberger.

2 The bound

In this section, we prove Theorem 1. We begin with some notation. For a positive number ¢, a
non-negative integer m, and a single real variable z, define

m—1
@ =z@-t)-(c—(m-Dt)= [] @—it).
1=0
Note for later reference that
d—1
() = I (tw - i - 1)t) = t* ()3, (1)
=0

and if m > n are both integers, then (n)7* = 0, since one of the factors in the definition is zero.
It follows immediately that in the special case where z = k/M and t = 1/M, where M is a
positive integer, we have

1 ' rk . .
My m T Mm 1—‘0 0, otherwise.

We fix f = 3 ao X* and suppose that f > 0 on A,,. We assume throughout that d = deg f >
1; the d = 1 case is trivial. Following Pélya, we make the explicit computation:

(zl+"'+mn)Nf(z1""7$ﬂ):
P R T DRy
18l=nN "1 lal=d

Write @ X B if a; < fB; for 1 < i < n. For |8| = N + d, denote the coefficient of z}* ... 2%
n (@1 + - +2n)N f(@1,...,%n) by Ag. Then

N!
dg= D Br — 1)l (B —an)! @

ja|=d, a<8
_ NYN +a)¢ -
~ Bl ! o] ;m E (Be —az)'(N+d)°‘"



We now express Ag using the (z)[* notation and (2):

NN + d)¢ B o Bn \orm
Ag = Bl B! Z da( 3 (Va1 (FE2) Ry @)
laj=d

(If a £ B, then the extra terms added in (3) are just 0.) Still following Pélya, define
fe(@1, @) 1= ) aal@)ft - (Tn)f".
lex|=d

Clearly, fi — f uniformly on A,,, so that for ¢ sufficiently small, f; is also positive on A,. In
view of the foregoing, this means that for NV sufficiently large, and all 8 with |8] = N +d (so
that f(n.a)-1 is evaluated on A,),

NYN +d)¢ .
Aﬁ = m!—f(lv__'_d)—l(]-v%i, ey TV%) > 0- (4)
It follows that all the coefficients of (z; + --- + z,)™ f(21,...,Z,) are positive.
We now extend Pélya’s work. Let us drop the constant factor in (4) and set ¢t = —f,_g,
Yr = Tv%’ and keep in mind that }_, yx = 1. We have
fe@iy e syn) = F1s -, 0n) — D Ga (U5 yEm — (1) - (Yn)E") -
|a]=d
Using the information about f, we see that
d!
felyis oo yn) 2A-L Y ol ol R e (/) P 79 (5)
! n!

le|=d

If ax > Bx, then (yx)* = 0, so yg* > (yx)g* > 0 for all k; hence we may drop the absolute
value in (5).
By the Multinomial Theorem,

d! o N 4
Z 1.y 171 eyrt =+ +yn) =1,
|al=dal' Qn:

and by the iterated Vandermonde-Chu identity (see below for a proof),

d! N N g
> T g W) ()i =@+ +u)f = [ -kt (6)
1:°°Qp.
la|=d k=0
Thus by (5), we are done if we can show that
A-L(1-(1-t)---(1—-(d—1)t)) 2 0. (7

Suppose now that
1 2 A

t = —.
N+d “dd-1I
It is easy to prove by induction that if 0 < w; < 1, then [[(1 — w;) > 1 — > w;. Since
A< £(1,0,...,0) < L and d > 2, we have t < 715, hence

A=(1=t) (A= (d=1)t) <t(L+2+ -+ (d=1) =t




and we are done.

What remains is to prove the iterated Vandermonde-Chu identity (reference thanks to Doron
Zeilberger):

al-a

Y O (K = (X 4+ X ®)
|ee|=d n

We first prove (8) combinatorially in the special case that ¢t = 1 and X = y; is a non-negative
integer:

d!
> )P ) = ()t (9)
arl-ap!
la|=d
Consider n sets S1,...,S, of distinct elements, where |Sx| = y&, and let S = US;. Then

IS| = > yx := y, and the number of d-tuples of distinct elements from S is plainly y(y —
1) .- (y — (d — 1)), which is the right-hand side of (9). We now count the number of d-tuples in
a different way. For each n-tuple o with |a| = d, consider the number of such d-tuples in which
there are oy distinct elements from Sy, 1 < k < n. There are (z: ) = (yx)T* /ax! ways to choose
these elements, and d! ways to arrange them, and so, altogether,

n
(yk)r™ d! )
A5 = G @t - o)

=1

d-tuples. We sum over all possible choices of  to get the left-hand side of (9), completing
the proof in the special case that the y;’s are non-negative integers. But both sides of (9) are
polynomials in the y;’s, and their difference is a polynomial which vanishes on N™. It’s easy to
see that such a polynomial must vanish identically, and so (9) is in fact an identity for all real
Y. Finally, let yx = X/t in (9) and multiply through by t¢, keeping (1) in mind. Then we have
proved (8).

3 Polynomials positive on polyhedra

Suppose P C R" is a convex polyhedron with non-empty interior, bounded by linear polynomials
ALy« -5 Ar € R[X]. We always choose the sign of the A;’s so that P = {X | A;(X) > 0 for all 1}.
Then it is an remarkable fact that any polynomial which is strictly positive on P can be written
as a positive linear combination of powers of the \;’s:

Theorem 2. Given P as above and suppose f € R[X] is strictly positive on P. Then for some
m € N, f has a representation

f= Z bad1™ .. AR, (10)

le|<m
where by, > 0 for all a.

Theorem 2 was first proven by Handelman [3]. His proof is non-constructive; it uses a
representation theorem similar to the Kadison-Dubois Theorem. In this section, using our bound
for Pélya’s Theorem, we give an upper bound for the degree m of a representation (10).

We begin with the case where P is a simplex. In this case, a degree bound for the represen-
tation follows almost immediately from the bound in Pélya’s Theorem. Let S be an n-simplex



in R™, with vertices {vp,...,v,} and let {Xo,..., An} be the set of barycentric coordinates of S,
i.e., each A; € R[X] is linear and

X= ivi/\,-(X), 1= ‘i/\i(X), Ai(v5) = 0ij.
=0

i=0

Given f € R[X] of degree d, then for any m > d, there exists a homogeneous polynomial fm in
n + 1 variables of degree m such that f,(Mo,...,An) = f(X). We can construct fn, as follows:
Suppose f(X) = Elalsd ae.X®, then

n a n m—|a|
FX)=)" aa (mem) (ZA;-(X)) ,

le|<d i=0 i=0

thus we set

n o n m—|a|
fm(o, -+, ¥n) = Z On (Zviyi) <Z :’h’) . (11)

|| <d i=0 =0

Note that for d = deg f, fa is the Bernstein-Bézier form of f with respect to S.
The following theorem is a generalization of {7, Thm. 6]. Without the concrete bound and
with a different proof, it was proven by Miccheli and Pinkus [5, 2.6).

Theorem 3. Suppose f € R[X] of degree d is strictly positive on S and fa(yo, ..., yn) is as
defined as in (11). Let X be the minimum of f on S and L = L{f;). Then for

dd-1)L
.

f has a representation of the form (10) of degree N.

N>

Proof. Since f > 0 on S, it follows easily that fi>0on An+1. Thus we can apply Pélya’s
Theorem to f4 to find N such that (3 ;)" fa(Y) has positive coefficients. Then we have

Q- wNfa¥) = Y bsY?,

[Bi=N

where bg > 0 for all 8. Substituting A; for y; yields f(X) on the left, and a representation
of degree N on the right. The bound on N comes from Theorem 1 if we first note that the
minimum of fy on A, is the same as the minimum of f on S. O

Now we turn to the more general case of the polyhedron P described in the beginning of the
section. Given f strictly positive on P, we want to use the same technique as for simplices, i.e.,
find a homogeneous polynomial g which is positive on Ay such that when we “plug in” the A;’s
we obtain f. In this case, however, finding g is not quite so straightforward.

We fix P as above and {4, ..., A} such that P = {); > 0}. We first note that by 3], there
must exist positive real ¢; such that ), c;A; = 1. The ¢;’s are found by solving a linear system.
We replace each A; by ¢;\; so that we have

dx=1 (12)

i



Furthermore, there exist constants b; ; € R so that, for j =1,...,n,

Again, explicitly finding the b; ;s is an easy linear algebra problem. Thus we are almost in the
situation for simplices, although the b; ;’s need not be positive. Let B be the real n x k matrix
(bi,5), then

B (A, )T = (21,...,2%0) (13)

As in [9], we formalize the notion of “plugging in” the A;’s. Let R[Y] := R[y1,...,y] and
define ¢ : R[Y] = R[X] by y; = ;. By (12) and (13), ¢ is onto. More explicitly, given a
polynomial f = ZI a|<d %X *, define homogeneous f € R[Y] by

k
Fim S aa(B YA gyl (14)
i=1

le|<d

Then ¢(f) = /. i

Suppose now that f > 0 on P and we have a point v € Ag. Then f(y) = f(B - 7). Since the
point B -~ need not be in P, we do not necessarily have that f () is positive. Thus we cannot
apply Polya’s Theorem directly to f. However, by a theorem of Schweighofer [9], it turns out
that there is a polynomial positive on Ag of the form f + ¢(3 p 1‘12-), where {ry,...,r:} is any
basis for the kernel of ¢. Note that any g of this form has the property ¢(g) = f. The following
result is (essentially) [9, Lemma 3.1]:

Lemma 4. Suppose P and ¢ are as above and f > 0 on P. Let {r1,...,7:} be a basis for the
kernel of ¢, set r := Z;=1 rf-, and define f as in (14). Then for sufficiently large c, f+er
is strictly positive on Ag. More explicitly, if f is already strictly positive on Ay, then we take
¢ = 0 and otherwise, this holds for ¢ > —_;1"%1, where my s the minimum of f on Ar and ma s
the minimum of r on Ax N {8 € R¥ | f(8) < 0}.

Proof. Let U be the compact set A, N {8 € R¥ | f(8) < 0} and assume that U # 0. By [9, §3],
r > 0 on U and hence, since U is compact, the minimum m; of r on U exists and is positive.
Thenon U, f+er>mi+eme>0. On A \U, f+er>f>0. ]

Theorem 5. Given P, ¢, 7, f, and f as above. Fiz ¢ such that F := f+er>0o0nA. Letd
be the degree of f and let A be the minimum of F on Ag. For

d(d — 1) L(F)
N> —— - —
P 2 )\ )
f has a representation
F= D bt AR,
la|=N
where by > 0 for all .

Proof. Since ¢(F) = f, this follows from Theorem 1 applied to F, exactly as in the proof of
Theorem 3. O



Remark. Note that for a specific P and f, we can calculate all elements needed for the bound
in the theorem, and then can easily find a representation for f. Thus the theorem yields an
algorithm for finding a representation for f of the form (10).

Algorithm. Given a compact, convex polyhedron P C R" defined by {A1 > 0,..., A 2 0}, where
>;Ai=1,and f > 0on P. We will describe a procedure for constructing a representation of f
of the form (10). We proceed as follows:

1. Using (14), construct homogeneous f € R[Y] with the same degree as f such that ¢(f) = f.

2. Construct a basis {ry,...,r:} for the kernel of ¢. We can use the following well-known pro-
cedure for this: Construct a Groebner Basis G for the ideal generated by {y1 — A1,- .., ¥k —
A}, using lex order with z; > -+ > z, > y1 > +-- > yx. Then G NRyy,...,yx] is the
desired basis.

3. Calculate the minima m; and m; needed for the c of Lemma 4, e.g., by using Lagrange
multipliers. Set F := f + cr and find the homogeneous F.

4. Calculate L(F) and the minimum of F on Ay and then find N as in Theorem 5. Use the
coefficients of YN F' to obtain the desired representation.

Ezample. Let P be the square unit square centered at the origin in R2, and let {A1, A2, A3, A4} =
{1/4+1/42,1/4—1/47z,1/4+1/4y,1/4—1/4y}. With ¢ the map defined above, we have that
{r1,r2a} = {y1 + y2 — 1/2,y3 + ys — 1/2} is a Groebner Basis for the kernel of ¢. Consider
f:=3/2—2%+y%>0on P, then

z ) ) 11 11
f= _iy% + 11y1y2 - Ey% + 3y1y3 + 3y2ys + 7113% + 3y1ys + 3y2ys — Sysya + _2“313

The minimum of r := r{ + 72 on {f < 0} N A4 is 1 and the minimum of fon Ayis —5/2.

Thus we need ¢ > 5/2. We choose ¢ = 3, and set F' := f + 3r. Then

. 7 23 23
F = 5yf +23y1y2 + 503 — 9y1ys — 9aus + 03 — 9va — 9ous + Tysya + Ui

which is positive on A4. The minimum of F on Ay is 3/10 and L(F) = 23/2. Hence the bound
in Theorem 1 is 75. This means that that (y; + y2 + y3 + y4)**F must have positive coefficients.
Expanding, and plugging in the )A;’s, we could then obtain an explicit representation for f. In
point of fact, f has an explicit representation of degree 3.
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