Vo.45,No. 2 DUKE MATHEMATICAL JOURNAL® June 1978

EXTREMAL PSD FORMS WITH FEW TERMS

BRUCE REZNICK

1. Introduction

A psd form is a homogeneous polynomial p for which p(x,, - -+, x,) = 0. Let
P, ., denote the convex cone of all psd forms in n variables with degree 2m and
3..2m denote the convex cone of all such forms which can be written as a sum of
squares of forms. (It is clear that a sum of squares is psd.)

Hilbert [7] showed in 1888 that 2, 2 = Pnanm if and only if (n, 2m) is (n, 2),
(2, 2m) or (3, 4) and that 2, ,,, C P, ., otherwise. He gave a method for con-
structing psd forms which are not a sum of squares, but did not carry it out. In
fact, no explicit form in P, 5, — X, Wwas exhibited until 1967.

Motzkin [9] demonstrated that

M(xy, x5, X3) = x$ + x3x§ + x3xd — 3xixdxd

is such a form; the simplicity of M contrasts with the complexity of Hilbert’s
construction. Robinson [11] simplified Hilbert’s method and provided several
more such forms. Very recently Choi and Lam [1], [2], [3] have looked at P, 5.,
as a cone an | searched for extremal elements. They proved that M, a number
of Robinso.i’s forms, and

S(xy, X2, x3) = xix3 + x3x% + x3x§ — 3x§xd

are all extremal psd forms in this sense.

The simplicity of M and S motivate this paper, in which all extremal psd
forms with four or fewer terms (which are not sums of squares) will be de-
scribed.

2. Preliminaries

Identify a form in n variables of degree m with the N-tuple of its coefficients
ordered in any predetermined manner, where N(n, m) = (%™ 1!), and pull
back the ordinary topology on IR. Then P, ,,, is a closed cone. Ellison [5] has
shown that 3, ,,, is also a closed cone. If fis extremal in P, ., as a cone and
f=g, + g, g psd, then g, = \,f; if fis extremal in 2, ., then fis a perfect
square. Let E, 5, consists of the extremal forms in P, ,, which are not perfect
squares. We shall include the condition ‘‘not a perfect square’ in any further
use of the word “‘extremal”. If h = x%1 « + - x%, 3a, = k, and fis in E, ,,, then
Rf isin E, om + or : if x}% divides g, + g3, g: psd, then x?% divides each g;.
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Consider any change of variables x; = x;(yy, - * * , ¥s) in which each x; is a
forminy,, - - -, y. If f(x,, - - -, x,) is psd or a sum of squares then the induced
form f(yy, * -+, ys) will also be psd or a sum of squares. Not being a sum of

squares, however, is not necessarily preserved. For example,
S(x1x3, xpx3, xixs) = xixgxd(x$ + x§ + x§ — 3xqxxf),

which is a sum of squares—see Hardy, Littlewood and Polya [6] p. 55. In the
special case that s = n and the change of variables is linear and invertible, Py s
and 2, ;, are left invariant. So, therefore, is E, ,,, and we shall frequently use
this fact; two forms will be considered the same if they are related by an in-
vertible change of variables.

A typical monomial x7: - - - xis, 3r; = 2m, will be written x" with the under-
standing that ¢t denotes a single real variable. A typical form is then 2a;x™ where
ri = (Fa, 00 ).

A lattice point in IR™ is a point all of whose coordinates are integers; the set of
lattice points in IR" is written ZZ*. The triangle with vertices p,, p,, ps will be
written T(p;, p., Ps). Suppose the p;’s are lattice points and there are j lattice
points (other than the vertices) on the edges of T and & lattice points in the open
interior. Then by Pick’s Theorem (see Coxeter [4] p. 208), the area of T is
G + 2k + 1)/2.

Suppose now that P is a plane which lies in IR* and L = P N ZZ"*; L could be
vacuous, one point or a lattice of one or two dimensions. We are interested in
this last case. Let x, € L be arbitrarily selected. In an infinite number of ways x,
and x, may be chosen in ZZ" so that x is in L if and only if x = x, + a;x; + asx,
for a; € ZZ. This induces an isomorphism ¢ between L and ZZ2, ¢(x) = (a;, as);
¢ depends on the choice of x; and x, and is affine so that convex combinations
are preserved. For a triangle T(p,, ps, ps), p: € L, define A(T) to be the area of
the triangle T(¢d(p,), d(p2), ¢(ps)) in IRZ. Since the area of any fundamental
parallelogram in ZZ2 is 1 (see Coxeter [4], p. 208), A(T) does not depend on the
choice of x; and x,. For any set X in IR” define AX = {Ax: x € X}, so AA\T) =
A2A(T). We shall use this along with A(T) to enumerate the lattice points in 7.

Finally, the arithmetic-geometric inequality (AGI) is well known. We shall
use the following version of it: if ZA; = 1, A; = 0, x; =0 then

Ay + oo Ay = e e xhe
with equality only if x, = - - - = x,,.

3. Cages and frames

Let p(x,, - -+ , x,) = 2a:x"i be a form with degree 2m; we assume that a; # 0
and that the r;’s are distinct n-tuples. The cage of p, C(p), is the convex hull of
the r;’s, viewed as vectors in IR” lying in the hyperplane u, + - - - + u, = 2m.
The frame of p, F(p), consists of the lattice points in C(p); F(p) = C(p) N ZL".
The reduced frame of p consists of all lattice points in C(p) with even coordi-

. . . . e 1
nates and is written 2R(p); R(p) consists of the lattice points in > C(p). The
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extreme points of C(p), E(p), form a subset of the ;s and so E(p) C F(p). If
C(p) is a k-dimensional object in IR™ then F(p) will be a ‘‘k-dimensional’’ subset
of a lattice.

LEMMA. For any form p = 2ax", C(p) lies in the half-space b - u = byu, +
-+ b, <difandonlyif lim |t7p(f)] <o forany substitution x; = c;th.
t— x

For any form p, C(p%) = 2C(p). If p is psd and r;is in E(p), then a; > Oand r;is
an even vector.

Proof. Fix a substitution and let b = (by, - - - , by)and ¢ = (¢, = * -+, Cn);
then p(f) = Sa;c® . If C(p) lies in the given half-space then b - r; = d so
t~%p(¢) is bounded as t — . Conversely, suppose ! ?p(f) is bounded but
b'ri>d.Assumed’=b-r1=---=b-rs>b-rjf0rj>swhered’>d.
Then 0 = Hlm r9p(t) — 2'a;c™, a form in the ¢’s which vanishes. Since

t— o©

a; # 0 and the r;’s are distinct, this is a contradiction.
Since a closed convex set in IR” is the intersection of the closed half-spaces
which contain it, and

|r24pX(0)| = |Up()F, C(p*) = 2C(p).

Finally, suppose p is psd and r; is extremal; choose b so that b - r; = d >
b-riforj#i Letx;=¢t% ¢==*1;then0 =< lim ¢ p(f) = ae”,

t—

hence a; > 0 and every r; is even. ®

THEOREM 1. For any psd forms fandg, C(f + g) D C(f); if f = 2g then
1
C(gy) C~ C(f)-

Proof. Write h = f + g; since h(x) = f(x) = 0, absolute values are unneces-
sary and

lim 1%h(f) < = implies lim 79 (¢) < x,

> ® {— =
so every half-space containing C(f + g) contains C(f). The theorem follows
upon taking intersections. If f = 3g% then 2C(g;) = C(g3 C C(f). =

Since the extreme points of C(f) are in F(f), all inclusion results for cages

also apply to frames. Cages are really a fancy way of viewing the degree of
vanishing at the unit vectors; for example, if 2m, 0, - - -, 0) is not in C(f), then
fvanishes at (1,0, - - -, 0).

4. Finding the simplest case
We wish to determine the simplest elements in E, .,; that is, the extremal
forms with the fewest number of terms. Suppose

k
plx) = > axm

i=1
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and every #,is in E(p). Then by Theorem 1, each r; is even and a; > 0 so that p,
as it stands, is a sum of squares. Thus an extremal p must have at least one non-
extremal r;. Suppose F(p) is one-dimensional, E(p) = {r;, ri} (by re-indexing if
necessary) and that , — r, = 2ds where 2d is the greatest common divisor of
the (ry; — ry)’s. If r; = ry + ¢;s, then 0 = ¢; = 2d and p(x) = x"1 S.a;y“ where y =
x°. By the choice of 2d, at least one s;is odd. Let x vary over all n-tuples with x;
# 0. Then y ranges over all non-zero reals (since s; is odd). As x" > 0, p(f) =
Sat° is non-negative for all ¢t % 0, and so for all ¢ by continuity. Thus p(z) is a
sum of squares, from which a representation of p as a sum of squares can be

derived.
The simplest forms in E, ,,,, therefore, must have two-dimensional cages and

at least one non-extremal r; and so at least four terms. Both M and § satisfy
these criteria. Suppose that

4
p(x) = > ax", E(p) = {r, r, rs}y and p € Enpm.
i=1
It is possible that r, lies on an edge of C(p), say ri7,. If so, there is a vector b so
that

b'r1=b'r2=b'r4=d>b'r3.

Under the substitution x; = ¢;t%,

0= lim %) = a;c™ + a,c™ + a,c™ = q(c)
t— o
for all ¢. Thus g(x) is psd and C(gq) is one dimensional so that g(x) is a sum of
squares, as is p(x) = g(x) + azx"s.

Henceforth assume that r, is strictly interior to C(p) = T(ry, rs, #3). If 14 is
even and a, > 0 then p is once again, as it stands, a sum of squares. Otherwise,
by taking the invertible change of variables x; = —x;, if necessary, assume that
a, < 0. The barycentric coordinates of r, are determined by the equations

3

3
Sh=1, > N =1y
=1

i=1

each A; is positive.

LemMMA. Ifry, - - -, r,are linearly independent vectors in IR” then for every
positive k-tuple (y,, - - - , y,) there exists a positive n-tuple (v,, * * * , v,) so that
vt =y,

Proof. The logarithm of the system {v": = y;} is the system
n

> rylog v; = log yi{.

i=1
As the r;’s are linearly independent, the rank of this system is £ and so a (not
necessarily unique) set of log v;’s can be found. =
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THEOREM 2. If pis an extremal form with four terms then, up to a change
of variables x; = vx;, v; ¥ 0,

3
plx) = D AxTi— x™4,
=1
where

3 3
= > Mty > M=1 and N> 0.
i i=1

i=1

Proof. We have already established that r, is interior to C(p). As ry, I and ry
are not collinear points in IR”, they are linearly independent vectors. Assume
now that p(x) is extremal and

p(x) = @ x™ + ax™ + azx™ — agx’s,

a; > 0. Find {v;} by the last lemma so that v": = \;/a; for i = 1, 2, 3, and make
the change of variables x; = v;y;. Then

3
p) = > Ny — ay’ = q(y, ai).
i=1

Of course g depends on the r;’s. By the AGI, g(y, 1) is psd. If each y; = 1, then
q(y,a) =1— ajsoa;=1.But

q(y, az) = aqly, 1) + (1 — ay)q(y, 0),

each of which is psd. So p(y) is extremal only if a; = 1 and p is, up to a change
of variables, of the type described. =

5. Yoyos
Suppose

3
A=0, > =1 and r, = Z Airi,

i=1 i=1

where r,, r, and r; are even and not collinear (so that r, determines the A;’s). The
form

3
Y(rl’ Fa, I's, I's; x) = Z }\ixri — x4
i=1

will be called a yoyo. (The term ‘‘yoyo’’ is used to avoid confusion with other
fields of research.) Every yoyo is psd by the AGI and Theorem 2 says that
every extremal form with four terms is a yoyo, as

x§ + xd + xgxd — 3xfadxg
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demonstrates. If one of the A;’s is 0 then r, lies on an edge, if two A;’s are 0, then
r, is one of the vertices and the yoyo is identically 0. Felicitously, yoyos have a
natural additive property, leading to a necessary condition for extremality
which proves to be sufficient.

LEMMA. Suppose
r4 e T(ria r2’, I‘é) g T(rla r2a r3)’

ri, rieven for 1 = i< 3and

3
ry = z T
i=h
then
3
Y(ry, ray 13, 1) = Y(ri, g, rh, 1) + D Xy, ragrs, r). @
i=1
Proof. Let
since .
ri = > Mjri, since T(ri, 15, r3) CT(ri, o, 1), Ay = 0.

i=1

Then
3 3 3 3
ry = Z Mj( Z Mjri) = z ( z )\ij”'j)ri-
i=1 i=1 i=1 i=1

Thus

3
Y(ri, r3, rgy rs x) + > wiY(ry, 1y, 1, 15 X)
i=1

3 3 3

R R IR )
i=1 i=1 i=1
= Y(ry, ra, 13, 1y; X).

THEOREM 3. If Y(ry, 1y, 13, 1y X) is extremal, then

2R(Y) ={r, rs, 13, s} and ry= % (ry + r + 13).

Proof. Recall that 2R(Y) consists of all even points in C(Y). Suppose
r € 2R(Y) is not one of the r;’s. The triangle T(r,, r,, r5) is divided into two or
three triangles by connecting r and each of the vertices (depending on whether
is on an edge or in the interior.) In either case, r, is contained in some triangle
I(r;, 15, ¥} C T(ry, ry, r3). By the last lemma, Y(r,, ry, 3, r4) can be written as a
sum of yoyos. (Actually, two of the new yoyos vanish identically and the other
two are not multiples of the original.) For example, suppose r; = (12,0,0), r, =
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(0,12,0), r, = (0,0, 12) and r, = (4,4, 4). (This is a sum of squares by [6].) Let r
= (6, 4, 2) then r, € T(ry, r3, r) and
(2 + xf? + xf? — xiried)/3
= (6xfxixd + xi2 + 2x12 — 9xixix3)/9 + (2/3)(3xP® + 2x32 + xi2 — 6xSx$x2)/6

and so is not extremal.
Suppose 2R(Y) = {r,, ry, r3} and let r; = 2s; then

1
> C(Y) = T(sy, Sz, 3)

and so by Pick’s theorem,

1 1
A(7 C(Y)) -
Thus A(C(Y)) = 2. Since s; + s; is an edge lattice point for1 =i <j=3,there
are at least 3 edge points in C(Y) and so, by Pick’s Theorem, no interior points.
But r, is an interior point, a contradiction.
Therefore, if Y is extremal then r, = 254 is an even point, R(Y) = {sy, 52, 83, Sa}
so A(C(Y)) = 3/2. However, T(s,, s,, s3) is decomposed into three triangles,

T(s;, s;, 54). By Pick’s Theorem, each T(d(s,), d(s;), d(sq)) has area —; hence

&(s,) is the unique point in T(¢(s,), $(s2), ¢(s3)) which divides it into three equal
subtriangles—the median. Since ¢ is affine,

1 1
s4=T(s1+s2+s3) and so r4=?(r1+r2+r3). .

Call Y an optimal yoyo if it satisfies the conclusions of Theorem 3. Observe
that M and S are both optimal yoyos. For example,

+ € = T2, 1,0), 0,2, 1), (1,0 2),

which has exactly one interior point: (1, 1, 1).

For any optimal yoyo ¥, A(C(Y)) = 6;5; + s;for 1 =i <j=3are 3 edge
points and s; + s, for 1 = i < 4 are 4 interior points. By Pick’s Theorem, there
can be no other points in F(Y).

6. Extremality
The results of this section were first shown by Choi and Lam, in a slightly
different fashion, for the forms M(x) and S(x) in [3].

THEOREM 4. An optimal yoyo is not a sum of squares.

Proof. If Y = 3g2 then, by Theorem 1, F(g) C {1, Sz, Ss, S4} SO gilx) =
Shyx%. Since s; + 5; = sy + sy implies {s;, s;} = {5y, 55}, the coefficient of x™
in 3g% is b% hence —1 = Zb%,, a contradiction. =
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The question ‘‘Which yoyos are sums of squares?’’ remains open.

THEOREM 5. An optimal yoyo is an extremal form.

Proof. Suppose Y(r,, 1, 13, ry; x) is an optimal yoyo and Y(x) = g(x) + A(x)
where g and 4 are psd. Then C(Y) D C(g) so

glx) = Z byt ™ 4.
i=j
Ifx°=(x{, - - -, x3) and Y(x°) = 0, then g(x°) = 0 and g_g (x°) = Osince Y =
g = 0. It follows that i

g
0 0) =
X X, (x%)

d
for every zero of Y. Since r; is even, x™ = 0 and since
xT4 = (xrl_xrzx"s)”a,

by the AGI Y(x) = 0 precisely when x™» = x™ = x"s, By the homogeneity of the
forms we take this common value to be 1.
Let s; = (s, * * -, Sw), then

Xk:—g () = D bylsu + sp)xst s,
Xk

i=<j

If x; = =1, then x™ = 1 so that g vanishes at all 2" points (¢,, * - -, €,) Where ¢; =

. . . d
*1. (There might be other zeroes of g, which we ignore.) The values of x; %
k

at these points thus depends on the values that the x*’s achieve. Let 8, = x*%, for
short, if x = (e, - * *, €,); clearly §; = +1. Since 8] = §,8,8;, 8,8,8; = 8,. As §;, =
€', the mapping (e, - - * , €,) = (8,, * * -, 8,) preserves component-wise multi-
plication and the set of achieved &’s is closed under this operation. Finally
suppose s;; = sy mod 2 for every k and some 1 = i < j = 4. Then (s; + 5;)/2 is
also a lattice point, it is in R(Y), a contradiction. For any i # j, let k be such that
s E8s;p,mod2andlete, = —1,¢ = 1,17 k. The 8 defined at this point will have
8; # 8;. Since the set of attained §’s ‘‘separates’” §; and §;, is closed under
multiplication and satisfies §,8,8;8, = 1, it is not hard to show that, up to a
permutation of indices, the quadruples in (1) (at least) are attained and the
equation (2) holds at every point listed in (1).

(1) (xsl’ x32, xss’ xsd) = (19 la la 1)9(19 19 ——15 ——1)1(19 —'1’ 1’ _1)9(1’ _1’ _1’ 1)

@ Z bi(sye + sp) x5t =0 for 1l<k=n

i=<j
Since 8;8; = 8,8, for {i, j, i', j’} = { 1, 2, 3, 4}, it is convenient to make the
following abbreviations:

4
Cie = Z 2bysi,

i=1
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Cox = bio(S1x + Sar) + baa(Sak + Sar),
cax = big(sue + Sar) + bag (Sor + Sar)
Cae = bralsye T+ Sax) T bas(sar + Sak)-

Upon evaluating (2) at each of the points given in (1), the following equations
are found:

Cix + Cop + Cai + Cae = Cpp + Cop — Cax ™ Cax
= Cyp — Cox T Cax — Cak
= Cyp — Cop — Cax T Cape = 0.

Thus each c; = 0, and the permutation of indices made in the choice of &’s is
rendered harmless. Since ¢, = 0 for each k, byy(s; + §3) + bay(ss + sy = 0; as
3S4 =5 + 55 + S3,.b12 = b34 = 0. Slmilarly, b13 = b24 = b14 = b23 = 0. Since
Cyp = 09

bllsl + b22S2 + b33S3 + b44S4 = 0

so that by, = by, = bg3 = A, byy = —3\; and, since g is psd, A > 0. Hence gis a
multiple of Y and Y is shown to be extremal. ®

7. Examples

The question of extremal four-term forms is now reduced to a question about
triangles in the plane. Suppose 7 is a triangle of the desired type: the vertices
and median of T are lattice points and there are no other lattice points in 7. Then
T corresponds to infinitely many extremal forms, one form for each lattice plane
in IR* and particular map onto Z?. We choose one representative form from
each such family by selecting the canonical plane u, + u, + u; = m and map
boluy, Us, uz) = (uy, Up), giving a form p in E; 5. Since every ¢ factors through
¢, all extremal four-term forms which correspond to T may be written POV, Ve,
ys), where y; is a monomial in the x;’s. Further, as noted in Section 2, A%p is
extremal if / is a monomial and p is extremal. It is reasonable, then, to restrict
ourselves to an enumeration of extremal four-term forms with no common fac-
tor. Such a form in Es ,,, as described is associated with a triangle which con-
tains at least one vertex on each edge (vertices included) of the triangle T((0, 0),
(0, m), (m, 0)), since multiplication by h? corresponds to a translation of T.

In this scheme of ‘‘natural’’ reductions, the problem becomes finite for fixed
m, and, having used a variety of ad hoc methods, we present the following list
of all extremal four-term forms. The list is complete for m < 12 up to a per-
mutation of variables; for graphic reasons, the yoyos have been multiplied by 3.
It can be shown that S(x) and the form for m = 4 are the only yoyos which do
not contain x2™ as one term. A duality relating two triangles which are halves of
a parallelogram can also be defined.

m=3 xXix3 + xdxd+ x3xd — 3x3xdxd (= Sx))
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x§ + xixd + xdxd — 3xfxdag (= M(x))
m=4 X3x§ + x%x§ + xixd — 3x3xix}
m=75 x10 + x8xd + xdx§ — 3x8xdxd

x30 + xdxdx§ + xix§ — 3xixdxd

m="17 xi 4+ xfogxd + xdxd® — 3x8x3xd
xit + xdxdd 4+ xdxl® — 3x8xdxg
m=38 x18 4+ xdind + x3%§ — 3x1%xdx2

x1 + x2x8x§ + x10x8 — 3x8xfxt
m=9 xf® + xfadxd® + xgxdt — 3xfadad
xi® + xPPadxd + xdxdt — 3x1%3x§
m=11 X2 + x4x3® +x§x3xf? — 3x1%x3x10
X+ xixd® + xitdd - it
X3+ x§x3® + xx% — 3x}ixdx§
X2 + xfxd6 + xafxlt — 3xSxixd0
m=12 X3+ xp0dt 4+ xlBxdxd — 3xlixdag
X2+ x3oxdt + xSxdxi0— 3x10xSxd
The area of a triangle is unaltered if one vertex is translated in a direction
parallel to its opposite side. The triangles which generate these yoyos all have

area 3/2 so that families of yoyos are generated. We list a few of these families
below.

x‘llm+2 + x%xgm—2 + x%m—Zx%xgm'f-Z — 3x%mx%x§m m=1
x§m+2+xgx§m—2+x%m+4x§x§m—4_ 3x%m+2x%x§m—2 m_2
x(15m+4 + xgxgm—Z + x(i':m + 2x§_ 3x‘llm+2x%x§m m _1
X§r 4 xfafm T2 4 xdafafm T4 — 3x3m ot 2xdxgm 2 m=-1
x%0m+4 + xéox:}Om—G + xslim+2x§x§m — 3x(1im+2x§x§m—2 m 21
x%0m+4 + xéoxéom—(i + x%m+2xgx§m—6_ 3x‘}m+2x(2ixgm—4 m 21
x}0m+6 + x%OXéom—4 + xt13m+6x§x§m—2_ 3x(iim+4xgx§m—2 m=1
xi0m+6 + x%0x§0m—4 + x%mxgxgm—Z_ 3x«11m+2xgxgm—2 m= 1

Although there are no *‘primitive’” yoyos for m = 6 and 10, through the use
of these and other formulas, one can find ‘‘primitive’’ yoyos for every other
m =< 64, at least.



EXTREMAL PSD FORMS WITH FEW TERMS 373

8. Extremal five-term forms

By arguments analogous to those in section 4, an extremal five-term form
would either have a tetrahedral cage with one interior point or a planar cage,
quadrilateral or triangular. In the first case, a difficulty lies in the fact that re-
duced frames with no interior points may belong to frames with arbitrarily
many interior points (See Reeve [10] and MacDonald [8] for the correct gener-
alizations of Pick’s Theoremto n dimensions). For example, the tetrahedron on
vertices (1, 0, 0), (0, 1,0), (1, 1, 0) and (0, 0, m) has no interior points, but (2,0,
0), 0, 2, 0), (2, 2, 0) and (0, 0, 2m) has (1, 1, k) as an interior point for
1 < k = m — 1. The obvious derived yoyo for m = 2,

1
— (g + xBd + xhd + xg) — xeXsx

4
was, in fact, shown to be extremal in [3]. But, for m = 3, neither of the two

derived yoyos (one for each interior point) is extremal, and the decomposition
into extremal forms does not follow the lines of Theorem 3. We have that

2x2xd + 2xdxt + x3x3xd 4+ x§ — 6xyxpx5x3

= XXXy — XD2/2 + (A3} + dxdxd + xixdad + x§ + 2xp0x8x, — 125, x2%5%3) /2.

It is non-trivial to show that the last form is psd, but it is actually extremal.

If the frame is planar, then no obvious analogue to Theorem 2 seems to exist,
and a discussion of the forms seems to depend on the configuration of the interi-
or points. It also seems to entail a generalization of the AGI to the case of two
““interior”” points. No extremal five-term forms of this kind have yet been de-
termined.
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