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one variable over real closed fields
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Abstract

We give a characterization of polynomials f € R[X], R real closed,
which are representable as

N

g 2m
) (E) with g, h € R[X]

i=1
by introducing a suitable invariant p(f) € R. Moreover, we give estimates
for N and degh in terms of m, deg f and p(f). In the special case
m = 2, we prove N < 6, independently of deg f and p(f).

1 Introduction and results

In this paper we will deal with the following questions. Let f € R[X] be a
polynomial in one variable over the real closed field R and let m > 2 be a
natural number, fixed throughout this paper. Then the questions are:

(1.1) For which f does there exist a representation
N gi 2m
f=3 (7{) with g, h € R[X]?
i=1
(1.2) What can be said about the length N of such a representation?

(1.83) What can be said about the degree of h ?
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Concerning (1.1), there is a very simple and satisfactory answer in case R is
the field R of real numbers (or any real closed subfield of R ):

(1.4) f € R[X] has a representation (1.1) if and only if
(a) f>0 (ie. f(a)>0 forall a €R),
(b) 2m|deg f, and
(c) 2m divides the multiplicity of X — a in f for every a € R.

This characterization is an easy consequence of Becker’s Valuation Criterion (see
[Be], Theorem (1.9)): '

(1.5) Let K be a formally real field. Then f € K is a sum of 2m-th powers of
elements of K if and only if f is a sum of squares in K and 2m divides w(f)
in T for every valuation w : K* — I' where T' is an ordered abelian group
and the residue field K, of w is formally real.

The reason why (1.5) is equivalent to (1.4) for K = R(X) is that the restriction
of w in (1.5) to the field of coefficients R must be trivial (since K,, is formally
real). This no longer holds if the field of coefficients of R(X) is non-archimedean
real closed. In such a case we find infinitely large positive elements w € R (i.e.
n < w for all n € N). Then the polynomial

(1.6) f=X"4+0X2+1,

although satisfying (a),(b),(c) of (1.4), does not admit a representation (1.1) (cf.
[P2], Proof of Theorem 2, or the beginning of §2). Thus, the conditions (a)-(c)
are no longer sufficient for f to have a representation (1.1). Clearly, they are
still necessary as one easily sees from (1.5). We will now explain what has to be
added to (1.4) in the non-archimedean case.

Let f € R[X] belong to £ R(X)*™, the set of sums of 2m-th powersin R(X).
Now f can be decomposed into a product f;--- f, of polynomials f; € R[X]
which all belong again to £ R(X)>" and are indecomposable, in the sense that
fi is not a product of non-constant polynomials from R[X], all belonging to
L R(X)*. Clearly every polynomial f € £ R(X)®*™ admits such a decomposi- .
tion which, however, need not be uniquely determined. If f is monic, the f;’s
may of course also be taken to be monic. It suffices to determine the monic
indecomposable polynomials f € £ R(X)*™.

In case of R = R, it follows immediately from (1.4) that a monic polynomial
f is an indecomposable element in £ R(X)?™ if and only if

(1.7) (i) f=(X —a)*> for some a € R, or
(if) f >0 (ie. f(b)>0 for all b€ R) and deg f = 2m.
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The main result of §2 will be

Theorem 1.8 Let R be a real closed field and f € R[X] be monic. Then f is
an indecomposable element of £ R(X)?*™ (in the above sense) if and only if (i)
f=(X—=a)*> for somea € R, or (ii) f >0, deg f = 2m and p(f) is finite in
R.

The invariant p(f) is defined for strictly positive (i.e. f > 0) monic polyno-
mials f € R[X] of degree 2m as follows:

Write f = ¢q;---qm where each g; is an irreducible monic polynomial from
R[X] of degree two, say

q; = (X—a;)2+b?, b;>0
for1<i<m. We then let

(a;i — a;)* + (bi — b))?
(min{b;, b;})? ’

(1.9) P'(gi,q;) = and

(1.10) p(f) = max{p'(gi,g;)|1 < i <j<m}.

This invariant is a positive element of R. It is called finite in R, if p(f) < n for
some n € N.

One easily checks that p(f) is not finite in R for the polynomial f in (1.6).
On the other hand, if R is archimedean, every p(f) is finite. This is why the
condition “p(f) is finite in R” does not show up in (1.4).

The proof of Theorem 1.8 uses Becker’s Criterion (1.5). For this reason it is not
constructive and gives no answer to the questions (1.2) and (1.3). Nevertheless,
Theorem 1.8 is helpful in getting such answers in §3 and §4.

Concerning (1.2), let us call the least N suitable for (1.1) and an arbitrary
f € ZR(X)* the 2m-th Pythagoras Number Pym(R(X)) of R(X). By a result
of Becker [Be], Theorem (2.9)), this number is known to be finite for all m € N
and all real closed fields R. In §3 we will prove (cf. Theorem 3.4) in a constructive

way that
om +3
Pun(ROX) 5 (P 12),

which for small m is a slight improvement of Becker’s bound. In the special case
m = 2, Becker gave the estimate P,(R(X)) < 36, and Schmid ([Sch,], Satz 3.1)
gave Py(R(X)) < 24. By a geometric argument tailored for the case m = 2, we
are able to prove in §4 (cf.(4.1)) that

Py(R(X)) < 6.

On the other hand, we also show that P;(R(X)) 2 3 (for any m > 2), by an
elementary argument at the end of §3.



Concerning (1.3), it is known from [P,], Theorem 2 that there is no bound for
deg h depending only on deg f. In [B-P], Theorem B, it is shown for the case
R = R that there is a bound on degh depending on deg f, the “size” of the
coefficients of f, and the “distance” of the non-real zeros of f from the z-axis.
The proof in [B-P] depends on the Compactness Theorem from Model Theory
and is thus non-constructive. By the constructive proof of Theorem 3.4 in §3 we
find an effective bound for degh in terms of deg f and p(f) for any strictly
positive polynomial f € £ R(X)?™. This estimate re-proves in an effective way
the result of [B-P], since from the data there it is possible to estimate p(f). In
case m = 2, the special argument in §4 can be used to give the bound

2
degh <3 (def f) max{p, 1},

for any strictly positive polynomial f € ¥ R(X)* (cf. the proof of Theorem 4.12).

2 Characterization of sums of 2m-th powers

The main purpose of this section is to prove Theorem 1.8. In order to do so, we
need to fix first some further notations and prove some lemmata.
From now on we use the following notations:

a real closed field,

its unique ordering,

the convex hull of Z in R (which is a valuation ring),

the units of O,

the maximal ideal of O,

the valuation corresponding to O,

the value group of v (which is a divisible ordered abelian group),
the residue field of O,

the residue map from O to R,

the polynomial of E[X)] obtained from f € O[X] by taking residues of
its coeflicients.

Z QG X

Pl <
&

~l

We also note some basic facts, frequently used in the sequel:
(2.1) (2) a<b=>a<b forall a,beO.
(b) v(T2, a?) = min{v(a?)|1 <i<n} forall n €N and a,, ..., a, € R.

Note that (2.1) also holds for every valuation v of R(X) if its residue field
is formally real.

Concerning sums of 2m-th powers from R(X) we note the following obvious
consequence of Becker’s Criterion (1.5):
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(2.2) Let f € R[X] belong to T R(X)?>™. Then
(a) 20,
(b) 2m|deg f,
(c) 2m divides the multiplicity of z —a in f for every a € R.
Moreover we have
Lemma 2.3 Let g € O]Y). If g € TR(Y)*", then § € ZR(Y)*™.

Proof: Extend the valuation v from R to R(Y') by setting (cf. [Be], Ch.6, §10,
Prop. 2):
v'(a,Y" + ...+ ap) := min{v(a;)|0 <5 <n}.

Then the residue field of v’ is R(Y) with Y transcendental over K. Thus we
write again Y for Y. Since g € O[Y], we have v'(g) > 0. Thus if g = Zri™
with r; € R(Y'), we get v(r;) 2 0 from the note after (2.1). Thus

G=SF"eITRY) .
This proves § € TR(Y)*™. m

From (2.3) it is now easy to prove that the polynomial (1.6), say for m = 2,
cannot belong to £ R(X)*%. If it would belong to £ R(X)*, we would find

g¥)=Y'+Y?+ % ETR(Y)
by taking X = \/wY. Now Lemma 2.3 implies
FY)=Y*(Y*+1) e TR(Y)!,
contradicting (2.2)(c).
We now turn to the proof of Theorem 1.8. As a first step we will show

Lemma 2.4 Let f € R[X] be monic, strictly positive and of degree 2m. If p(f)
is finite in R, we have f € £ R(X)?*™. (Clearly, such f is indecomposable.)

Before we prove Lemma 2.4 let us recall from §1 that f = ¢, --.¢, with
q.-=(X—a.~)2+b?, b > 0.

With these notations and the definitions (1.8) and (1.9), we see that the finiteness
of p(f) in R implies that

(2.5) p'(gi,q;) €0 foralll<i<j<m.

This property and the next Proposition will enable us to prove Lemma 2.4.
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Proyp .ition 2.6 Let ¢, = (X —a,)*+b? and ¢; = (X —a;)*+b2 be polynomials
with ay,a3,b,,b; € R and b;,b; > 0. Then the following are equivalent:

(1) ¢ =p'(91,92) € O;
(2) there exists M € N such that for all z € R,

-1 . @(z)
M*<L ()SM

(3) ¢1/q2 isa urﬁt in the real holomorphy ring H(R(X)) of R(X);
(4) by/b; € O* and (a; —a3)/b € O.
Proof:
(1) = (2): Let 2 = a; + b;v/—1. Then ¢i(z) = ||zi — z||>. Now (2) follows from

21 —z|| _ llz2 — 2|l + ||21 = 22|
|22 — z|| = |22 — ||

and the symmetry of (1).

(2) = (3): Recall that the real holomorphy ring H(R(X)) is defined to be the
intersection of all valuation rings O; of R(X) which have a formally real
residue field (cf. [Be]). Every such valuation ring O; is a convex subring of

R(X) with respect to some ordering < of R(X) (see e.g. [P,]). From (2)
we then get M~! < ¢;/gq2 < M by a simple application of the Artin-Lang
Theorem. This implies that ¢:/¢: € H(R(X))*.

(3) = (4): Let ¢ : R(X) — RU {oo} be the place extending the substitution
X — z € R. Let furthermore O, = ¢~ !(0). Then O, is a valuation
ring of R(X) with residue field R. Hence by (3), q1/q2 is a unit in O,.
Applying the place ¢, we get ¢:1(z)/q2(z) € O* . Choosing T = a3, we have
therefore
(a2 = a;)* + b
b3
By (2.1)(b), this implies (a; —a2)/b2, b,/b; € O. Similarly, we get b,/b, €
O. Hence b, /b; € O*.

€0.

(4) = (1): From (4) we get at once that

2
(o -a) O, and (%’- ~ 1) = (b =b) ;2b2)2 €o0.

bl 1 1

This together with b, /b, € O gives (1). D

6



Proof (of Lemma 2.4): From (2.5) and Proposition 2.6, we get
QZ qm 'd
=, ..,— € HR(X))*.
Up} Vbt (R(X))

Therefore, for every valuation w of R(X) whose residue field is formally real,

w(f) = w(q - gm) = w(ql") = mwiq).

Since 2|w(g;) by (2.1)(b), we find 2m|w(f). Thus, by Becker’s Criterion (1.5),
f belongs to T R(X)*™. '

The proof of Theorem 1.8 will therefore be complete once we establish the
following lemma:

Lemma 2.7 Let f € R[X) be a monic and strictly positive element of T R(X)*™.
If f is indecomposable, then deg f = 2m and p(f) is finite in R.

Proof: Assuming that f € R[X]N L R(X)®>™ is monic and strictly positive,
we will prove that there exists a monic factor f; of f of degree 2m such that
p(f1) € O. By Lemma 2.4, this implies that f; € £ R(X)?™. Since f is assumed
to be indecomposable, this gives f = f;. Therefore we have deg f = 2m and
p(f) €O

Let us write f = g, -+-¢g, with n =rm and
g =(X— a,~)2 + b?, a;,b; € R, b; > 0.

Since both properties, p(f) € O and f € £ R(X)?™, are invariant under linear
substitutions, we may freely use them. Thus w.l.o.g. we may first assume that

(2.8) a; = 0.

Secondly, we will make the a;’s and b;’s integral as follows. Let 6 € R,6 > 0
be such that

v(8) = min{v(a;),v(b;)| 1 < j < n}.
We then define Y := X/6 and |
g(Y) =67 f(X) = J[TUY - })* + 7]
j=1

where we set a} := a;/6 and b} :=b;/6. The polynomial g(Y) now has coeffi-
cients in O. Thus Lemma 2.3 and f € £ R(X)*™ imply

(2.9) 3(Y) e TR(Y)™.

Now we distinguish two cases:



{r

Case 1: 7#0 for some j < n (say 7 =n).

If the polynormal g has a zero @; in R, by (2. 2)(c) its multiplicity is divisible
by 2m. Thus the number of factors g. with & # 0 is divisible by m. Hence we
can find m — 1 additional factors, say Qn-ms+1, -+, gn-1, With b, # 0. If we then
set

J1 = gnoms1°°gn,
we find p(f;) € O, since b, # 0 implies b, € O% and thus forall n—m+1<
j<esn:

(a; —ac)® + (b; = b.)? _ (aj —ap)® + (b — b)?
min{b;, b.}? - min{d/, b,}2

(2.10) €0.

B 1t
Case 2: b_§= 0 for all j < n.
In this case, necessarily, a; # 0 for some j (say j = n). After a suitable

renumbering, we choose n; € N such that a_; =0 forall  <n; and a—_’,- # 0 for
all n; < j < n. Thus (2.8), Lemma 2.3 and (2.2)(c) imply

(2.11) 1<n; <nand mn,.
Next we choose 6; € R, 6; > 0, such that
(2.12) v(6,) = min{v(a}),v(b;)| 1 £j < m},

and define Y; :=Y/é6, and

(213) 6(%5) = &2g(v) = [T - @l + 87 ] (63 = a})? + 7],

J=1 j=n1+1

where we set a = a}/6, and b} = b/6,. The polynomial ¢;(Y1) has coefficients
in O. Thus by Lemma 2.3 and g(Y) € £ R(Y)?>™ we obtain g,(};) € TR(Y;)*™.
Taking residue classes in g, and observing that

&Y, -2 +¥ =d, € R,
we finally get
(2.14) (%) = [V -9))? + 5’ € TR()*™
11

Now (2.14) puts us into a situation similar to (2.9). The difference, however, is
that degh, is less than degh (where we set h = §). Thus we can repeat the
argument following (2.9). There are again two cases:

Case 1: -b—_f,’ # 0 for some j < ny. In this case we finish similarly as we did before,
since (2.10) ‘_also holds for a’, b’ replaced by a”, b".
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Case 2: b” = 0 for all j < n;. In this case there exists a ' # 0 for some j < ny
(say j = n;). Thus, if after a suitable renumbering, we deﬁne na € N by ag’ =0
for all j < n; and 337 # 0 for all ny < j < ny, we find as in (2.11):

1 € ny < ny and m|n,.

We then define 6; € R as in (2.12), replacing n; there by n,, and define g;(Y>)
as in (2.13) with the obvious changes. We finally end up with a polynomial
R2(Y2) € TR(Y,)* similar to (2.14). Now degh, < degh,, and we may repeat
the whole procedure.

After repeating this procedure finitely many times, we have to end up with
“Case 1”. In fact, we can only be forced into Case 2 if all the b’s under consid-
eration have values bigger (i.e. are essentially smaller) than the corresponding
a’s. But in this case the number of a’s under consideration is reduced. Since
we have assumed a; = 0 in (2.8), a repeated application of Case 2 will finally
give some n, < -+- < ny < n; < n such that @; =0 for all j < ny and m|n,.
Defining now &, as in (2.12) and %, as in (2.14), we must be in Case 1 for k.. O

3 Effective bounds

With the notations from §§1-2, let f € R[X] be monic and assume that f admits
a representation

(3.1) f= Z (g,) for some g;, h € R[X].
1=1

In this section we will find effective bounds for N and degh.

Assuming that f belongs to £ R(X)?™, we know from Theorem 1.8 that f
admits a factorization

f=h--f

where each f; is monic, has degree 2m and is either equal to some (X —a)?™ oris
strictly positive with its invariant p(f;) finite in R. Since the factors (X —a)?™
do not contribute anytl#fig to N or degh in a representation (3.1), we may
assume that each f; is of the second type. Let us then take

(3.2) p:=max{p(fi)| 1 Si<r}.

The bound N obtained below will depend only on m, while the bound on degh
will depend on m, deg f, p and some positive £ € Q, to be introduced now.
This € is determined by m.

By a result of Hilbert (in his work on Waring’s Problem: cf. [El], or [Ry:
(5.14)]), the form

(X24 X2+ X224 X9



is interior to the cone Q4 2m(R) of sums of 2m-th powers of linear forms from
R[X}, ..., X]. Hence there exists some positive € = ¢(m) € Q such that

(3.3) [XT+X7+(1+e)(X3+ XD [(1+€)(XT+X7)+ X3+ X" € Quam(R).

(It can be shown, for instance, that e(m) can be taken to be any positive rational
number < /m + 1. However, the actual value of ¢ is going to be immaterial.
Therefore, we will not digress here to get an explicit £.) Since the R-vector
space of forms of degree 2m from R[Xy,..., X,] has dimension (2";"3), it follows
from Caratheodory’s Theorem (see Proposition 2.3 in [R;]) that every element
of Qq2m(R) is actually a sum of (2";:3) - 2m-th powers of linear forms from
R[X},..., X4q]. Thus the fact (3.3) can be expressed in a first order formula over
R. By Tarski's Transfer Principle we therefore obtain that for every real closed
field R the form in (3.3) is a sum of (2";*3) 2m-th powers of linear forms from
R[X,,...,X4] (for the same € € Q).
Now we can state the main theorem of this section.

Theorem 3.4 Let R be real closed, f € R[X] be monic, strictly positive and
an element of £ R(X)?™, of degree 2mr. Let p and ¢ be defined as above. Then
f admits a representation (3.1) with N < (2";'"3) and

-1

m
m

degh < (2m(2m - DT+ ) deg f,

where Ty is the smallest integer satisfying
m?(m = 1)[(1 4+ /p)" —1)* < 4Tolog(1 + ¢).
For the proof of this theorem we shall need several lemmata.

Lemma 3.5 Let ky,...,kn € R[X] be strictly positive and assume that there
exists a § > 1 in R such that §™! < 1+ ¢ and ki(z)/kj(z) < 6 for every
z € R and i,j € {1,...,m}. Then f =T[I%, ki has a representation (3.1) with
N < (*%°) and degh < (m —1)degki.

Proof: ! If we set . “
k= (k) "V T] k € R(X),

1=1

the assumption of the lemma gives us

k<(l4+€e)k and k <(l1+¢€)k

'In an earlier version of this lemma we had N < (*7-!) and degh = 0. We are grateful to
J. Schmid for pointing out this improvement on N. (It is more important here to get a smaller
N than to have degh = 0, since denominators will be introduced later in any case.)
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on R, and therefore
(A4 e)ky = K]k >0 and [(1 + €)k — b Jk3™ D >0

on R. Since every positive semidefinite polynomial in R[X] is a sum of two
squares of polynomials, there exist rational functions py, p2,q1,92 € R(X) having
common denominator k*! such that

(3.6) (1+€)ky — k = ¢ + g2,

(3.7) (14 €)k = ky = p? + p.
Solving for k and k; from (3.6) and (3.7), we get

e2+e)k=(1+¢€)p+p3)+¢*+¢2,
e+ )b =pl+p2+ (1 +€)(¢? +¢2)

Therefore,
ITki =k k = ———[p}+p3+(1+€)(g] +¢3)]" (1 +£) (P} +P2)+ g2 +43].
=1 £ (2 + E) ‘

Now by the analog of (3.3) in R, [IZ, ki is a sum of at most 2";"3 2m-th powers
of linear forms in p;, p2, ¢1, ¢2. Thus the conclusion of the lemma follows. D

Let us now return for a moment to Theorem 3.4 and see what is missing in
order to deduce this theorem from Lemma 3.5.

We have already assumed that f factorsinto f;--- f, with f; € R[X] monic,
strictly positive of degree 2m and p(f;) finite in R. Writing each f; as

(3.8) fi=gqagim
with ¢, € R[X] monic and irreducible of degree two, we see from the proof of

Proposition 2.6, (1)=>(2), that for all »,u € {1,...,m}

(3.9) | , q'"E;<1+\/_forallz€R

where p is defined in (3.2). Taking now k, = [I_; ¢ for 1 < v < m, we find
from (3.9) that for all », p € {1,...,m} and z € R:

(3.10) E(2) 14 Vo)
k(o) <
In case (1+ ,/p)" ™1 <1+ ¢, we could apply Lemma 3.5 to
(3.11) f= H k,
v=1



to derive the desired result. But, of course, (1+./p)"™"1 < 1+¢ need not hold
in general! What remains is to find a “refined” factorization (3.11) of f where
the quotients k,/k, are “small enough” to allow the application of Lemma 3.5.
This will be accomplished in the two lemmas below.

Lemma 3.12 Suppose that r and s are positive elements in R satisfying the
inequality M~! < r/s < M for some M > 1, and for A € R, define A\(r,s) =
(1=X)r+2Xs. If A\, a and B are positive elements of R so that A+ a and Axj
all lie in the interval [0,1], then

Axto(r,s)Ar-a(rys)
Axsp(r, 8)Ax-p(r,s)

Proof: Observe that 0 < A+ a < 1 implies that 0 < A £ 1. Furthermore,
the conditions on r and s are symmetric, and A;-x(s,r) = Ax(r,s), so we may
assume without loss of generality that A € [0,1/2]. A straightforward calculation
gives '

Arge(r,8)Arcy(r,s) = (Ax(r, s)+t(s—1))(Ax(r, s)—t(s—7)) = A3(r,s)—t*(s—r)%.
(3.13)
Thus we obtain the identity:

AA+a(r9 S)A)‘-Q(T, S) _ (S — 7')2
Axtp(r,s)Ax_p(r,s) Axsp(r,s)Asp(r,s)

For fixed r, s and A, the right hand side of (3.14) is maximized when the de-
nominator is minimized. By (3.13), Ax+:(r, 8)Ax—¢(r,s) is a decreasing function
for t > 0; hence the denominator is minimized by making 8 as large as possible.
Since 0 < A+ 38 <1 (and X € [0,1/2]), this value occurs when B = A. Let
v=s/r (so 1/M < v < M) and consider

1| < 8% = ?| (M -1)%

(3.14)

= |8? = o]

(s = r)? (s=rf  _  (s=r)
Arip(r,8)An-p(r,s) — Aa(r,s)Ao(r,s) ((1=2X\)r+2xs)r
(-1
Aon +2hw - O

Since 2\ € [0,1], we have (1 — 2X) + 2Av 2 min(l,v). If 1 < v < M, then

G(A,v) < (v—=1)2 < (M —1)2 If, instead, 1/M < v <1, then
G\ v)<v i {v—-12<M1-M1)2<(M-1)%
Thus, (3.13) and (3.14) combine to give the conclusion in the Lemma. O

Lemma 3.15 For any given m let g, g' € R[X] be strictly positive and 1 <
M € Q be such that M~! < g(z)/g'(z) < M for all z € R. To every 6 > 1
in Q, there exist strictly positive polynomials p, p;, ..., pm € R[X) such that
P"-g=p1 - Ppm-g and pi(z)/pj(z) < 6 forall z € R and all i,j € {1,...,m}.
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Proof: For rational A with 0 < A <1, let
Ayi=(1-XNg+A¢d € R[X] and B,=A,;mr for 0<p<2mT,
where T is a large integer to be chosen later. Clearly these polynomials are again
strictly positive, with By = Ap = g and Byt = A; = ¢'. Now let
2mT
pi=]] B. and C,:=B.Bl' (1<u<2mT).
L=l
Then
2mT m 2mT 2mT
g'p" =By H B, = H B“_1B;".1 Bomr = H Culg'
p=1 p=l =]

For each integer ¢ with 1 < ¢ < m, we group together the factors C, with
p=1orl—i(mod2m) to form the subproducts
T-1
b = H Cva+iC2(u+1)m+l—i ’

v=0

so that we have g-p™ = ([I7, p;) ¢’ . It remains to check that the quotients p;/p;
have the desired size. First we note that

(3.16) Pi = Baumsic1 Bauar)mei (B2um+iB2(u+1)m+1-i)m—l
Pi =0 Bam+s-1Ba+1ym-;

B2um+j B2(u+1 ym41-j3

Now the two different quotients in the product (3.16) can be estimated by using
Lemma 3.12 for suitable choices of A, a, and B. In fact, for the first quotient we
may take ‘
=(2u+1)m—%’a=m—i+-§,ﬂ=m—j+lg,

2mT 2mT 2mT

and for the second one

A

_(Qv+1)m+1
- 2mT ’
For i,5 € {1,...,m} we then have |a|, || £ m/2mT = 1/2T. Now (3.12) (ap-

plied with r = g(z) and s = ¢’(z) ) shows that each quotient of (3.16) is bounded
by 1+ (M —1)2/4T?. Thus we get

A

a and B as above.

mT
P . (1 + (M- 1)2) < (e(u-1)2/4T?)mT = ¢m™(M-1)2/4T

P; 4T?
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Choosing now the natural number T so large that

(3.17) 4T logé > m(M —1)?,

we have achieved the desired estimate p;/p; < 6. |
Now we are ready to give the

Proof of Theorem 3.4: In (3.10) and (3.11) we already obtained a factorization
of f into ky---k, with all k;’s monic and strictly positive such that for all
i,7€{1,....,m} and all z € R:

(3.18) ki(z)/k;(z) < (1+/p) S M € Q.

We now apply Lemma 3.15 to ¢' = k; and g = k; for each 1 < ¢ < m with
§ > 1 in Q chosen such that

(3.19) ™M <1 4¢.

Thus, for every ¢ € {1,...,m}, we obtain strictly positive polynomials p; and
Pi1. .-y Pim € R[A’] such that

(3.20) prki=pia---pimki and  pi(z)/piu(z) < 6
for all r € R and v,pu € {1,...,m}. Therefore,
(1) f = (P11 Pam)+ (Pm1 ** P )RT"
and after setting
(3.21) P=piPm P,=pPu Pm(P'k1) (1Sv<m),

we have
(0™ f =p) - p,, with p,(z)/p,(z) < 6™

for all z € R and all v,u € {1,...,m}. Thus the choice of § with (3.19) allows
us to conclude from Lemma 3.5 that (p')*™f admits a representation as in (3.1)
with N < (2";*3) , and with denominator (say) h’ satisfying

(3.22) degh’' < (m — 1) degp;.

To compute deg p}, note that from (3.20) and (3.21):

(3.23) degp, = Y degpy+degp +degh,
(3.24) = Z degp; + degp’' + deg k,
(3.25) = 2degp’ +degk,.

14



Here we use the fact that, for strictly positive polynomial a,b € R[X], the
boundedness of a/b and b/a on R implies dega = degb. From this fact, we
also get (in view of (3.10)):

(3.26) degky = 2r where degf =2rm.

It remains to estimate the degrees of the p;’s. Note that for each fixed i, p;
corresponds to the p in Lemma 3.15, whose degree actually depended on the
choice of the natural number T as in (3.17). In view of (3.17), (3.18) and (3.19),
we find that the smallest integer T, satisfying

m?(m — 1)[(1 4+ /p)" — 1]* < 4Tolog(1 + €)
will be sufficient. With the use of this Ty, the proof of Lemma 3.15 gives
deg p; = 2mTpdegky = 4rmT, (for all ),

and hence

(3.27) degp' = Zdegp,- = 4rm?T,.

=1
Therefore, using the denominator h := h'p’, the final estimate on degh is ob-
tained from (3.22), (3.25) and (3.27) as

degh < (m—1)degp; +degp
(m—=1)[2degp’ + 2r] + degp’
(2m —1)degp’ + 2r(m - 1)
(2m — 1)4rm?Tp + 2r(m - 1).

Taking out the factor deg f = 2rm , we obtain the estimate on degh in Theorem
34. ,

As a consequence of Theorem 3.4, we see that

2m+3)

Pum(ROX) < (7

This bound slightly improves that of Becker in [Be] for small numbers m. It
is, however, still very crude as the next section will show. In fact, for m = 2
we obtain only P,(R(X)) < 35, while in the next section we shall improve this
bound to P,(R(X)) <6.

Concerning lower bounds for P;m(R(X)), we have the following

Proposition 3.28 For any m > 2, we have P;,,(R(X)) > 3.
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Proof: Taking f = (X? 4+ 1)™ it follows that p(f) = 0. Hence by Theorem
1.8, f is a sum of 2m-th powers in R(X). (In fact, if we specialize the form
(X2 4+ X2+ X2+ X2)™ € Qq2m(R) introduced at the beginning of §3 by setting
(X1, X2, X3, X4) = (X,1,0,0), we see that f is even a sum of 2m-th powers of
linear forms.) Let us assume that

g¥m + g2
h2m

Clearly, we can choose the g;’s to be relatively prime. Multiplying by the de-
nominator h?™ in (3.29) and factorizing over R(:) with i = v/—1 as usual, we
find

m-1
(330) B Br(X+0)™(X=i)"=T] (91 = (¥*ga)(gr = ("**gy)
- 14)

(3.29) (X2+1)" = with g1, g2, h € R[X].

where ( denotes a primitive 4m-th root of unity, and the [;’s are linear forms
over R(7). Clearly, the 2m factors on the right hand side of (3.30) are pairwise
relatively prime. Therefore,

(3.31) (X +4)™ | (g1 — (**'g,) for some 0 < k< m —1.
By conjugation, this implies
(3.32) (X =)™ | (g1 = ¢~ P**g,).

Since m > 2, there exists 0 < k' < m — 1 different from k. Now the factor
g1 — (**'+1g, is neither divisible by (X + i)™ nor by (X —i)™. Thus we get

(3.33) g = (g =l 7

for a suitable choice of indices and a nonzero constant c¢. This is, however,
impossible since the right hand side of (3.33) has degree = 0 (mod 2m), while it
follows from (3.31) and (3.32) that g, — (***1g, and hence also g, — (**'*1g, have
degree = m (mod 2m). (Note that g, and g, have coefficients from R, so the
leading coefficients cannot cancel.) m

4 The case of 4-th powers

The main result of this section will be

(4.) Py(R(X)) <6
for any real closed field R. This follows immediately from the basic identity
1 1\ 1. \' 8
4.2 U+ VHi=2 —V U - — —ye
(, ) (U*+V?) 2(U+\/§)+2(U \/gv)-pgv
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and the result of Theorem 4.12 below which states that to every strictly positive
f € RIX]NZ R(X)* there exist k, g1, g > 0 in R[X] such that

(4.3) K f = g + g2.

In fact, the rational functions g;/h and g;/h, being positive semidefinite, are in
R(X)? + R(X)?. Thus (4.2) implies (4.1).

The main idea for proving (4.3) is contained in Lemma 4.7 below. Actually,
this idea had also inspired Lemma 3.15 and its proof. The proof of Lemma 4.7
will depend on the geometry of the euclidean plane over R. Thus (4.3) will first
only follow for R = R. By the characterization of £ R(X)* in Theorem 1.8 and
the existence of bounds (see Lemma 4.7), however, we will be able to transfer the
statement (4.3) to any real closed field R.

Let us now consider the case R = R. Since f € R[X]N ZR(X)4, all its
real zeros have order divisible by 4 (see (1.4)). Thus, in order to obtain (4.3),
we may as well assume that f is monic and strictly posmve Then f has a
representation

(4.4) f=6¢+9
with g; € R[X]. For every z € R, let us consider the complex number z(z) =
91(z) +ig2(z) where ¢ denotes as usual /—1. Let us define the argument arg:z

of any complex number z to lie between —7 and x. Now the assertion that ¢;
and g; in (4.4) are strictly positive is equivalent to

(4.5) 0 < arg(g:(z) + iga(z)) < % for all z € R.
In case we know that f = g2 + g7 with ¢! € R[X] and
(4.6) |arg(g1(z) + igz(z))| < % for all z € R,

we could simply multiply g¢}(z) + igj(z) by the 8-th root of unity { = *"/8 =
(1 +4)/v/2. We would then obtain (4.5) with g, and g, defined by

91(z) + 192(2) = (- (91(2) + ig3(2))

for all z € R. This would yield a representation (4.4) with g;, g, strictly positive,
since

f(z) = {(g1(z) +ig2(2))C (91 (z) — 1g3(2)) = qr(z)* + ga(2)’.

Unfortunately, (4.5) or (4.6) cannot be achieved in general for a strictly positive
f € RIX]NEZR(X) In the next lemma, however, we will show how to obtain

(4.6) (and hence(4.5)) for f replaced by a suitable product f-h? with h € R[X]
strictly positive.
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Lemma 4.7 Let f=¢q,---qz with ¢ = (X —a,)?+ b, a,,b €R, b >0
and 1 <v < 2r. Then there exist strictly positive polynomials g,, g2,k € R[X]
such that f-h? = g} + g7, degg, = degg, and degh < (Tp —~ })deg f where Ty
is the smallest T € N such that 47T? > p(5rT + 7r) and p is the maximum of
p'(92j-1,q2;) for 1 < j < r.

Proof: Let us take f; = g;-192; for 1 < j < r. It will suffice to prove the
existence of polynomials k;, g1, g2; € R[X] such that

(4.8) (a) |arg(gy; +igs;)| < 7/5r on R.

(b) hj is strictly positive and degh; < 2(2Tp — 1) where Ty is the smallest
T € N such the: 4nT? 2 p(5rT + 7).

(c) h}-fi=g}+g; for 1<j<r.

In fact, oﬁce we have (4.8), we can take h = h; --- h, (with degh < 2r(2T5-1) =
(To - %)degf) to get

h? = H (f.ih?) = H (9?,' + ggj) = g + g7, where

=1 =1

g1 +1gz := (gn + tgn) - - - (q1r + ig2r)

has argument < 7/5 on R in absolute value. Taking g7 + 195 = ((g; + 195)
as before, we find fh? = g}% + ¢3° with arg(g] + ig93) € [7/20, 97/20]. At
this point, we can then further multiply g7 + ig7 by some “very small” root of
unity, to get ¢, +1g; satisfying (4.5), and also satisfying the additional condition
deg g1 = deg g2. Thus it only remains for us to prove (4.8).

In order to simplify the notations, let us omit the index j in (4.8) and simp:
consider the case f = q;q;. We shall now show how to.find k, g1,92 € R[X,
satisfying (4.8). Let us denote the complex zeros of ¢; and g¢; with positive
imaginary parts by

z1 = a; +1tb and z; = ay + th;.

Then any point on the line from z; to z; is given by

z(A) = (1= A)z; + Az,
for some A € R such that 0 < A < 1. For every 0 < u < 2T we define the linear
polynomials

—_ Y _#_ S ;‘l 31
A, =X z(QT) and B, = X 2(2T) W

where T is a large integer to be chosen later, and Z denotes the complex number
conjugate of z (similarly for polynomials). With this notation we clearly have
f = AoBoA:rBar.
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We next define the strictly positive polynomial

2T -1
h= ] A.B. with degh=2(2T —-1).

u=1

If we then definefor 0 <v<T -1,

T-1
Cu = AzyBgy_HAg,,.’.g and C = H Cy

v=0

and write C = g; + ig2 with g;,¢92 € R[X], it is easy to check that
Rf=CC =g} +g3.

Now it remains to estimate the argument of C(z) for = € R.
For a fixed v, let us write a + i8 for 2(3%}"-) with o, € R. Then

C.(z) = (:z: - (a+1i8) - z—‘z—?—z-’) (z = (a —i8))? (.—; —(a+iB)+ 212}22) .
Hence we get |

2y — 22

2
Co(z +0) = (2* + 2)F — (—27-—) (z +iB)

The real part of this expression is estimated by

-2, - a2
ReC.(z +a) 2 (z* + ) [xz ypr-lnonl ] > (a7 + 87) [ﬂ’ SEem ] .
The right hand side above is positive, if we choose T such that
2
z1— 2z
(4.9) 4T? > p > Ll-ﬁz—’l—.
The imaginary part of C,(z + «) is estimated by
— 02
(4.10) ImC.(z + o) < (2? + 7)1
4T?
Thus, the argument of C,(z + a) is estimated by
larg Cu(z + a)] < ImC.(z + a)| < 1 < 1

- T2432 4T2?
ReC,(z + a) l:x_-'z%[’_l a2 _
for all =z € R. Therefore, we have

T-1 T
larg C| < E larg C,| SE?I on R.
P

v=0
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It now remains to choose T, to be the smallest integer T satisfying

2
(4.11) T < 3’-'; (if— - 1) , ie 4nT? > p(5rT + 7).
This proves (4.8) and hence the lemma. m

We can now prove the main theorem of this section:

Theorem 4.12 Let R be a real closed field and f € R[X] monic and strictly
positive. Then f € T R(X)* if and only if there exist strictly positive polynomi-
als g1,92,h € R[X] such that h?f = g? + g2 and degg; = degg,.

Proof: As we already saw at the beginning of this section, the existence of strictly
positive polynomials ¢, g2, A € R[X] with h*f = g2+ ¢ implies f € T R(X)*.

Conversely let us assume that f € L R(X)*. Then by Theorem 1.8 there
is a decomposition f = f;-.-f, where each f; is a monic polynomial from
L R(X)* such that p(f;) is finite in R. Let p € Q be an upper bound for
p(f1)s -, p(fr). Now Lemma 4.7 tells us that for the case R = R there exist
strictly positive polynomials ¢, g2, A such that

1
(4.13) A f =g?+ g2, degg, =degg, and degh < (To - 5) deg f,

where T € N is the smallest integer satisfying (4.11).

For any fixed upper bound d of deg f, (4.13) can be expressed by some first
otder formula ®,, depending only on the bounds d and p. By Tarski’s Transfer
Principle, 4, also holds in any real closed field R. Thus, we find that (4.13)
holds for our given f € R[X]. O

5 Epilog

Usually it takes one year for one author to write a paper. For four authors it
may, therefore, take at least four years to finish a joint paper. In the case of this
paper it took even more years. No wonder that meanwhile other papers based on
the results of this one have been written or even published. We take this occasion
to mention three of them.

In [Schy] Schmid has positively answered Schiilting’s question whether a to-
tally positive unit in the real holomorphy ring H(K) of a formally real field K is
a sum of squares of totally positive units of H(K). The method used by Schmid
was (according to him) inspired by the “partition” method used in this paper.
In [Schs] Schmid treats the special case where P(K) = 2, e.g. K = R(X)
with R real closed. He extends our result (4.1) on the 4-th Pythagoras Number
as follows: If K is formally real, 3 € K and P (K) = 2, then Py(K) < 6.
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Schmid’s result applies in particular to algebraic function fields in one variable
over a real closed field R. This case is not covered by our methods. In [P3]
the third author of this paper relates Schulting’s question for the relative real
holomorphy ring H(R(X)/R) of R(X) to the sums of 4-th powers in R(X)
and thus makes the results of this paper applicable to questions about totally
positive units in H(R(X)/R).
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