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The Pythagoras number of some afﬁne-algebras
and local algebras

By M. D. Choi* at Toronto, Z. D. Dai at Peking, T. Y. Lam** at Berkeley,
and B. Reznick** at Urbana

§ 1. Introduction

For a (commutative) ring 4. the pythagoras number, P(4), of A is the smallest number
n < o such that any sum of squares in 4 can be expressed as a sum of at most # squares
in A. For instance, P(R)=1, P(F)=2 (if 2}q), and, by Lagrange’s Theorem,
P(Z)=P(Q) =4. The number P(A4) is an interesting, but very delicate, arithmetic invariant
of the ring A4: the explicit computation of P(A4) is, in general. a difficult task. Given a
ring, it is often far from easy even just to decide if P(A) is finite of infinite. For some results
on P(A) in the recent literature, see, for example, [P], [P,], [CEP], [H]], [R], (Pe,],
[Pe,], [EL]. [Br], [Pr]. etc. In some of these papers, the invariant P(4) has appeared under
an assortment of other names: for instance, “Pfister dimension” in [R], “Quadratstufe”,
in [Pe,], and “reduced height” in [HJ] and [L]. In this paper. following [Br], [Pr], we
shall call P(A) the pythagoras number and hope that, in the future, other mathematicians
will adopt the same terminology.

The motivation for the present work is Pfister’s well-known result that if Fis a
function field of transcendence degree n over R, then P(F) £ 2" ([P,]. [L], p. 301). Instead
of working with function fields F. it seemed natural to us to also work with their finitely
generated subrings 4 £ F. This led us to the problem of computing the pythagoras num-
ber of affine R-algebras (i.e., finitely generated algebras over R). Each affine R-algebra
A corresponds to an atfine variety V defined over R, so P(A4) may be viewed as an arith-
metic invariant of the variety V. Speaking loosely. we can say that P(A) is the pythagoras
number of the variety V.

The n-space R™ has, as its affine algebra. the real polynomial ring in n variables,
R{x,.....x,]. Two of the present authors have announced in 1976 {CL] that this ring
has pythagoras number = 2", but the exact value of P(R[x,..... x,]) was not determined.

* Supported in part by NSERC of Canada.
** Supported in part by NSF.
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In fact, it was not even known if P(R[x,.....x,]) is finite or not. Note that if
P(R[x,.....x,]) were finite for all #. then «/l R-affine algebras would also have finite
pythagoras number. In this work. however. we shall show that this is not the case: in fuct,
P(R[x,....x,)=x if n22 (Theorem 4. 1). We show, moreover, that the same result
holds if the ground field R is replaced by any commutative ring 4 which admits a real
ideal (Cor. 4. 19). (An ideal U = 4 is called real if the quotient ring R = 4; is formally
real, i.e. if 3 g =0 in R implies that each ¢;=0 € R.)

For affine varieties of dimension 1 (i.e. affine curves). the situation turns out to be
quite different. Using the fact that P(R[x;])=2 [L]. p. 302 (2nd printing), we show in
§ 3 that, for any affine R-ulgebra A of transcendence degree 1, we have P(A) < x. (Thus,
any affine curve defined over the real nur- - s has a finite pythagoras number.) Here.
some explicit computations are possible; fc. istance, we show if 4 =R[x, y]:(/) where
h(x. y) is any polynomial of degree 2. then F.4)=2 (Theorem 3. 7). On the other hand.
one can construct aftine R-algebras 4 of transcendence degree 1 such that P(A) is arbitrarily
large, so there is no hope of getting a universal bound on P(.4) in general.

The result that P(k[x, y])=x for formally real field. k has several important
consequences. One consequence. as pointed out by A. Wad- Lrth. is that there exists u

principal ideal domain A (with 2 a unit) whose quotient field hus pythagoras number 4. bur A
itself has infinite pvthagoras number (see (4. 6)). Moreover, it is possible that a unit v € A
is a sum of (four) squares in the quotient field, but u is nor a sum of squares in 4 (see (4. 8)).
A second consequence of P(k[x, y])=x is that, by using the same kind of ideas. one
also arrives at a computation of the pythagoras number of Z[x]. In the literature it was
only known. by a result of Peters [Pe,]. that P(Z[x])=6: we shall show that
P(Z[x])=x. More generally, P(R[x])= if R is any order in a totally real algebraic
number field, or any commutative ring which admits a homomorphism into such an order
(cf. (4. 14)).

In § 6, we consider an m-adic ring (R, m), where m is an ideal in R with ) i'=0.
iz0

Let A=G,(R)= (—BO mY/m‘*! be the associated graded ring with respect to ni. Assuming
i

that A is formally real. we show (in (6. 3)) that P(R)=hP(A). where 1 P(A4) denotes the
“homogeneous™ pythagoras number of A (defined by using the “length™ of honogeneous
elements of A). In the special case when (R. m) is a regular local ring with a residue field
k = R/m, the associated graded ring A4 is a polynomial ring k [x,.. .., x,] (with the usual
grading), where d=dimR. If 4= 3 and & is formally real, we have

hP(A)=P(k[x,,....x D)=

Thus, any regular local ring (R, m) of dimension 23 has an infinite pythagoras manber.
provided that R/m is formally real (Th. (6. 6)).

In § 7. we shall try to “globalize” the above result. In Theorem 7. 3, using the basic
facts of real algebraic gecometry. we develop a general criterion for an affine algebra A to be
formally real. The “necessity” part of this criterion implies that. if 4 is formally real of
Krull dimension d. then A has a real maximal ideal nt of height « such that the loculization
Ay s regular. If ¢ = 3. it follows that P(4) 2 P(4,,) = %. 50 we get the general result that
any formally real affine algebra of dimension 23 has an infinite pythagoras number

(Th. (7. 5).
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In §5. we deal with various rings of dimension 2 and compute their pythagoras

numbers. For instance we show that the rings R[[x.]]. R{x]{[+]] and R[[+1] [+]
all have pythagoras number 2 (see (5.10), (5. 14). (5.18)). Together with the results of
§ 7, this enables us to compute the pythagoras numbers of

T | RIS | | £ S and R[xy,.... %] [[¥ns1se - or Xnem)] forall nom.

(We have also complete results when R is replaced by Z. and almost complete results
when R is replaced by Q.) One interesting by-product of the computation of P(R[[x. ¥1]
is that it led to a proof that C ((x, »)) (the quotient field of C{lx. 1) is a Cy-field for
diagonal forms. in the sense of Lang (cf. (5. 16)). In particular. C ((x. y)) provides a new
example of a field with u-invariant 4 which seemed to have escaped earlier notice.

In § 8. we consider the affine algebra 4,=R[x,.. ... x,1/(1 +x34--4x}), and its
quotient field F,. I 2"<n<2""!, it is known that s(F,) =2 [P,]. while s(4,) =n [DLP].
(Here. s(R) denotes the level of a ring R, i.e. the smallest number s < x for which —1
is a sum of s squares in R.) In Theorem 8. 1, we compute the pythagoras number P(F,),
showing that P(F,) =2"+1 if n>2. while P(F,)=2. For the affine algebras A,. however,
we can compute P(4,) only in the case n=2"; namely, P(A,)=2, and P(4,)=2"+1
if r22. It seems very likely that P(4,)=n+1 for any n>2. but we have not been able
to prove this.

The paper concludes with a final section. §9. in which we collect a few interesting
open problems in the hope of stimulating future work.

We want to thank J. Hsia for his helpful comments on Problem 1 in § 9. We are also
indebted to A. Wadsworth for many stimulating conversations about this work ; his help
has been especially instrumental toward the inception and formulation of (4. 6), 4.7,
(5. 16). as well as (6. 3). (7. 3), and their applications.

§ 2. Some basic facts on the pythagoras number

Throughout this paper, we shall write S,(4) for the set of sums of r squares in a
(commutative) ring A. and write S(4) = {J S,(4) for the set of all sums of squares. In this

rzl
section. we shall collect some basic facts on the pythagoras number. The first two facts are
obvious so we shall omit their proofs.

(2.0) If there is a ring homomorphism A — B which is onto, then P(B) S P(A).

(2. 1) If S is a multiplicatively closed set in A, then P(S ' A4) £ P(A). In particular,
if A is an integral domain and F is its quotient field. then

P(F) < P(A).

(2.2) Ifk is a field, then by a theorem of Cassels [C]. P(k[tD) =P(k(2).

bid
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Applying this to k =R(x,,.. .. x). for instance, we have
P(R(xy..... x,) D)=PR(x,...., x, 1)

by [P,].

(2.3) If A is any valuation ring with 1/2€ A, and F is its quotient ficld, then
P(4)=P(F).

This follows from a theorem of Kneser and Colliot-Théléne (see [C LRR], 4. 5)).

(2.4) Let Abea ring with s =s(A4) <. Then:

(@) sSPASs+2.

(b) If2eU(4) (group of units in A), then SSP(A)Ss+1.

The truth of (b) is well-known. In fact, if 2 ¢ U(A). then, for any ge 4. we can
find b, c € 4 such that a=ht—¢2 (e.g. b=(a+1)2, c=(a@=-102) If ~1=d?+... +d?,

~thena=b24(d, )2 + ... +(ds0)*s0 A=S,, (4). The fact (a) (without any assumption on
the invertibility of 2) was pointed out by Joly [Jo] and Peters [Pe,]. For the proof,
consider a=3 a? € S(A4). We have '
a=(1+3Y a)—-1-2p=(1 +Za)l +67+(=1)(b+1)2,

where b=3Y g, + Y a;a;. Since —1 € S,(A4), this implies that g € S,+2(4). It is easy to see

i i<j
t.... the inequalities in (a) and (b are the best possible. (For (b). take the ring
A=Z[][x] (*=-1).

A straightforward computation shows that 2x =(1+x)2 + 2 4 (iv)? ¢ S:(4), so P(4)=3.)

Lemma 2.5 [eor % 5e an ideal in A finitely generated by ay.....a, Assume that
2e U(A), and that, Jor all i, +a;e S(A4) (for both signs). Let B=A'U. Then P{d)< =
iff P(B) < x.

Proof. The “only if” part is clear from (2. 0). Conversely. assume p=P(B) < «_

* Consider any ¢ € S(4). In B, we can write ¢ =¢2 + ... + ¢, for suitable ¢; € A. Lifting to A.
we have therefore ¢ =¢2 + ... +ep+biay+-+b,a,. for suitable bie A. As in (2. 4) (b).
w2 can write b,=d? —e? for suitable d;, e;. Choose a large number r such that

=u; € S,(A). for both signs and for al] ;. Then
c=ci+-+dtadis.. tdpdy +(—ay) e} + - +( —-a,) e

is  imof p4+2rn squares, so P(A)Sp+2rn<x. Q.E.D.
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Corollary 2. 6. Let R be any ring with 2€ U(R) and let by,...,b,€R. Then
P(R(bI+ - +bD)<x iff P(RUbL.....bY)< %

Proof. Apply (2. 5) to 4 = R{(b} + -+ +bZ), with a;=5].

Let us now consider the following general situation. which will be fixed in the
balance of this section: Let k be a commutative ring with P(k) <. Let A be a k-algebra
which is finitely generated as a k-module. The following two questions (Q,) and (Q;) arise
naturally: '

(Q,) (Weak Question). Is it true that P(A) <x?

(Q,) (Strong Question). If A can be generated by n elements as a k-module, is it true
that P(A)ySn-Pk)?

We have not been able to answer either of these questions in the general form stated
above. However, in the sequel, we shall need to know the answers to (Q,), (Q,) only for
some specific rings k. To be precise. what we need is the following:

Theorem 2. 7. The answer to (Q) (and hence (Q,)) is affirmative if
(a) kisafield, or
(by k=kolt] where kg is a real-closed field.

Proof. First, assume that k is a field. If k has characteristic 2, every sum of squares
in A is a single square, so P(4)=1.

Now assume chark 2. Let v,,. .., v, be k-module generators for 4. Consider any

N
a€ S(A),saya= Y al. Write ;= 2, y, + - + %, Va(a;; € k), and consider the k-quadratic
i=1

form

N
(2.8) g(xi,. . X)) = X (A Xy + o+ %X, %

i=1

By the diagonalization theorem for quadratic forms over fields [L]. p. 10, we can write

q(X1,. . s X)) = Zl ﬂ,Lj(x)z.
i=

where ;€ k (possibly zero for some j’s) and Lj(x) (15<n) are n independent linear
forms over k. Choosing x=(x,,..., x,) € k" such that L;(x)=1 and L,(x)=0 for i+,
we see that B, € S(k) for all j. Say B;=B; + - + BL (p = P(k), B;; € k). Substituting y; for
x; in the identity (2. 8), we get '

hl n
a= Z (zil b e +ain,vn)2 =Q(}'1s- X} ,"n) = Z (ﬁfl +-+ ﬁjzp) Lj(}')z € Spn(‘4) .
i=1 j=1

J

Therefore, P(A) S pn=nP(k). ')

1y We thank the referee for a simplifying remark to an earlier version of this proof. Actually, the fact
that g isa sum of n - P(k) squures of linear forms can also be proved by induction on n. We shall leave this inductive
proof as an exercise for the reader. Moreover, the bound P(A4) £ n P(k) is not the best possible: for better bounds,
see [CLR,].
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Next. we treat the case k =ko[1]. where A, is a real-closed field. Using the same
notation as above. we have now a quadratic form ¢(x,.. ... x,) in (2. 8) with coefficients in
ko[¢]. Viewed as a polynomial in £, xy.. . .. x,. this ¢ is certainly positive semidefinite. since
it is a sum of squares of polynomials. By the theorem of Jakubovi¢ [J] and Rosenblum-
Rovnyak [RR]. p. 312. ¢ is a sum of 2n squares in ko[r, yy.. ... y,] (see also [Po]. [D]).
Thus, the same substitution argument as in the first part of the proof shows that
a€ S,,(A). Therefore, P(4) £ 2n="P(k) n.

Remark 2. 9. It would be of interest to extend (the quantitative part of} the theorem
of Jakubovi¢ and Rosenblum-Rovnyak to base rings k =k, [r] with Ptk) < . but k¢ not
necessarily real-closed. Unfortunately, we do not know how to do this. We note that a
completely self-contained proof of the J-R-R theorem is available in [CLR;]. p. 22. This
proof is valid as long as k, is real-clo- '. but does not seem to generalize to other ground
fields. If k, is a hereditarily pythagor -3 field. it is known that P(ko[+]) =2 [B,]. - 95.
In view of this. it seems likely that the:.  Atitative part of the) J-R-R theorem should remain
valid for such ko. However, it does no  em easy to give a proof for this.

Reiterating (2. 7) (a). if 4 is a finite dimensional algebra over a field k. then
P(A) £ P(k) dim, A. This result was first shown by A. Pfister (unpublished) when A is a
field extension of finite degree over k. Pfister’s proof (as shown to us by J. Hsia) works as long
as 4 is a monogenic k-algebra. but our proof above works for any finite dimensicnal
k-algebra. (Another proof, similar in spirit to ours, was noted independently by David
Leep.) The proof, in fact, yields more precise information: For any n, let g (n) be the
smallest number such that any sum of squares of n-ary k-linear forms can be writien as a
sum of g.(n) squares of such forms. Then. for any n-dimensionul k-algebra A. we have
P(A4) £ g,(n). At the cost of letting the dimension of A be larger than » (but no larger
than (1 + 1)2), we can. in fact, construct examples of algebras A4 with P(4)=g.(n). This
is done in the following proposition:

Proposition 2. 10. Let k he any forr: v real field and let A=k[x,..... v, )W where

WU is the ideul generated by all cubic mono s (i.e. W=(x,... .. x,)3). Then
dimid=(n+1)(n 2 und P(A4)=g.(m.

Proof. Any element f of A can be ex| -cssed uniquely in the form f=a + £(.¥) +g(X).
where ¥=(%,,....X,), a€k, 4 is a linear form and ¢ is a quadratic form. Thus

__n(n+1)

’ 1 2
dim, A = npp et

2 2

Now suppose fe S(A4). Then clearly a € S(k). We may assume, in the following. that
p=Pk)<=.

<(n+1)2.

First assume a#+0. We claim, in this case, that feS,(4). In fact. write

a=a?+ - +a® where, say. a, £0. Then af + /(X)+g(3) =1 for some f, € A. (To see

- - - - 2

A(¥ A . :
5 )+q'(.\"): then f2 =uf + () + i 1 +2u, ¢ (¥). We can choose ¢
<y ’h

this, let fi =a, +

2y Aring R iscalled a pyrthagorcan ring if P(R) = 1. A hereditarily pythagorean field is a formally real ficld all
of whose formully real finite tield extensions are pythagorean.
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(v)2
@l Z—-+—2al ¢ (X)=¢(X) since 2y, #O.) Having chosen f;. we have then

such that

dy
f=@ + (D +q(D+dd+ - +ai=f+ai+ - +a € S(A) S S, m(A).
since p = P(k) < gi(n).
Now assume ¢ =0. We write

f=4) +¢(H) = (a;+ 4D +qi(0)*.

Since k is formally real. clearly all a;=0, so the RHS boils down to 3 4;(¥)%, and hence

f=q(¥) =Y 7,()% The latter implies that g(x) = 4(x)? in k[xy,. ... x,]. It is now clear

that the pythagoras number P(A) is precisely equal to g (n). Q.E.D.

Corollary 2. 11 (cf. [DLP)). There exist (local artinian) rings of any given pvthagoras
number.

Proof. Choose k to be any formally real pythagorean field. Then the proof for(2. 7) (a)
shows that g, (n) =n for any n. Now apply (2. 10). Note that. for the ring A in (2. 10),
(%y,. ... X, is the unique maximal ideal, so 4 is an (artinian) local ring. Q.E.D.

The above results imply. in particular, that the pythagoras numbers of finite dimensional
algebras A over a field k cannot be bounded by a function of P(k). 3) It can also be shown that.
if A can be generated by n elements as a k-algebra. P(A) cannot be bounded by a function of n.
In fact. let k be a formally real field. and let fe k[x,,..., x,] be a form of degree d.
Arguing as in the proof of (2. 10), one can show that fis a sum of m squares ink[x;.....x,]
iff fis a sum of m squares in 4, =k [x,..., X,J/(x...., x,)", where r>d. For n2 3, our
later results will show that, for any m, we can find a form f which is in

S, (k[x;.....x, ), butnotin S,_,(k[x,....x,].
Thus, the pythagoras numbers of the algebras 4, tend to infinity as r — .

In view of the above. it would be desirable to know more about the numbers g,(n).
We note in passing that knowledge of g,(n) will also give information on sums of squares
of higher degree forms. In fact, any sum of squares of n-ary forms of degree d over k

) n+d-1\ .
can be written as a sum of squares of g,(r) such forms, where r=< d—1 ) is the
number of distinct #-arv monomials of degree d. For more refined resuits in this direction
(when k& = R). we refer the reader to the forthcoming work [CLR,].

The upper bound g,(n) < nP(k) obtained above can probably be substantially im-
proved. at least fot specific fields. For example, L. Mordell [M,] has shown that, for
k= Q. any n-ary positive semidefinite O-quadratic form can be expressed as a sum of
n+3 squares of Q-linear forms. This gives g¢(n) =n+3 (which implies that any finite
dimensional Q-algebra A has P(A)<dimg A+ 3). Unfortunately, g,(n) has been deter-
mined for very few fields. let alone rings.

3) 1t is unknown. however. whether the pythagoras numbers of finite dimensional ficld extensions of &
are bounded if P{k) < «: see the discussion after Problem 2 in § 9.
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§ 3. Pythagoras number of real affine curves

We shall now show that any affine curve defined over a real-closed field ko has tinite
pythagoras number:

Theorem 3. 1. Ler kg be a real-closed field, and A be an affine ky-algebra of trans-
cendence degree 1. Then P(A4) < .

Proof. By the Noether Normalization Theorem, there exists an element ¢ € 4 trans-
cendental over A, such that 4 is an integral extension of k =k, [¢]. Since A is finitely
generated as a ko-algebra. A is finitely generated as a k-module. Therefore, (2.7) (b)
applies, and we have P(4)<x. Q.E.D.

Corollary 3. 2. Ler k be a real-closed field, and B be a ko-algebra of finite k o-dimen-
sion d. Then the polvnomial algebra A = B[t] has finite pythagoras number 1 4)<2d.

We note in passing that. in Theorem 3. 1, the pythagoras numbers P(.4) cannot be
bounded by a universal constant. In fact. given any integer . take a finite dimensional
ko-algebra B with P(B)=n: this is possible by (2. 10). Then A = B[] has transcendence
degree 1; by (2. 0), we have P(4)= P(B)=n. ‘

In the rest of this section. we shall compute explicitly the pythagoras number for
various R-affine  :bras of transcendence degree 1 over R.

Example 3. 3. Let A =R[x,...., x,]/Y, where A is the ideal generated by x,x;. for
all i#. Let ¥; be the image of x; in 4. and =%, +---+¥,. Then Nt =X} so each ¥ is
integral over R[r]. As an R[t]-module, 4 is generated by X;...., X -0 our general method
above gives P(4)<2n. We shall now use an ad hoc argumer. show that, in fact,

=2 Let f(¥,....~,) € S(4). We may assume that '

f(-fl*- c fn) =a+x-lgl (\-l) + +-\:ngn(x.n)*

where a € R and the g;'s are polynomials in one variable. Mapping A4 to R[x;] by sending
X; to x; and other ¥'s to 0, we see that a+X,2,(5) € S(R[X,]). In particular. «20. If
a +0, then

1
f=an_—l (@+%8:1(¥) - (a + X,8.(X,)).

Each factor is a sum of two squares. since P(R[X;]) =2. Hence. by the 2-square identity.
S is a sum of 2 squares in A. Finally. suppose a=0. Write NigdX) =h{X)? + k(%)%
Clearly, h,. k; are divisible by ¥,. so

hi(X) hy(3)) =0 =k () k(X))
fori#j. In  we have, therefore.
S=h(F 4+ h (502 + k (F)2 + - + K, ()2
= (M F) + - + I, (5)) + (k) + - + ko (5)2,

so P(4) £ 2. Clearly 1+ ¥7 is not a square in 4. so P(4)=2.
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The algebra considered above has. of course, a lot of zero-divisors. Now let us con-
sider affine domains A of transcendence degree 1 over a real-closed field Ko. [t will be of
interest to obtain upper bounds on P(A4) which are more explicit and more efficient than
the one given in (3. 1). Under very favorable circumstances, when one can apply the
2-square theorem of Choi-Lam-Reznick-Rosenberg [CLRR]. (2. 5), one gets indeed a sharp
result P(A4)=2:

Theorem 3. 4. Suppose the ky-algebra A in (3. 1) is such that A and A 0/ —1] are
both UFD’s. Then P(A) =2.

Proof. In view of (2. 4) (b), we may assume that l/:_lgé A. Let K be the quotient
field of A4. Since K is a function field of one variable over ko, Witt’s theorem [W] gives
P(K)=2. Letae §(A);thena e S(K)=S,(K). By [CLRR]. we geta e S,(4)so P(4) < 2.
This must be an equality. by (2. 1). Q.E.D.

We record the following instance of (3. 4) because it provides an interesting exceptional
case to the pythagoras number computations of the “generic rings” considered in § 8
below:

Proposition 3. 5. Let A =R [x, v]/(1 + x> +?). Then P(4)=2.

Proof. This ring 4 is known to be a UFD by [S]. p. 36. If we adjoin i=|/—1, the
resulting ring is isomorphic to

Cle, )1+ x2 +yH) 2Clx, (1 —x* = y?),

which is the complex coordinate ring of the unit circle. This ring may be viewed as the
localization C[r. 1 '] of the polynomial ring C[+]. where r=x+iy, so it is a UFD. Thus.
(3. 4) applies and we have P(4)=2. Q.E.D.

The same method. unfortunately, does not apply to B=R[x, v]/(1 — x? —y?), the
real coordinate ring of the circle. For this ring, B[/ - 1] is a UFD, as pointed out above.,

but it is known that B itself is not a UFD (see [N]. or [Sw]. p. 273). so the theorem of
[CLRR] does not apply here. Nevertheless, we have the following result:

Proposition 3. 6. Letr f be a real polynomial Sunction which is evervwhere nonnegative
on the unit circle S'. Then [ is a sum of two squares of real polynomial functions on S*.
In particular. P(B)=2 for B=R[x, v]/(1 —x* —?).

Proof. This is “plagiarized” from a result of F. Riesz and L. Fejér [F] on trigono-
metric polynomials! By [F]. § 1, if a trigonometric polynomial

PO =c+ ¥ (a,coskf+b,sink0)
k=1
with real coefficients is nonnegative for all (real) angles 6. then p(8) =|P(e®)|? for a
suitable complex polynomial P(z) e C[-] (see also [PS]. Part 6. Problem 40). Now con-
sider the given function f20on S'. Suppose it is given by a polynomial f(.x. v) € R[x, vl
and let p(0):=f(cos(.sind). As is well-known, the latter is convertible to a real tri-
gonometric polynomial. By assumption. p(6)=0 for all angles #, so we can write
p(O)=|P(¢'")|? as above. Now write P(e®) =p,(8) +ip5(0) where p; are real trigono-
metric polynomials. There exist real polynomials fi{x. y) such that

Pi(6) = f;(cos 0, sin 0) .

Journat fiir Mathematik. Band 336 8
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Therefore, we have
J(cos 0,510 0) = p(0) = p,(0)> + p,(0)* = f; (cos 0. sin 0)* + f; (cos 0. sin §)*,

Since this holds for all §. we must have f'=f?+ /7 in the coordinate ring of S'. as
desired. Q.E.D.

In essence, the proof above depends on identifying the ring B =R [x. 1];(1 — x? -3

n
with the subring B’ of C[-, z"'] consisting of Laurent polynomials F(z) = Y oy
k= —n
such that x_, = %, for all &. (We identify x with (- +:"")/2 and  with (- “1):2i.) The
Riesz-Féjer Theorem is proved by examining the distribution of the zeros of £ 1 the com-
plex plane when F is assumec ‘o be nonnegative on the unit circle. By modifyvingz this idea.
we can alsodeal with thering  =R[x. yJ/(1 +x* +y2) in (3. 5) by using complex (Laurent)
polynomials instead of using the results in [CLRR]. Here, we identify 4 with the subring
n

A" = C[:,z7'] consisting of G(z)= ¥ «,:* such that 2 =(—1*q for all k. (We
k= -n

identify x with (- ~=7")/2 and y with (= + = ~")/2i.) After analyzing the distribution of the

zeros of G (without any positivity condition this time), we can see. just as in the proof of

(3. 6). that any g € A is a sum of two squares in A. This gives a second proof for the fact

that P(A4)=2.

Using (3. 5) and (3. 6), we can now obtain the following general result:

Theorem 3. 7. Let R=R[x, y]/(h), where h(x, ) is a quadratic polynomial. Then
P(R)=2.

Proof. By elementary considerations. we see that the ring R has nine possible iso-
-morphism types, corresponding to the following nine choices of /i(.x, ¥v):

hy=x?4+v2+1. hy=x*+12 -1, hy=xy.
hy=xv—1. hs=x%+1, he x4y,
h7 =_Vz. hg =y2 -1, hg =.\'2 +_V2.

In all cases, it is easy to see that | +x2 is not a square in R, so we need only show that
P(R) £ 2. The first two cases are covered by (3. 5) and (3. 6). The third case is a speciaf
case of (3. 3). and the fourth case follows from (2. 1) since R[x.yJithg) =R[x, x']. The
fifth and sixth cases are clear since R[x, y]/(/1s) =C[y] and R[x. y]ithey =RIx]. For the
seventh case. we use the fact that. for any positive strictly definite polynomial F(x). there
exist relutively prime polynomials ¢(x) and W(x) such that F(x)=d(x)? +yix)*. (The
proof of this fact is left to the reader.) Given a sum of squares

SN =Z (filx)+g () =T f(x)*+2 T fitv) g (0 x
in RLx, v](44). let f(x) be the greatest common divisor of the J;'s. Then
ZfiVglo=/(x)gx) and Tfx)?D v F(x),
J
where g. Fe R[x]. and F is positive strictly derinite. W:ing F(x)=o(x)2+ i
above and writing 1 = @(x) ¢, (x) + ¥ix) ¥, () for suitable O (x) and Yy (x), we have
S(x 1) =(f(¥) ¢(x) + Dy (x) g(x) 1) + (f(0) Y(x) + ¥, (x) g(x) v)?
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in R[x. v]:(h-). as desired. To treat /g, let S(x, ) =, (x)+P,(x)y be a sum of squares
in R{x. ] (r3=1). Setting v = +1, we see that ¢, (x) +H,(x) are positive semidefinite.
Writing

}1(xX) + ¢, (x) =g, (x)? +hy (x)?,
1 (x) —@,(x) =gz(-\')2 +h2(x)2 s

a straightforward computation shows that

1 1
S(x.y) vy (g +g.+1(g —82)7° +T Uiy +hy+ y(hy — h3)]?

in R[x. v](r?—1). Finally. to treat Ao, let S(x.v)=a+xf(x.})+rg(x, y) be a sum of
squares in R{v. y](x*+y?). If a>0, we are done by writing

1 1
N=—xu (D , 2 —_— — 2 2 ,2
S(x,))_4a(-a+xf+_»g) +4a(yf xg)*(mod x*“ +y°).

If. on the other hand. ¢=0. then S(x.y) cannot have linear terms and we can write
S=x?F(x. v)+xvyG(x, v)(mod x? + y?). But then

1 1
S(x.3) =7 (x +xF+yG)? +7 (y+xG—yF)?(mod x% +y?),

so the pythagoras number is 2 in all cases. Q.E.D.

In contrast to (3. 7). there exist. however, many affine R-algebras R=R[x, y]/(h)
with deg /1> 2 such that P(R)>2. We can even choose C such that both C and Cly —-1]

are Dedekind domains (though not both PID's. in view of (3. 4)). An explicit cxample is
the real coordinate ring of the elliptic curve vZ=(x—2;)(x—4,)(x —43)(4; € R). This
can be deduced from the following:

Proposition 3. 8. Let k() € R[x] be a nonlinear polynomial of odd degree. Then the
ring R =R [x, v}/ (»* = k(x)) has pythagoras number 3 or 4.

Proof. In view of the proof of (3. 1), it suffices to show that P(R)>2. We claim
that 1 + 52+ ¥% is not a sum of two squares in R. In fact, if it is. we will have an equation
1+ 22472 = (D +rg (D + (15 +rg2D) eR,

which leads to a system of two equations:

(3.9 L0+ +AW) (g ()2 +g2(0)? ) =1+x% +k(x),
(3. 10 J1(x) g1 () + f2(x) g2(x) =0.

By an obvious degree consideration. (3. 9) implies that g, (x). g,(x) must be scalars with
g2 +g3=1.and so. from (3. 10). f; (x). f(x) are linearly dependent. If, say, f, = 4/, (1€ R),
then (3. 9) leads to a contradiction (1 + 2% fi(x)*=1+x%  Q.E.D.

[y
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We shall now conclude this section by showing a class of nonreal R-algebras (possibly
not of finite level) which have arbitrary transcendence degrees and finite pythagoras num-
bers. By definition. we say that a ring A is formally real if i + -+ +a> =0 in 4 implies
that all 4, =0 *). Otherwise. we say that A is nonreul. Note that, in the category of rings.
this need not imply that 4 has finite level.

Example 3. 11. Let f,,.... f,€ R[x,,.. .. x,] be polynomials such that
Rlxy,....x,J(fi... . f)

has transcendence degree <1 over R. Then A4 =R[x;..... X, J/(f+ - +£*) has a finite
pyvthagoras number.

(This follows from (2. 6). (3. 1), plus the simple observati: - that the transcendence
degree of R[xy,..., x,J/I(f%.. ... £*) equals the transcendence de..ce of

Rlxy.....x,(fis. . f).)

For instance, . =f,(x;)*0, and 4 =RLx.....x,J/(f*¢+-+f* where r=n or
n—1, then (3. 11) app..s and we have P(4) < .

§ 4. Sufficient conditions for P(4[x]) = x

In the last section, we have shown that if & is a real-closed field, then any k-affine
algebra of transcendence degree <1 has a finite pythagoras number. In this section. we
shall show that the situation is quite different for affine aigebras of transcendence degree
22. For instance. one of the main results in this section is the foilowing:

Theorem 4. 1. Let k be uny formally real field, and R =k[x,...,x,1 (n22). Then
P(R)=x.

In fact. much more general results will be obtained. However, before we proceed to
the formulation of these resuits. -~ will be useful to observe several consequences of
Theorem 4. 1.

(4.2) If 4 is a field. it is unknown whether P(A4) < % would imply P(A[x]) < =
(see the discussion after Problem 2 in §9). However. if A is a ring (or even a PID). this
implication is definitely fulse; in fact, 4 =R[y]is a PID with P(A4)=2. but P(A L h)==
according to (4. 1).

(4.3) A nonreal affine algebra need not have finite pythagoras number.

For instance. consider 4 =R[w. r. x. v] (1 + ), which can be mapped by a ring
homomorphism onto R[x. ). Since P(R[x. yP=x. we must have P(4)=x by (2. 0).
(4.4) It is possible that all proper quotients of a ring R have finite pyvthagoras mnnber.

but R itself has infinite pyvthagoras number. (All proper quotients of R[x, v'] have trans-
cendence degree <1 over R.)

(4.5) It is possible that the localizations at all prime ideals of a ring R have finite
(and bounded) pythagoras numbers bur R has an infinite pythagoras number.

*) Incase A is an integral domain. this means that the quotient field of 4 is formally real.
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In fact. let R =R[v. +y1. By (4. 1), we have P(R)=x. but. by (2. 3) and (5. 2) below,
the localization of R at each of its prime ideals p has pvthagoras number <4. (In fact. in
view of (2. 1) and the theorem of Cassels-Ellison-Pfister [CEP]. the localization R, all have
pythagoras number cqual 1o 4.)

(4.6) It is possible that q principal ideal domain R has 4 quotient field F with
P(F) <=, but P(R) = .

The possibility of constructing such a PID from the result (4. 1) was pointed out to us
by A. Wadsworth. To explain this construction. we need a definition: if W is an ideal in a
commutative ring 4. we shall say that U is reql if the quotient ring A, ¥ is formally real.

Lemma 4.7 (A, Wadsworth). Let S be q multiplicative set in an integral domain A
generated by a set {5, +0:ie[ } each of whose elements generates a real (principal) ideal.
Then, for any clement a € A. the length of u in A is equal to the length of a in the localization
S'4. In particular, P(4) = p(S ! A).

Proof. Suppose a € S,(S ~' 4). Then for some s€S. s*a=at+ . +a? where a; € A.
To show that ¢ e S,(A). it suffices to treat the case s=s;. Going modulo(s), we see that
aj=s5b; (for suitable bje A). since As4 is formally real* Cancelling 52, we get
a=bf+~-+bfe$,_(A). Q.E.D.

To construct a PID as in (4. 6), fix a real-closed field k. Let So be the set of irreducible
polynomials s € k [v,.. . . x,] (12 2) such that s generates a real (prime) ideal °); let S be
the multiplicative set generated by S,. and R=5 ! (4 [vie.. . x, D). It is known that any
prime ideal of height >2 in & [vy.. ... x,] contains some s e So (see [DE,]. p. 1145)). so
upon localization at S. all such primes become the unit idea]. Thus, R has only height one
primes; since these are alj principal (and nonreal). R is a PID. By [P,]. the quotient field
F=k(x..... x,) of R has P(F)< 2" but by (4. 7) and (4. 1), P(R)=P(k[x,,. .., X)) =.

The same idea of construction also shows the following:

(4.8) Ifa unit in u principal ideal domain R’ (with 2e U(R ) is @ sum of squares in
the quotient field. ir may not be a sum of squares in R

(This contrasts with the theorems of Artin, Cassels, and known theorems about
semilocal PID's [CLRR1Y. (4. 1). as well as level theorems about Dedekind rings [Ba]. Such
an example is also of interest in view of the fact that the Witt ring of R injects into that of
its quotient field (MH]. p. 93). For the construction. let =2 and let R be as above. Let
J(x1. x;) be any positive semidefinite polynomial with the property that f2"*! ¢ S(k [x,, x2])
for any r. Such palynomials do exist: for instance. following Stengle [St]. we can take

Snx) =xd+ (v xi-y2 )2,

%) This condition is equivalent to s(x,.. . .. X,) being an indefinire polynomial: see the Sign-Changing
Theorem in [DE,]. p. 125.

%) To avoid using this result from [DE,]. one can restrict this construction to the case n = 2. In this case,
it is easy to see that any maximal ideal contains a linear polynomial «x; +by, +¢e So. (Therefore. everything
would have worked also if we localize & [x,. ¥2] at the multiplicative set generated by the linear polynomials.)
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(In fact, the better known Motzkin polynomial (cf. § 8) already has the desired property.
though we will not digress to give the proof here.) We have fe S, (k{x,. x3)): this follows
either by direct computation. or by the theorem of Hilbert [H]. Now let R’ be the localization
R[f™']. which is a PID. We claim that the unit f¢ S(R"). For. if otherwise, we will have
21 e S(R) for some r. and therefore by (4.7), f2**' e S(k[x,, x,]). a contradiction.
In this example. it is true. though. that R" S, (k(x,. x;))=S,(R’); this follows easily
from the corresponding equation for & [x,. x,], which holds by the 2-square theorem of
[CLRR]. :

We shall now begin the proof of Theorem 4. 1. The idea of the proof is to study a
polynomial ring 4 [x] in one variable over a (formally real) integral domain A. and trv to
give sufficient conditions on 4 which would guarantee the infinitude of the pvthagoras
number of A[x]. It will be seen that these sufficient conditions are satisfied by
A=k[x,....,x,_](n22)as well as many other affine k-algebras. where k is any formally
real field. In particular, Theorem 4. 1 will follow. The same sufficient conditions are also
satisfied. for instance. by any order 4 in a totally real algebraic number field. so we also
get, as a bonus, the infinitude of the pythagoras numbers of A4 [x] for such orders. This
contrasts with Pourchet’s result [P] that P(K[x]) <5 for any number field K.

To facilitate the formulation of the results below, let us set up some general notations.
For a ring 4 and a given integer n, we shall write U, = U,(A) for the set of n-tuples over 4
of “unit length™:

U(A)={(ay,...,a,) eA":af+---+u§=1}.
Further, we write 0,(4) for the group of 1 x n orthogonal matrices over 4. i.e.
O,(A)={Me M(A):M'M=1]}.

As is well-known, the group 0,(A4) acts on U,. We shall work with rings 4 which satisfy
the following two conditions:

(1),  O,(A4) acts transiticely on U, = U, (A).

(2)n  There exists a nonzero element x€ A such i. . for any (ay,...,a,) € U,. 2 fa;
whenever a; +0.

The following easy observation turns out to be useful later:

Lemma 4. 9. Assume that A is an integral domuin of characteristic +2 satisfving (2),.
Then A contains infinitely many elements 242 satisfving ( 2),-

Proof. Fix any x # 0 satisfying (2),. Clearly, « is a nonunit in A. Replacing « by 2z if
necessary, we may assume that x 4 2. Therefore. any nonzero 2" € 4 - 2 will not divide 2,
and will satisfy (2),. Since A contains a nonunit =. it cannot be a field and therefore must
have infinite cardinality. Since Curd A - x=Card 4, we see that there are infinitely many

‘s described in the lemma. Q.E.D.

Theorem 4. 10. Ler A be a formally real domain and n be a fixed integer. Assume that
fies (1), and (2), above. Let = =0 and let {2 ;0 2 2) be a sequence of distinet elements
. «cribed in(4.9). Suppose f(x) = A[x] is a polvnomial of length n. Let r € N be such that
degf <2r. Then F(x)=4,(x)* ft )+ 1 has length n+ 1, where 4,(x):=(x—2) - (x — %,).
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- This theorem has the following immediate consequence:

Corollary 4. 11. If a formally real domain A satisfies (1), and (2), for all n. then
P(A[x]D =

Proof of (4.10). Clearly F(x)€S,. (4[x]), so it is enough to show that
F(x) ¢ S,(4[x]). Assume, on the contrary, that F(x)= Z Wi(x)?, l//,e A[x]. Since 4 is

i=1

n

formally real. degy,<2r for all i Setting v=0, we have 1=3 ¢(0)* (since
i=1

2, =0 = x|4,(x)). Therefore. after an orthogonal transformation over A4, we may assume,

by (1),. that w, 0)=1 and ¢,(0) =0 (/1= 2). Write ¢,(x) =1+ x9,(x) and W(\)—vq&(\)
(i>2). Let x be any of x,..... %, and evaluate F(x) at 2; we get

t=(1+ad (0)* +(xd:(2))* + - + (a, ().

The property of x in (2), implies now that ¢,(2) =--- = ¢,(2) =0. and so each ¥,(x) (i > 2)
is divisible by 4,(x), say @;(x) = 4,(x) ¥{(x) (i 2 2). By transposition, we have

4,(x)? (f(x) - n/z.f<x>2)=wl<x>2— 1= () = 1) 2+x6,(¥).

i=2

Since none of {x,. x,..... 2,} divides 2. this clearly implies that 4,(x)|(; (x) = 1). But
degy, <2r so we must have y,(x)=1. and therefore f(x)= Y (x)? contradicting the

i=2
fact that f(x) has length n. Q.E.D.

Corollary 4. 12 Let 4 be a formally real domain which is not a field. Assume that, for
any n. if ai +---+at=1in A, then all except one of the a;’s are zero. Then P(A[x]) =

Proof. Here, O,(A) consists of all permutations of (+1.0,...,0) so clearly (1), is
satisfied for all n. For (2),, we can take x to be any nonunit in 4. Thus, Theorem 4. 10
applies. Q.E.D.

For 4 as in the Cofollary. assume. say. 2 is not a unit. Then. in the construction of
(4. 10). we can take x, =0 and «;=2* (i22), and so 4,(x)=x [] (x— 2. Starting with

i=2
fi(x)=1. we can construct recursively a sequence of universal polynomials

(4.13) SaX)=3 T 42m-,(x)2 € S (Z[x]).

i=1 j=2

“such that. for each m. f,,(x) has length m in A[x]. (For i =1, the empty product is defined to
be 1.) Note that f, () has degree 2™ —
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Theorem 4. 14. ¢t A be any commutative ring which admits a homomorphi -t into the
ring of integers of a totally real algebraic number field K. Then. for cacit m. the polvnomial
£.(x) defined in (4.13) has length min A[x]. In pariicular. P(A[x]) =%,

Proof. We may assume that 4 is the ring of algebraic integers in K. Suppose
@+ +a>=1in 4. Since all the imbeddings of K are real. the conjugates of each g;
must have absolute value 1. Thus [Ng ()l S 1. But Nk cla;) € Z so it must be 0 or £ 1.
This clearly implies that all except one of the a;'s.are zero. Now apply (4. 12). Q.E.D.

As a special case of (4. 14), we have P(Z[x]) = <. This improves (and completes) an
earlier result of Peters [Pe,] which gave P(Z[x]) =6.

To get other applications of Theorem 4. 10, we state the following variation of (4. 11):

Corollary 4. 15. Let Abea formal. real domain which is not a field. Assume that A con-
tains a field k such that, for any n, if ad+-+at=1in A, then each a;€k. Then
PAlxD==.

Proof. By Witt's Theorem [L]. p. 19, the fieid k satisfies the property (1),. This and
the given hypothesis clearly imply that 4 also satisfies (1), For (2),, we can take x (as
before) to be any nonunit of 4. Q.E.D.

From (4. 15), we get immediately the following result (which the reader should com-
pare with (3. 2)):

Theorem 4. 16. Let k be a formally real field, and let A be any subalgebra of
k[xy,....x,] not equal to k. Then P(A[x])==. '

Consider. for instance. the case 4=k [»]. In the construction in the proof of (4. 1t

r
we can take 2, =0, and x;=iv (i=22). and so 4, (x. ) =x [T (x—iy). Starting wi.
i=2
filx,y)=1and proceeding by recursion, we get the universal polynomials

(4.17) file)=F T damesx 1) € Sp(@Lx 3D
i=1 j=2

such that. for each n1. f,(x. r) has length m in k [x. v] for any formally real field A. Again.
the total degree of f,,(x, v) is am 2 ‘

Corollary 4. 18. Let R be any commutative ring with infinite level. Then
P(R{xg..... X, )= for any rz1.

Proof. By - well-known result. if R has infinite level, then it has a real prime
ideal p. We have 1 natural homomorphism R [vou.... N, ] = klvo.. .o X, ). where A is the
(formally real) quoticat ficld of R p. Since £, (o, X;) has length m in K [¥g.- ... x,]. it must
have length m in R[xq.. ... X,]. This being true for all m 2 1. we must have

P(R[%o.....x,)=x. QED.
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Using (4. 18), we can also construct affine algebras with an infinite pythagoras number
which are not poiynomial algebras over some subalgebra. For instance. consider the quadric
defined by a real quadratic form g(x,.....x,) € R[y,... .+ X, ]. with the associated co-
ordinate ring B=R[x.....x,]ig). If rank ¢ <n—2. then B has a homomorphism onto
R[x.y].so P(B)=x. If rank ¢Zn~1 and ¢ is semidefinite. then P(B)< x by (3. 11).
Now assume rank ¢ = —1 and ¢ is indefinite. If n=2. B has transcendence degree 1 so
P(B) <x by (3. 1). If n =3, we have essentially two cases: ¢ = v —x2and g = v? + x2 — \1.
In the first case. B maps onto R[x, 1] again and we get P(B)=x. In the second case
B=R[x,.x,] [/ x{ + v3] and we see easily that P(R[x,. x,])=% = P(B)= % (cf. [EL].
(3. 10) (1)). Finally. if n=4, then rank ¢=3 and B has a homomorphism onto
R[x;. x5, x3]/(x{ + x5 — x%) so again P(B)=x.

In summary. the only cases where we get finite pythagoras numbers are the Sollowing:

R[xy, xJ)(xT = x3),
P[.\'l.. N x,,]/(.\”‘l" + - +x:_1)'
Rlxi,. ... xJixt 4+ +x2).

In all other cases, we get infinite pythagoras numbers.
g A

-~

Another class of examples is given by the 2-dimensional algebras
R=k[x.y. /("= xby9),

where a. b, ¢ are nonnegative integers (not all zero). Using the methods in this section, it
can be shown that. for any formally real field k, P(R) =20; the details will be left to the
reader.

§ 4 bis. Quantitative improvements of the resuits

In Z[x]. we have shown that there exist polynomials of any prescribed length 1.
It is of interest to ask the following question: whar is the smallest integer d = d(m) such that
there exists u polvnomial of degree d having length m? As we have observed before. the poly-
nomial /() of length mi constructed in (4. 13) has degree 2™ — 2 which is essentially exponen-
tial in . We shall now show that, by a more careful construction. we can replace £,{x)
by some g, (x) whose degree is linear in m.

.

Proposition 4. 1'. Suppose g(x) € Z[x] has length m. Then, for sufficiently large inte-
gers 1. G(x) =1 +(x—1)?g(x) has length m +1.

Proof. Say degg <2r. Let N=max {g(i): 1 i< r} and let 1 be any integer such that

4.29) t>r and (1—r?>2+N.

Journal tiir Mathematik. Band 336 9



62 Choi. Da. tmand Reznick, Pvihagoras numbers

We claim that G(x)=1+(x 1) g(x) has length 7+ 1. Indeed. assume G(x)= ¥ 2i()?
i=1
gin Z[x]: clearly. cach g; has degree <r. Write g(x) =, + (v = 1) h,(v). where 0 <, <1
Mand /i, € Z[x]. Then u{+ - +a}=1: upon reindexing, we may assume that

ap....a,)=(1.0,...,0),

‘rz/‘so
G)=(1+(x—0h )P +(x-0* T i
i=2
or
(x=0?g(0)=2(x—h +(x—1)2 T 12.

1

L}

]

This implies that (x — 0)|A,. Writing /, () = (x — 1) h(x) and cancelling (x — )2, we get
(4.3 g()=2h+(x-02"*+ 3 hi.
i=2

Let i be any integer such that 1 Si<r. We claim that k(i)=0. In fact, if a=|h(i)}! +0,
then a2 1, and evaluation of (4. 3') at x =/ gives

g Z2h(N+(i—) h(i)?Z =2d* + (1 —i)? &P

=a’[(t—i)*=2]>N=max {g(j): 1 Sj<r}.

which 1s a contradiction. This proves' the claim, and so /ii(x) = [ (x — i) A’ (x) for somr
i=1 :

Ifh'=  hendegh2rand so degg, =deg{l +(x—12h)=r+2. a contradiction. T

fore i -- 1 =0. But then (4. 3') gives g(x) = ¥ A7, again a contradiction. Q.E.D.
i=2

Starting with the (constant) polynomial g(x) =7 of length 4 and using (4. 1) recur-
sively, we get '

Corollary 4. 4'. For any m2 4, there exists a polynomial g,(x) in Z[x] of length m
such thar degg, =2(m—4).

The proof of (4. 1') used very special properties of the ring of integers and does not
seem to generalize to other rings of coetficients. On the other hand. as we ha- ¢ seen already,
the methods of § 4 apply to a much larger class of rings. Thus, (4.1°) shoul. ' be viewed
as a suhstitute for (4. 10). but rather, only as a technical device which giv  :uantitative
improv ents for lengths in 7 [x].

A similar improvement is possible for lengths in & [x. v] where & is rmually real
field. In (4. 17), we have constructed a polynomial £, (x. 1) e k[x. v]of len. ;. with total
degree 2™ —2. By using an alternative construction, we can replace £, (v, 1y a suitable
g.(x. ¥) with total degree of the order of magnitude 2™2.
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Proposition 4. 5. Suppose g(x.v) e k[x.yv] has length m, with deg.g<2r. Then
G(x. V) =1+ (=) g(x.y) has length m + 1.

m
Proof. Suppose. instead, that G=F gi. Write each g, =u;+ () —x")h; where

i=1
hyek[x.y] and «, € A[x]. Setting y = x". we have 1 =3 af. Thus, all ¢; €k so, after an
orthogonal transformation over A. we may assume that (q,.....q,)=(1,0,....0). Pro-
ceeding as in the proof of (4. 1), we can write /i; (v, y) =(y —x") fi(x, v), with an equation

g=2h+(y—=x")h+ ¥ hi.
i=2

If #%0, the RHS will clearly have x-degree =2r, a contradiction. Thus we must have

h=0and g= Y h}. also a contradiction. Q.E.D.
i=2

The advantage of (4. 5) over its counterpart in § 4 is that, in the passage from g(x)
to G(x). although the v-degree goes up by 2r, the y-degree goes up only by 2. Thus, in the
next step of the construction, we can take 1+(x—1%)2G(x, y) for a relatively “small” s
such that 25 > deg, G. If westart with g, (x. 1) = L.ga(x, ») =1 +x% and g3 (x, ) =1 +x? +)7
(of lengths. respectively. 1. 2 and 3). and construct g,. gs.. ... etc. two at a time (using
alternately 1 —x" and x — 1), we shall get a sequence {g,(x. ¥)} such that. for mz4:

2i%2 421 4j-6 if m=2i,

4.6’) totaldegree ofg =<4 . )
( ) ° Em {2‘*2+2‘+1+2’—4i—8 if m=2i+1.

This degree has the order of magnitude of 2™?2,

For a more systematic (quantitative) study of the length of polynomials of a giren
total degree. see the forthcoming work {CLR,].

§ 5. Regular local rings of dimension <2

In this section. weshall compute the pythagoras number of certain types of regular
local rings and power series rings of (Kruil) dimension £2. The study of the case of
dimension >2 requires different techniques and will be postponed to the next section.
Basically. in the case of dimension £2, we try to get results on the finiteness of the pythagoras
number. while in the case of dimension >2. we try to get results on the infinitude of the
pythagoras number. Note that the “threshold™ value 2 is one higher than in the case of
polvnomial rings: this shows a clear distinction between the “local” situation and the
“global™ situation.

If R is a regular local ring of dimension 1. then R is a discrete valuation ring.
Assuming that 2 is invertible in R. we have by (2. 3) P(R) = P(F) (F = quotient field of R),
so the computation of P(R) is reduced to the computation of the pythagoras number of a
field. This case is. therefore. not of particular interest. For a large class of examples. we
can mention the following:

Theorem 5. 1. (1) Let k be any formally real field. Then P(k [[x]1])= P(k).

(2) Let k be a real-closed field and R be the local ring ar any point (not necessarily
regular) on a curve defined over k. then P(R) < .

9
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Proof. in (2). R is the localization of a k-affine algebra of dimension | at a maximal
ideal. so P(R) < follows from (2. 1) and (3. 1). For (1), consider any fe S(k [[\]])\ {0},
say f=aox*?4+a x4 ... where ¢, € k. ug € S(k)N {0}. Writing

f=agx**(1 +ag'a x+ ),

we see that '€ a,S; (k [[x]]) since we can take a “formal” square root of 1 +ag " a, x + -+
This clearly shows that P(k[[x]])=P(k). Q.E.D.

Wecc  ler next the case of dimension 2. The following result proc a large class
of :gular rings of dimension 2 which have a finite pythagoras nu:

The:« » 2. Let K be a function field of transcendence degree d real-closed
Sfietd k. L. »e any prime ideal of height 2 in the polynomial algebra K[. ... x,]. Then

P(K[xy,....x,],) S29°".

Proof. Let R=K[x,,..., x,],. a regular local ring of dimension 2. By a result of

H. Lindel [Ld], Lemma 17), R is isomorphic to K'[ v, 2], where K'=K(x,.....x,_3).
and m is a maximal ideal in K'[y, z]. Thus. it is sufficient to show that, if &' =tr.d, K,
then P(K' [y, :],.) £2% % Exploiting the well-known maximal ideal structure in poly-
nomial rings over fields, we may assume that m=(y. p(z)), where p(-) is an irreducible
polynomiai in K'[z]. Let R"=K"[y, -], and let fig € S(R"), where f. g€ K'[ 1, z]. with
gé¢m.Then gfe S(R') = S(K'(y. 2)). By Pfister's Theorem [P,], P(K'(1.2))Sr:=29*2,
so, by Cassels” Theorem [C], gfe€ S,(K'(»)[=]). Thus. there exists a noinzero polynomial
h(y) € K’'[r] such that h¥gf=f?+---+ [, where f;€ K'[y, z]. If v|h, then clearly vif;
for all i. After dividing out by enough powers of 1, we may therefore assume that y yh.
But then A(y) ¢ m, so fig=h*gf(h™'g ") € S,(R'). This shows that P(R")<r=29"2
Q.E.D.

The above considerations seem to suggest that if R is a regular local ring obtained by
localizing a k-affine algebra (k real-closed) at a height 2 prime, then P(R) should be finite.
It would be possible to prove that this is the case, if, for instance, we knew that the “Weak
Question” (Q,) in Section 2 has an affirmative answer when the bottom ring is a local
ring. Unfortunately. the correct answer to (Q,) seems to be unknown even in this special
case. (Cf. Problem | and Problem 5in §9.)

Another important example of a 2-dimensional regular local ring with' a finite pvtha-
goras number is the power series ring R [[x. v]]: we shall show below that P(R[[x. 1]])=
The proof of this depends heavily on the Weierstrass’ Preparation Theorem. In the follow-
ing. we shall reformulate the underlying ideas of Weierstrass' Theorem in a slightly more
general context. The advantage of this generalized formulation is that. using it, we can
compute not only P(R[[x.y]]). but also P(R{x][[1]1]). P(RLx. x'J[[1]]). und many
others. In addition, our methods will allow us to replace the reul field R by any h.p.
(hereditarily pythagorean) field A: for the definition of an h.p. field, see (2. 9).

) We are indebted to M. Ojanguren who brought Lindel’s Lemma to our attention.
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Weierstrass' Lemma 5. 3. Let B be any commurative ring and
(5. 4) PN =po+piy+pyi+-ed:= B[[+]]
be a power series over B. Let C be an additive subgroup of B such that B=B-p,+ C. Then

(1) A=A-p+C[[)]] (Here. C[[+]] means the additive group of all power series
with coefficients in C.)

(2)  If the sum for B is direct and p, is rot a zero-divisor in B, then the sum for A4 is
also direct.

(3) Suppose B is a k-algebra. where k is a commutative ring. If Bl(po) is a finitely
generated (resp. free) k-module, then A p) is a Sinitely generated (resp. free) k [[ y]]-modu[e.

Proof. Let h(»)=73 hyied. We want to find g(»=73 q;v'ed4 and
i=0

i=0
r(v)=2% riv'e C[[+]] such that h=pg+r. This amounts to the following system of
i=0

equations in B:

ho =Pogo+ro,
hy —piqo =pog, +r,.

5.5
(>.3) hy—p2qo—p1q1 =poq;+ry,

Since B=8-p,+ C. we can solve for qo € B, ro € C from the first equation, and then
solve for ¢, € B, r, € C from the second equation, and so on down. This enables us to
construct g(y) and (). which proves (1). For (2), if B = B.p, ® C and p, is not a zero-
divisor in B. then clearly the ¢,'s and the risin (5. 5) are (inductively) uniquely determined.
Hence 4=4-py @ C[[+]]. For (3). let 4,... ., b, € B be such that their images in B/(p,)
generate the latter as a k-module. The conclusion in (3) follows by applying (1) with
C=3 k-b. Q.ED.

i=1

Corollary S. 6.*Let k be a field and let B be a k-algebra of one of the following 1ypes:
(1) B is a k-affine domain of transcendence degree 1 over k; or
(2) B is a discrete valuation ring whose residue Sield k' is a finite extension of k.

Then. for am p(vYe A =B [[}‘]] as in (5. 4) with po +0 in B, the quotient A!(p) is
a finitely generated free k [[r]]-mmlu/c.
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Proof. In the case (1), B(po) is a k-affine algebra of Krull dimension 0. so it isu = :ite
dimensional k-vector space. so (3. 3) (3) applies. In the case (2). we may assume that p,
is a nonunit in B (for otherwise p is a unit in 4 and A4;(p)=0). Then p, 1s an associate of
a power. n¢, of the uniformizer n of B. and so

dim, B/(po) =dim, B/(n*) =d - dim, B/(r)=d - [k': k] < x.
Again. the conclusion about 4/(p) follows from (5. 3) (3). Q.E.D.

Remark 5. 7. Case (2) above is applicable to B=k [[x]], or to B, the local ring at a
simple point of a curve defined over a perfect fie! * &,

Proposition 5. 8. Let k be any h.p. (hereditarily pythagorean) field, and let B be a form-
ally real k-domain as in (1) or (2) in (5. 6). In the case (1). assume also that B and B [[ - 1]
are both PID's. Let p(yv) in (5. 4) be a nonzero prime element in A =B [[+]7] which gener-

ates a nonreal ideal. Then p(y) is associate in A to an element in S (A) (sums of two
squares in A).

Proof. The constant term p, in p must be nonzero. For otherwise p is associate to
v and A/(p)=B[[+1](») = B is formally real. contradicting the hypothesis on p. Clearly,
A/(p) contains (a copy of) A [[+]] and by (5. 6). A/(p) is a finitely generated (free) module
over k [[1]]. Thus, the quotient field F of A:(p) is a finite extension of A{(v)). Since & is
h.p., so is k£ ((1)), and therefore, the finite nonreal extension F > k (( ¥)) must have level 1.
(For the relevant facts used about h. p. fields, see [B,]. Ch. 3.) At this point. we shall ::npeal
to the main results of [CLRR]. If we can apply [CLRR], (2. 3) (3). the ubove fact  the
level of F will imply that p is associate in 4 to a sum of two squares. We shail now .. ¢k
the hypotheses for {CLRR]. (2. 5) (3) to make sure it applies here. First, we aved
[/—-1 ¢ A; this is clear because B (and hence A) is formally real. Next. we must check
that A=B[[»]] is a UFD: this follows from the fact that B is a regular UFD (sec [S],
p. 90). Finally, we must check that A[)/—1] is also a UFD. If B is as in Case (1 ‘n
A[) -1]=8[)/ —1][[+]]. so we can apply [S]. p. 90 again. If Bisas in Case (2).t. 4
is a regular local ring (with 2 a unit), and so 4 []/j] is a UFD as observed in the proof
ot "LRR].(3. +. Q.E.D.

Proposition 5. 9. Keep the hypotheses in (5.8) and let f€ S(A). Then there exists a
unit ug of B and nvo elements hy. hy € A such that f=uq- (h? +h3); moreover. ug is a sum
of squares in the quotient field of B.

Proof. Since A is a UFD, we can write f=g?/ where /1 has no repeated prime factors.
We may, of course. assume that +0. We claim that any nonzero prime pih gencrates a
nonreal ideal in A. In fact, write f= 12+ -+ f2and h=h"-p. If the f{'s are not all divisible
by p. then f2+ - +f2=g*h’-p implies that A-p is nonreal. On the other hund. if
fi=/;-p for all i, then p*|g?/ and so g =g’ - p for some g’ € 4 since p* th. Cancelling p*.
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we get fi2 4+ 4 £ 2 =g'2}"- p. and we can carry out the same argument again. Since this

process must terminate in a finite number of steps. we have proved our claim. Hence. by

(5. 8). p is associate to an element of S,(A). Using the 2-square identity, we can therefore
x

write f=u(gt +g3). where u= 3 u,)" is a unit in 4 (i.e. uy is a unit in B). Since
i=0

1+ug' gy +ug'u,v? + -+ is a perfect square. in 4. we can rewrite the equation for fin

the form f=uy(hi +h3) with hy, h, € A. Comparing the coefficients of the lowest degree
terms in y on both sides. we see that u, is a sum of squares in the quotient field of B.  Q.E.D.

The above proposition gives the main tool for computing the pythagoras number
of 4 =B[[+]] for rings B of the two types specified in (5. 6). For convenience of exposi-
tion. we shall state the results separately for the two different types of B.

Theorem 5. 10. Let k be a real-closed field and B be a formally real k-affine domain
of transcendence degree 1. Assume that B and B[Vt—l_] are both PID’s. Let B’ be the
localization of B at any multiplicative set S. Then P(B'[[y]])=

Proof. If b is any nonunit in B'. it is easy to see that b + y* has length two in B’ [[+]].
Thus. it suffices to show that P (8'[[+]])< 2. In the following, we shall write 4= B[[+]]
and 4" =B'[[»]]

Let us first show that P(4) < 2. Note that by Witt’s Theorem. the quotient field K
of B has pythagoras number 2 since K is the function field of a curve defined over k. Let
feS(4) and keep the notations in (5. 8). The element u, is a sum of squares in K, so
ug € BN §;(K)=5,(B) by [CLRR], (2.5). By the 2-square identity, we get then
f=uhi+n? e S_(A)

Finally. we show P(4') £2. By an easy direct limit argument. we can reduce this to
the case whcn the multiplicative set S < B is generated by a finite number of elements
Sie- . . But then B'=B[s{"....,s;'] is also a k-affine domain of transcendence
degree 1 moreover 8 and B[}/ ~1] =B}/ "—1]Is.. ... 5;'] remain PID’s. Therefore,
P(B’) £ 2 follows as in the last paragraph. Q.E.D.

Corollary 5. 11. Let k be an h.p. field, and B’ be the localization of B=k{[x] ar any
multiplicative set S. Then P(B'[[»]1])=2.

Proof. The reason we need k to be real-closed in the argument above is that we used
Witt’s Theorem to get P(K) =2, where K is the quotient field of B'. But if B =k [x]s, we
know that P(K)=P(k(x))=2 as long as k is h.p. [B,]. p. 95. Therefore, the hypothesis
that & be real-closed can be weakened in this case. (Note also that here we do not need to
use the result in [CLRR], since we can use instead Cassels’ Theorem, and the fact that
P(B)<P(B)=2) Q.ED.

Next, we shall treat the case when B is a discrete valuation ring.

Theorem 5. 12. Let k be an h.p. ficld contained in a formally real discrete valuation
ring B such that the residue field of B is a finite extension of k.
(1) If P(B)S2n, then P(B[[v]])<2n.

(2) If B is 2-henseliun (i.e., if 1 + m < B? where m is the maximal ideal of B), then

P(B[LI])=2.
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we get fi7 + -+ f2=g?h’- p. and we can carry out the same argument again. Since this
process must terminate in a finite number of steps. we have proved our claim. Hence. by
(5. 8). p Is associate to an element of S,(A). Using the 2-square identity, we can therefore

b g
write f=u(gi +g3). where u= 3 «;)% is a unit in 4 (i.e. uo is a unit in B). Since
i=0 ,
V4 ug uy vy +ug' uyy? + -+ is a perfect square in 4. we can rewrite the equation for f in
the form f=uy(hi +h3) with hy, h, € A. Comparing the coefficients of the lowest degree
terms in » on both sides. we see that u, is a sum of squares in the quotient field of B.  Q.E.D.

The above proposition gives the main tool for computing the pythagoras number
of 4 =B[[1]] for rings B of the two types specified in (5. 6). For convenience of exposi-
tion. we shall state the results separately for the two different types of B.

Theorem 5. 10. Lct k be a real-closed Sield and B be a formally real k-affine domain
of transcendence degree 1. Assurie that B and B[[/P:_l] are both PID’s. Let B’ be the -
localization of B at uny multiplicative set S. Then P(B'[[»]])=2.

Proof. If b is any nonunit in B', it is easy to see that * + y* has length two in 8" [[+]].
Thus, it suffices to show that P(B'[[+]])<2. In the following, we shall write 4 = B{[+1]
and 4= B'[[1]]

Let us first show that P(4) £2. Note that by Witt’s Theorem. the quotient field K
of B has pythagoras number 2 since K is the function field of a curve defined over k. Let
f€5(4) and keep the notations in (5. 8). The element u, is a sum of squares in K, so
Ug€ BN S:(K)=5,(B) by [CLRR], (2.5). By the 2-square identity. we get then
f=ugh?+h3)eS,(A).

Finally. we show P(4") £2. By an easy direct limit argument. we can reduce this to
the case when the multiplicative set S B is generated by a finite number of elements
St-v .2 S, But then B =B[s",...,5,'] is also a k-affine domain of transcendence
degree 1: morzover B  and B’ [[/_:—1] =B} =1][s7"..... 5] remain PID’s. Therefore.
P(B') £ 2 follows as in the last paragraph. Q.E.D.

Corollary 5. 11. Let & be an h.p. field. and B’ be the localization of B =k [x] at any
multiplicative set S. Then P(B'[[v]])=2.

Proof. The reason we need k to be real-closed in the argument above is that we used
Witt’s Theorem to get P(K) =2, where K is the quotient field of B'. But if B =k [x]s. we
know that P(K)=P(k(x))=2 as long as & is h.p. [B,]. p. 95. Therefore. the hypothesis
that & be real-closed can be weakened in this case. (Note also that here we do not need to

use the result in [CLRR]. since we can use instead Cassels’ Theorem, and the fact that
P(B)<P(B)=2) Q.ED.

Next, we shall treat the case when 8 is a discrete valuation ring.

Theorem 5. 12. Ler & be an h.p. field contained in a Sormally real discrete valuation
ring B such that the residue field of B is a finite extension of k.
(1) If P(B)S 2. then P(B[[r]])S2n.

(2) If B is 2-henselian (i.e., if 1 +m < B* where m is the maximal ideal of B). then

PB[[:1]) =2
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In view of (5. 15). it will be of interest to characterize the set

S (k [Cx. ¥1]) =S (k [Cx. ¥1))

(and. if possible. its intersection with A [x.v]). We have not been able to find such
characterizations. As a partial result, we shall mention the following without proof: Let

R, ¥y =ha(x, V) +hge (3 + - €k [[x, 0]],

where /1; is homogeneous of degree /. and /1,%0. Then /€ S (k[[x, +]]) if hy is positive
definite. and only if h, is positive semidefinite. (Unfortunately, neither condition will be
both necessary and sufficient.)

Some of the methods used above to study the power series ring A [[x, 1]] can also
be adapted to give information on the field X ((x. »)) over an algebraically closed ground
field £. In the literature. it seems to be unknown whether the field & ((x, 1)) is a C,-field in
the sense of Lang (see [G]. p. 36). The following offers a partial result in this direction: we
thank Adrian Wadsworth for collaboration on the proof below.

Theorem 5. 16. Let k be an algebruically closed field, and F=k ((x. y)). Then (1) F is
a Ci-field for diugonal forms. i.e. any diagonal form fitf + --- + f,t3 over F with n>d? has

a nontrivial zero. (2) F has u-invariant 4. (For the definition of the w-invariant, see [L],
p. 315) ' :

Proof. Recall that a power series f'€ k [[x. v]] is said to be regulur in v of degree d if
S contains a term ay* (a €A\ {0}) but does not contain any term a'v‘ (¢’ € K\ {0}) with
i <d(see [ZS]. p. 147). An important special case of such a power series is one of the form

(5.17) g=ho(X)+h () v+ +hs_ () p4~ 494,

where /1,(x) € kK [[x]] with /,(0) =0, for all i. Such a power series g is called a Weierstrass
polynomial (in v) of degree d. By Weierstrass' Preparation Theorem [ZS], p. 139, any
fek [[x. v]] regular in p of degree d is associate to a (unique) Weicrstrass polynomial g
as in (3. 17). Now consider a diagonal form

fHitl+ -+ frd over F=k((x, ).

We may assume that all f; are in K[[x.1]] and are nonzero. After “moving” the set
{/:} by a suitable k-automorphism of k[[x. y]], we may assume that each f; is regular
in v (of some degree d;) [ZS]. p. 147. By Weierstrass’ Preparation Theorem. we can write
fi=u,g,. where g e k[[x]][+] is a Weierstrass polynomial in v of degree d,. and
u; € k [[x.»]] with u,(0.0)#0. Since k is algebraically closed, the latter implies that
u; = v{ for suitable power series v; € k [[x. ¥]]. Consider g, s{ + -+~ +g,s4, viewed as a form
(in the indeterminates s;) over the field & ((x))( ). Since & ((v)) is a C,-field. & ((x))(1) is a
Cy-field [G]. p. 22. p. 35. Thus, if n>d?, there exist s; €& ((x))(y), not all zero. such
that g, s{ + -+ g,5¢=0. But then fi (v s)4+ - + (¢, 5)9=0. 50 fi 1+ -+ f, 12 has
a nontrivial zero in F=K ((x.1)). This proves (1) in the theorem. Since every quadratic
form over a field (of characteristic not 2) can be diagonalized. (1) implies that F has u-in-
variant «(F)<4. The form 1? +xt3 +vt3+xre} is easily seen to be anisotropic over
Kk ((x)){( 1))  F (by using Springer's Theorem), so it must be anisotropic over F. Therefore
u(F)=4. Q.E.D.

Journal fur Mathematik. Band 336 10
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For a real-closed ficld k. we do not know whether the quotient ficld & ((x,.. ... x,))
of k[[xi.....x,]] has a finite pythagoras number when n2 3. The compumuon of
P (k((x1.....x,)) is closely related to the computation of the u-invariant of & ((xy.. . .. x,)).

where £ denotes_ the algebraic closure of k. For a discussion of this point. see § 9

We shall now conclude this section by considering the pvthagoras number of rings
of the type R=k [[\]] [x]. where & is a field. Note that this ring is not the same as
k [x]1[[+]]. although it may be viewed as a subring of the latter. For the pythagoras
number P(R). we have the following result:

Theorem 5. 18. Let & be u formally real field all of whose finite nonreal extensions k'
have level stk'y<2" Then. for R =k [[y]][x]. we have P(R)<2"7".

Proof. We first claim that P (k {(1))(x))S2""'. From Milnor’s exact sequence for
the Witt ring of a rational function field. this will follow if we can show that any nonreal
finite extension £ of k {(1)) has s(E) £2" [L]. p. 314. But. by valuaticn theory, any such £
is isomorphic to a power series field &' ((1")). where A’ is a finite extension of k. Since £
is nonreal. so must be &’ and so s(£)=s(k"(())))=s(k") £2" This proves our claim.

To get P(R)S2"*'. let fe S(R). View f as a sum of squares in F[x]. where
F=k((1)). By (2. 2) (Cassels” Theorem), P(F[x]) = P (Fix)), which. by the last paragraph.
is Sm:=2""' Thus, fe S (F[x]). But F=k[[»]][» '] so there exists ¢ 20 such that
vief=f2+ -+ .} for suitable f; € k [[+]] [x]=R. Clearly. if e > 0. all f, must be divisible
by y. Thus, after cancelling )2 e-times, we get the desired conclusion that f€ S, (R).

Q.E.D.

This theorem, combined with the following one. gives an alternative method for
computing the pythagoras numbers of & [[x, »]] and &k [x][[»]]-

Theorem 5. 20. For any formally real field k. let
A'=k[[x.]].  4=k1[01].  R=4[DI]0I].

and view R < A< A’. Then, for any natural number n. we have S,(4)=A*-S(R) and
S5,(4)Y=4"%-5,(R).

Proof. In both cases. we need only prove the inclusion "< ”. We shall first treat the

ring 4, so consider f(x, y)= 3 gZ(x.y) where g; € 4. If y|/. then y|g; for each i. and we
i=1

can cancel y? from the equation. Thus. we may assume that v/, or that f(x.0)*0.
If f(x. 0) is a constant, say x. then x € S, (k). and f=(x~'f)-x€ A%- S,(k). We may. there-
fore, assume that f(x.0) has degree 2d>0 in k[x]. By Weierstrass’ Division Theorem
(cf. [ZS]. p. 139), we can write g;=h;f+r; where /i;€ A. and r;e R=k [[3]]{x] with
deg ri{x.v) <2d Fromg,(x. 0)=/,(x, 0) f{x. 0) + r,{x. 0). and the fact thatdeg g,(x. 0) £ d.
we see that /1,(x.0)=0, i.e. v{h,(x, v) for each i. Now

Zr'z=2(gi_hif)2= al 7fzgxhx+j Zh —ffO

where fo=1-2 Zg‘/1,+f2h € A. since v|h; for all i, fo is a unit and is a squarc in A.
Therefore, f€ A% 5,(R). The proof for the case A" =k [[v]][+]] is similar. by considering
the order of f(x.0) instead of deg, f(x.0). (Here, the argument is even simpler: in the
case where f(x.0) has a positive order 2¢>0. each g;(x. 0) will have order 2¢>0 s0
fo=1=-23gh+fS hi=1(modxA4 +yA’)is a unit and is a square in 4".) Q.E.D.
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Corollary 5. 21. In the notation of the theorem, we have P(A')< P(A) < P(R). If k
satisfies the hvpothesis of (5. 18), then P(AYS P(4) 2771,

Corollary 5. 22. Ifk isan h.p. field. then P(A) = P(A') = P(R) = 2. If k is a number field.
then P(A") S P(A) £ P(R) £ 8. If k is a (formally real) function field of transcendence degree
n over a real closed field, then P(A') S P(A)S P(R)S 2",

(For the last case. use [P,]. or [L]. p. 301. Note that. for the rings 4 and A4'. the
first case has been obtained before in (5. 11) and (5. 14). However, the present method
also covers the second and the third case which are inaccessible by the earlier method.)

§ 6. Regular local rings of dimension >3

In this section we shall compute the pythagoras number of regular local rings 4 of
(Krull) dimension =3 whose residue fields are formally real. This includes. in particular.
power series rings in three or more variables over any formally real field. The key to this
computation is the observation that the associated graded ring of a regular local ring is
isomorphic to a polynomial ring over its residue field. In order to formulate the ideas in
the proper perspective, it is convenient to first make some remarks on sums of squares in
graded rings. The proof of the following proposition is routine and will be omitted.

Proposition 6. 1. Let A=A4o ® A, ® A, ® --- be a commutative graded ring. Then

(1) A is formally real iff, for any n and {a,,...,a,} < 4,, 3 a? =0 implies that all
aj = O.

(2)  Assume that A is formally real. and a€ A,— {0}. Then a€ S, (A4) iff n=2r for

some r and a=Y. a} for some a, € A,.
i=1

Definition 6. 2. Let 4 be a commutative graded ring. We define the homogeneous
pythagoras number, hP(A), to be the supremum of {length,(a): aeh(4) N S (A)} where
h(A4) denotes the set 4y A, U A, U -~ of homogeneous elements of A. (Clearly,
hP(AYS P(A).)

We shall now prove the following Proposition which was prompted by a remark of
A. Wadsworth: R

Proposition 6. 3. Ler mt be an ideal in a ring R with () m'=0. Let

iz0

A=G,(R)= @ mimi*!

iz0

be the ussociated graded ring with respect to m.

10*
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) If A is formally real. then R is also formally real.

(2)  Assumne that A is formally real. Let a € m"=m™ " and G=a+m""' ¢ 4. Then
hyd Sleagthga. In particular. h P(A4) < P(R).

Proof. (1) Suppose ¥ a} =0 in R. Since 4 =G, (R) is formally real, we see that if
allujare in some m’, then they are all in m**". Thus by induction on i, we geta;e () m'=0.
iz0
(2) If a ¢ S(R). we take lengthga = x by.convention so there is nothing to prove.
Next, assume a=a{ + - +a7. Let r be the largest integer such that all a; lie in m". Then
a;+m""! are not all zero in 4, and (@j+m"" =g+ m? ' If n>2r. we would have
Zla;+m™ i =0¢€ 4, contradicting the formal reality of 4. Thus n<2r: this must be
an equality since a=3 aj e m?. We have then d=g+m"*! =3 (a;+m"™H2 so
length .7 < lengthg «. Faally, to prove hP(A) £ P(R). let x+0 be a homogeneous element
of A. su_ of length 4. By (6. 1). we must have x e A,, (for some r) and 2 =2} + - + %
where 2, = 4, Wrii x;=a;+wm"*!(q; e m") and let a:=at+---+at e m?. Since

a+m* =Y (g +mty2=y =240,
j j

we have g ¢ %L, By'v the first part of (2), we see that lengthg(a) =k, so P(RY2 /i P(A).
: Q.E.D.

Remark 6. 4. In general. we may not have P(R)Z P(A4). In fact, if R=R [[x. +1]
and m=(x, y), then by (5. 14), P(R) =2, but the associated graded ring is 4 =k [x, »].
with pythagoras number P(4)=oc. Here hP(A)=2 so the inequality #P(4) < P(R) in
(6. 3) (2) turns out to be an equality. In general. however, this may not be the case. For
instance, let R=R[[x. y]], R'=R [[-1] and m'=R’--. The associated graded ring for R’
with respect tom’is 4'=G,.(R') =R [-]. with R having degree 0 in the grading. Cicarly
hP(4’)=P(R)=2 (by (5. 14)). but P(Ry=P(R[[x. y, =1])=x by (6. 7) below.

At this point. it will be convenient to prove the following lemma on the beh:ior of
the lenzt of forms upon dehomogenization:

Lerrma 6. 5. Let g(xo,....x,) be a Sorm of degree 2r over a SJormally real ring R.

and let = ... x)=g(l, x,..... X,). Then
lengthof § in R[x,,. .., x,] =length of g in R[x,.. ... x,]
=lengthof g in R[[x,.. ... x,]].

Proof. The last equality follows from (6. 3) (2) since the associated graded ring of
R [[xo,. s .\',,]] with respect to m =(x,.....x,) is R [xo.. .., x,]. For the first equulity.
we only need to show that length(g) < length(g). Suppose g= ¥ hi in R[x.....x,].

i=1
Since R is formally real. it is easy to see that each /i; must have total degree <r. Thus
Hi(xg, X100 X,) i=x5hi(x, ixg. . .. Xn/ o)

are forms of degree r in R[x,..... X,]. Now we have

m
2 drsi i 2 . . ) .
T Hi=x3"g(x, 'xo.. ... Xn'Xo) =x5"g(1. vy /Ng.. ... X, xp) =g(Xg. X1.. ... X))

i=1
so length(g) < length (g), as desired. Q.E.D.
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In the above argument. it is important that we assume g to be a form. In fact. the
lemma s clearly false without this assumption.

Theorem 6. 6. Let (R.m) be a regular local ring with a formally real residue Sield
k=Rim. Then

(1) R is formally real.
(2) IfdimR23. then P(R) = .

Proof. Let x,... ., x,€ m be a regular system of parameters for R, where d = dim R.
If we write ¥;=x;+me G,(R). then G (R) is the polynomial ring k[X,,.... x,] graded
in the usual way. Since k& is formally real. so is k[5,,. . ., £,]. Thus (1) follows from (6. 3) (1)
(see also [CT, ], Prop. 2. 1). Now assume d= 3. Let F,(x, y. =) be the homogenization of
the polynomial f,,(x. v) in (4. 17). By (6. 5). F,,(¥,, X,. ¥3) has length m in k [¥,, X3, .. %40,
so by (6. 3) (2). F,(x,. x,. x3) has length m in R. Since this holds for any m. we see that
P(Ry=x. Q.E.D.

Corollary 6. 7. Let A be any ring which has infinite level. Then, Sfor any d=3,
P(A[[x....,x]])=.

Proof. As in the proof of (4. 18). we can reduce this to the case of 4 being a formally

real field. But then 4 [[x,.....x,]] is a regular local ring of dimension 4 with residue
field 4. so we are done by Theorem (6.6). Q.E.D.

If we combine this Corollary with the results of § 4, 5 we will be able to compute even
the pythagoras number of all power series rings of “mixed types”:

R"'m=k [[.\’l,. [ x"]] ['Yn+l" . es .T"+m],
R’/u.m=k [xl-- ] xn] [[xn+l9' a xn+m]] .

at least when k =R or k =Z. The results are stated in (6. 8), (6. 8") and (6. 9) below.

Theorem 6. 8. Ler k be any formally real field. Then P(R, ) = unless

(n,m)=(0,0), (1,0), (0, D, (1,1) or (2,0).

In these five special cases, if k is an h.p. field, we have, respectively,
PR, )=1.1,2,2 and 2.

Proof. The last statement follows from [B,]. p. 95. (5. 1). (5. 14) and (5. 19). Now as-
sume (n. 1) £(0, 0), (1. 0), (0. 1). (1, 1) or (2, 0). If (n, m1) =(0, 2), we have R, n=k[x. x;]
so P(R, ) =2 by (4.18). In the remaining cases, we have n+m=3. View R,.asa
subring of R,,,, =k [[x,..... x,+,]]. Since F;(x;, x5. x3) € S(R, ) has length i in Rpsp
it must have length i in R, ,,.. This being true for all /, we have clearly P(R,,,)=x. Q.E.D.
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Theorem 6.8'. Lot k be uny , wily real field. Then P(R.

n.m

(n, ) =(0.0). (0. 1), (1.0), (1. 1) or (0.2).

) =% unless

In these five special cases. if k is an h.p. field, we hare. respectively
P(R,,)=11,2.2 and 2.

Proof. 1f (n. m) is not one of the five special cases. the same argument as in the proof
of (6. 8) works. Among the five special cases, the only one not covered by (6. 8) is
R{y =k [x][lx,]]. This case, however. is covered by (5. 11). Q.E.D.

If & is not an h.p. field. but say & = O, then the “finite” cases to be considered are
O, Q[[x]]. C[x]. Of[x.»]1]. ©Lx] [[)]] and O[[+1][x]. Of course. P(Q)=4 by
Lagrange’s Theorem, and hence P (Q[[x]])=4 by (5. 1) (1). Also, P(Q[x] =3 by Pour-
chet’s Theorem [P] combine.. with Cassels’ Theorem [C]. For the remaining rings we have

S5SP(Q[Lx. ¥1]) S P(OLX] [[ID=PIII]IN])<8

by 5. 22), but, unfortunately, we do not know the exact values of these pythagoras numbers.
For k =2, however, we do have a complete result:

Theorem 6. 9. Let k=2 and (n, m) £(0. 0). Then P(R, .} =% unless (n. m) =(1.0).
and P(R, )= x unless (n, m)=(0. 1). Moreover. PR, o) =P(Ry,) = P(Z[[.\‘]]) =3.

Proof. The last statement is a theorem of H. Liese [Li]. (We thank W. Scharlau and
M. Peters for pointing out to us Liese’s result.) In all other cases, the ring in question will
have a surjection onto either Z[x] or Z[[x.]]. so by (2.0), it suffices to show that
P(Z[x])=P(Z[[x. ¥1])=x. The first case is covered by (4. 12). The second case follows
from the observation that the associated graded ring of Z[[x, y]] with respect to the
ideal (x, y) is the polynomial ring Z[x, ¥]:in view of (6. 3) (2) and (6. 5), this implies that

P(Z[[x.y]]2hP(Z[x.y) = P(Z[xD=ox 0.E.D.

§ 7. Formally real ar*ine algebras

In this section we shall utilize the results on local algebras developed in § 3. 6 to com-
pute the pythagoras numbers of some formally real affine algebras. The main result here
is that any such algebra of (Krull) dimension 23 has an infinite pyvthagoras number: see
(7. 5) below. '

Recall that a prime ideal p in a ring A is called real if the quotient ring A p is form-
ally real. Let us call p regular if the localization A, 1s a regular local ring. Using this
terminology. we can restate a result in § 6 in the following convenient global form:

Theorem 7. 1. Let A4 be a ring which has a regulur real prime ideal p of height d2 3.
Then P(A)=x. In fuct, let x,,. . ., X4 € p be a regular system of parameters for A,. Then
P(B) =% for any subring B< A containing at least three of x,,. .., x,.

Proof. Consider the regular local ring 4,. Its residue field A,/pA, 1s the quotient
field of 4 p which is formally real. For any m. let F(x. v, ) be the homogenization of
the polynomial f, (x. v) in (4. 17). Let B be any subring of 4 containing. say x,. x,. v;.
By the proot of (6. 6) (2). Fo(x1, X350 x3) has length 1 in A, s0 it must also have length m
in B. Since this holds for any m. P(B) = <. Q.E.D.
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Our next goal is to develop some criteria for an arbitrary affine aigebra (over some
field) to be formally real. One of these criteria. when combined with (7. 1), will enable us
to prove the infinitude of the pythagoras number for formally real affine algebras of
dimension = 3. The following results (7. 2). (7. 3) and (7. 4) are obtained in collaboration
with Adrian Wadsworth; we want to thank him for permitting us to include these results
here.

Lemma 7. 2. If a ring A is formally real, then any localization S™" A is also formally
real.

The proof of this is routine and will be omitted.

Theorem 7. 3 (with A. Wadsworth). For any commutative ring A. the following two
statements are equivalent:

(1)  Ais formally real;
(2) A is reduced and each minimal prime of A is real.

Moreover, each of (3). (4), (5) below implies (1) and (2):

(3) A is reduced and each minimal prime of A lies in a real regular prime.
(4) A is reduced and each minimal prime of A lies in a real regular maximal ideal.

(5) A has a real regular prime, and A satisfies the following condition:

() For any minimal prime po < A, if ¥ af =0, a;€epo (15/=S1). then all a;=0.
j=0

If A is an uffine algebra over some field k, then all five conditions are equivalent.

Proof. (1) = (2) (cf. [DE,]. Lemma 1. 1) Let p be a minimal prime of A4; then
pA, is the nilradical of 4. By (7. 2), 4, is formally real, so p4,=0, i.e. 4, is a field.
This field is the quotient field of 4/p, so p is real.

(2) = (1) Suppose ¥ a? =0. Then, by (2). each a; lies in all minimal primes of 4.
so uj is nilpotent. Since 4 is reduced, we have a;=0 for all ;.

(4) = (3) = (J) The first implication is trivial, so assume (3). Let p, be a minimal
prime of 4. and (by (3)) let p be a real regular prime containing p,. Then A4, is a regular
local ring. in particular a domain. Since the primes in A, are in one-one correspondence
with the primes of 4 lying in p, we see easily that p, =ker(4 — 4,). To show that p, is
real. it is therefore enough to show that A, is formally real. But 4,/p 4, being the quotient
field of A4;p, is formally real, so 4, is indeed formally real by (6. 3) (1).

(5) =1(2) Let p be a real regular prime. Then. as above, py:=ker(4 — 4,) is a
minimal prime of 4 and p, is also real. Thus. if 3 uf =01in A. then all g; € p, and there-
fore a;=0 by (1).
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For the rest of the proof, usswme that 4 is an affine algebra k [xy.. .., x, ], N, where k
is some field. To complete the proof. it is enough to show that

(2) =(4)'%)  Take any minimal prime po/9 of 4 and let B=k[x,..... x,]'py. By
(2). this is a formally real domain: let K be a real closure of its quotient field. The algebraic
closure k* of k inside K is then a real closure of & and we have a natural surjection
4 k" @ B—k'-Bs K. Note that k' ®, B is an integral extension of & ®, B=5B. and
the prime ideal ker . < k" ®, B contracts to zero in B. Therefore. by the Cohen-Seidenberg
Theorem. ker/ is a minimal prime ideal in &' ®, B: this prime is rcal since k' - 8 < K is
formally real. Now A" ®, B is isomorphic to k' [x,,. ... X1/ (Po) where (p,) denotes the
ideal generated by py in A'[x,,....x,]. Thus, ker/ corresponds to a real prime A of
k'[x(.....x,] which is minimal over (p,) (and therefore minimal over

(W =AN-k"[x;....,x,].

Let #;...., Z be the other minimal primes over (). Let V; (1 <i<r) be the algebraic
set defined by 7 in the algebraic closure k of k. and let (V;),. = ¥; N k'" be its k -points.
Let ¥ (}/)) be the singular locus of ¥ ; then & (V) is Zariski-closed of codimension =1
in V|. Also. none of the I; (/2 2) can contain V. Therefore, V|, — % (V,) U Voo o b,
1s a nonempty Zariski open set in ¥,. Now use the fact that 2 is real. By the Realnull-
stellensatz [DE, ]. this implies that ('), is Zariski dense in ¥,. Hence, there exists a point

ae(Vl)k'_y(Vl)U Vzu e U Vr.

Let M (resp. M) be the maximal ideal in & {x,.. .., x,](resp. k'[xy,. .., x,]) corresponding
toa(so M=M nk[x,,...,x,]). Then

klx..... IMck'[x,....x, M =k'.

so * real. We claim that the .al) maximal ideal m= M/ in 4 is regulur. To prove
this. ~ der the localization 4, =A[x,...., x,]y/A,,. Since the point « lies on exactly
one ¢. ¢ k-irreducible components'') of the zero-set of . (po)y A, is the unique
minimal prime of A, and hence is its nilradical. But since we assumed A to be reduced.
0 is A, and hence (po)y =U,. This gives Ap=k[x,.....x,]3(Po)y. which is the
k-local ring at « of the (unique) irreducible component of ¥, containing «. Since « is a
simple point on this component, the &-local ring at ¢ is a regular local ring [Lg]. p. 201.
as desired.'?) Q.E.D.

'%) The truth of this implication. usually attributed to Artin-Lang, seems to be part of the folklore in
real algebraic geometry. However. a complete proof of it. especially in the case of « non-reul-ciosed ground

fic ©  :cs not scem to be availuble in the literature. We have, theretore. included the necessary arguments here
te > gap.

1 By choice. ¢ uvoids all of ¥,,. ... ¥,. and. since a is a simple point of I, it lics on only one irreducible
¢ -atof Fy. (In fac:. 2 being a real prime implies that F 1s irreducible (¢f. [DE, ], Thm. 1. 11): however.
W t need to use this faot here))

') Note that throuzhout this proof we uare working in characteristic zero, so we need not worry about
subtleties such as inseparability or ramification of primes. In particular, there is no problem in applyving the
classical characterization of simple points in terms of regular local rings.
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Remarks 7. 4. In conditions (3) and (4) of the theorem. the assumption that 4 be
reduced cannot be removed. i.e. it does not follow from the fact that every minimal prime
of A lies in a real regular prime (or maximal) ideal. For example. 4=R[x. v xy)
has a unique minimal (real) prime (¥). which lies in the real regular maximal ideal
(Y. 7+ 1)=(F+1). but 4 is not reduced (and therefore not formally real). In a similar
vein. the assumption (+) cannot be removed from condition (5). For. if 4, is a k-affine
algebra with a real regular prime p,. then for any nonreal finite extension A, D A, the
k-affine algebra A 1=k, x A, has a real regular prime k, x p, (of the same height as p,). but
the minimal prime p, =k, x {0} of 4 does not satisfy the condition (¥). Of course A cannot
be formally real since 4 o k.

We can now combine (7. 3) (1) = (4)) with Theorem 7. 1 to get the following general
result:

Theorem 7. 5. Let A be a formally real affine algebra (over some field) of Krull dimen-
sion d=3. Then P(4)= .

Proof. Take a minimal prime p, < 4 of coheight d. By (1) = (4) in Theorem 7. 3.
there exists a real regular maximal ideal m < 4 containing p,o. Since 4/po 1s an affine
domain of dimension . the maximal ideal nup, must have height d. This cleariy implies
that m itself has height d in A4; since d= 3, the hypothesis of Theorem 7.1 is satisfied.
Therefore. P(4)=x. Q.E.D.

§ 8. Pythagoras number of same generic fields

In this section, we shall study the affine algebra 4,=R[x,,..., x,Jj(1 +x{+ +x2)
and its quotient field F,. Let r be the unique integer such that 2"<n <21 1t is known
that s{F,)=2" [P,]. while s(4,) =n [DLP]. Therefore, by (2. 4) (b), 2"S P(F,)S2"+1
and n < P(A4,) < n+1. Our goal in this section is to try to determine the precise values of
these two pythagoras numbers. We have complete success for P(F,), but only partial
success for P(A4,). as the following result shows:

Theorem 8. 1.
ifn=2;
() P(F,,)={ f
2"+1 if n>2.

(2) Letn=2". Then

-

2 if n=2;

P(4,)= {
n+1 if n>2.
The computations for P(F,) and P(A4,) have already been given in (3. 4) and (3. 5)
(see also the discussion following the proof of (3. 6)). Therefore. in the following, we shall
assume that n> 2.

Suppose we have shown that P(F,) =2"+ 1. Then, by (2. 1), P(4,,) Z P(F,.)=2"+1.
Since we have already pointed out the reversed inequality, it follows that P(4,,) =2"+1,
as claimed.

Joumal fur Mathematik. Band 336 t
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We shall now try to prove that P(F,)=2"+1 (when n>2). This is related to. but
not identical with. the fact pointed out in Footnote (6) of [Pr]. p. 289. The field discussed
in the latter is F,. the quotient field of R[vo. x,.....x,J/xE+ - +x2). which is the
“bigger” generic field; the relationship between F, and F is given by F. = F,(x,). From
s(F,)=2", it is easy to see that x4 is not a sum of 27 squares in F,(x,), 0 P(F,) 1s clcarly
2"+ 1. However. the fact that P(F,) =2"+1 (n>2), which we are about to prove. is con-
- siderably harder. We begin with a lemma which is crucial for the proof:

Lemma 8 2. T/le;e exists a rational fumnon g(x,. X3) € R(xy. xa) such that
T4 xt+ o+ 52+ g2y, xp) has length r+2 in R(x,...., x,) for every r=2.

Proof. In view of Cassels Theorem [C], it is enough to construct g(x. v') £ R(x. ¥
such that 1 +x243%+g%(x, ) ho length 4 in Ry, v). By the main result of [CEP].
R{x.y) does have an element of . :th 4, namely, the Motzkin polynomial:

M(x, p)=x2y3(x?+)2 =3)+1,
though this does not have the desired form 1+x2+3?+g%(x, ¥). By strai, .orward

computation. we have

C+yH My, y) =x2(p2 = D2 +332 = )+ a2+ p2 = 2)2,

Multiplying this by x?+ y? and using the 2-square identity, we get

(x? +3v)2 M(x, »=[x(*-1)—-y. ~DP+vr(xi =D +y-x x(r=-17?
+xip(x? +y2)(x +32-2)? ’
=(x2 =y + (xy(x2 + p2 =P + 1+ (x2 4+ p2 - 2)2.

Thus, letting /=(x*+3?)/xy(x?+32=2) and g=(x’—1?)/xv(x2+ 12— 2), we have

B ) M(x, 3) =1+ 2 432 +g2(x. v).

Since this rational function has the same square class as M(x, 3) in R(x, »). the RHS has
length 4 in R(x, y). as desired. Q.E.D.

We shall now resume the proof of P(F,)=2"+1 (n >2). Consider F, as a quadratlc
extension of the rational function field K =R(x,.. n-1). by adjunction of ¥, =] f
wheref= —(1+xi+--4+x2_)). Forg= g(\l X,) as in the Lemma. consider the element

g+er F,=S(F). (Note that since n—122. g is an element of K: this is essential for
the argument below.) Computing the norm with respect to the extension F, /K, we have

Ne k(@ +V ) =g —f=14x+ +x2_ +g%(x,, X3).

By the Lemma, this norm has K-length n+12>2"+1. i lows that g+y’/f—' must have
F,-length 22"+1, for, if g+L’/feSz,(Fn). then by K...susch’s Norm Principle [L],
p. 208, we would have 1\/’,-",,\-(g+Vf) € S,-(K), which is not the case. We have therefore
shown that P(F,)=2"+1. Q.E.D.
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§ 9. Open problems

As we have said before. the computation of the pythagoras number of a ring is in
general a very difficult task. Many problems in this area have remained unsolved. In this
section. we shall collect a few of these open problems to indicate the rich possibilities for
future work.

Problem 1. /n the category of (commutative) rings. find the answers to the questions
(Qu) and (Q5) posed in §2 (after (2. 7). .

More ambitiously. given a ring k with P(k) <<c, and any integer n, one may try to
get qualitative and quantitative results on the invariant g, (n). the smallest number ( £ )
such that any sum of squares of n-ary k-linear forms can be written as a sum of at most
g,(n) squares of such forms. Very litth: work has been done in this direction. For instance
the values of g,(n) do not seem to be known for all n even for k=Z. The case n=2is
classical: L. Mordell [M,] had shown that every positive semidefinite binary form -

l . . . . .
ax?+2bxy+cy? over Z is a sum of 5 squares of Z-linear forms, which implies that

g:(2)=35. John Hsia has pointed out to us that. using the method of [Hs], Mordell’s
result can be extended to positive semidefinite forms 3 a;;X;X; (a‘-j-—-aj,-eZ) to (at least)
the case of n < 5 variables. leading to g, (n) =n+3 for n < 5. Hsia further commented that,
in view of the results of [HKK]. it seems likely that, in general. g;(n) is bounded by a
polynomial function of n, though the explicit computation of g;(n) would probably be
difficult. If we pass from Z to k = Z [1/p] by inverting a prime p, the computation becomes
easier: in fact. one has an analog of Mordell’s theorem for any number of variables over ,

which gives g,(n) £n+ 3. according to John Hsia.

Problem 2. Let ko be a field with P(ko) < ¢, und A be a ko-affine algebra of trans-
cendence degree 1. is it true that P(4) <x? -

If the answer to the “Weak Question” (Q,) is yes, we can reduce Problem 2 (by the
Noether Normalization Theorem. as in (3. 1)) to the purely transcendental case: 4 =k, (.
In view of (2. 2). the question in this case can be restated strictly within the category of
flelds:

If P(ko)<x. does it follow that P(ko(t))<x?

It is known that this conclusion will follow iff all finite field extensions of ko, have
bounded pythagoras numbers. iff all nonreal finite field extensions of ko have bounded
levels [P,]. [L]. p. 314. However, whether this is indeed the case has remained for many
years a difficult open problem in the theory of quadratic forms over fields.

In § 3 (cf. the paragraph following (3. 2)), we have remarked that there exist algebras
A of transcendence degree 1 over R with arbitrarily large pythagoras numbers. However,
the algebras we constructed there are more or less of an “unpleasant™ type—for instance.
they are not integral domains. In this connection, it would seem natural to consider the
following:

Problem 3. [f A is the real coordinate ring of an absolutely irreducible affine curve C

over R, is P(A) bounded by a universal constant?

We do not know the answer to this problem even in the case when the curve C in
question is assumed to be nonsingular.

The methods of Section 7 have led to large families of affine algebras of transcendence
degree >3 (over the base field) which have an infinite pythagoras number. However, our
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results arc onclusive for affine algebras of transcendenc: degree two. i.e. for the case
of affine 5= .ces. We pose as the next problem the following: .

Problem 4. Siudv the pythagoras number of affine algebras of transcendence degree 2
over a real closed ficld.

[t will also be useful to study a “local” version of this problem. i.¢.. to try to compute
the pythagoras number of affine algebras over real-closed fields localized at height 2 primes.
The solution to this. even if only for regular primes of height 2. will be of consideruble
interest. In this regard. we raise a somewhat more gencral question:

Problem 5. Ler 4 he a regular local ring of dimension 2 whose quotient tield has a
Sinite pythagoras mumber. Does it follow that A has a finite pythagoras number?

To motivate the assumption that A has dimension 2, we recall that the problem has
a positive answer for dimension 1 (cf. (2. 3)), but has a negative answer for dimension =3
(cf. (6. 6), (6. 7)).

Our next problem concerns the field & ((x,,.. ., x,)). which is the quotient field of
the power series ring A [[v,..... x,]].

Problem 6. For k any real-closed field. compute P(/\ ((\l X)) forn2 3. (CF (5. 1)
and (5. 14y if n<2.)

Note that F,=A (.. .., x,)) is a much smaller field than the iterated power series
field K, =k ((x1)) - ((xx,). The latter is known to have many remarkable properties. e.g.
K, is hereditarily pythago ean [B,] and K, L-_l) is a C,-ficld in the sense of Lang [G].
p- 35. It seems to be unknown, however. whether F, (] —l) is a C,-field (cf. [G]. p. 36).
or even a C/-field in the sense of Pfister [P;]. If we know that F, (} —1) s a "C,-field
for quadratic forms™ (or more weakly, if any n-fold Pfister form over F.(/ —1) is uni-
versal), then the usual descent argument (cf. [P,], [L], p. 301) will show that P(F,) 2",
as in the case of the rationai function field A (x,.. ... x,). For n=2. we do know {from
(5. 16)) that F, (] —1)is C, for diagonal forms and hence for quadratic forms: the descent

argument implies P(F,) <4, while it turns out that P(F,) =2 by (5. 14). Based on this,
it may seem tempting to conjecture that P(F,)g2m 1,

In ficld theory. there is a well-known theorem of Springer on the behavior of quadratic
forms under an odd degree field extension: If [K: k] is odd and if q is an anixotropic
quadratic jorm over k. then q remains anisotropic over K [L]. p. 198. Applyving this to the
forms g =axj—xf —--- —x2, we see easily that P(k)< P(K). It would be interesting to
find out to what extent this could be generalized to rings (or at least to unique factorization
domains):

Problem 7. If' R is « UFD und 4 is an R-algebra which, as an R-module. is Sinitely
generated of odd rank. is it true that P(RYS P(4)?

Finally. it will be of interest to try to generalize the results of this paper from sums
of squares to sums of higher powers in rings. For any natural number ¢ € N, one can define
the (higher) pythagorus number P,(A). for a ring A. to be the smallest number n < » such
that any sum of d-th powers in A4 can be written as a sum of at most n d-th powers. In
this notation. the usual pythagoras number P(4) isjust P,(4). A couple of the results in
this paper concerning P(A) can be extended to P,,(4) by just making formal changes in
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the proofs. The most notable example is the proof for (4. 10) and (4. 12). which extends
casily to give P, (Z[x]) =« for any r € N. Unfortunately. the proof for

PR[x,.....x,])=x (n=2)

does not scem to generalize to give P, (R[x,.....x,]) = x. We propose as the last problem
the following

Problem 8. For any nz 1 and r 2 2. compute P,,(R[x,,. ... X, .

E. Becker has shown recently [B,] that P,, (R(x,... .. x,)) is finite for all 1 and all r.
However. we do not know if P,,(R[x,..... v,]) is finite even for n=1 and r=2. Thus.
an important special case for Problem 8 is the determination of P (R[x]).

Note added in proof. Concerning Problem 3. E. Becker and M. Ojanguren have shown
us the construction of subrings of the type R[r™,.... t™] in R[+] which have unbounded
pythagoras numbers (private communication). After receiving this communication. we
have further shown that rings of the type R[r“, 129~ '] (arising from plane curves) already
have unbounded pythagoras numbers. However, since these curves do have singularities,
the case of Problem 3 for nonsingular curves remains open.
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