TRANSVERSAL ZEROS AND POSITIVE SEMIDEFINITE FORMS
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Y , Introduction
.deals. A
guadratic forms. ' For any natural number n = 2 and any even natural number d = 2 we

' consider the cenvex cone ?(n,d) consisting of the positive semidefinite
(= psd) forms over IR in n variables Kysooor X, of deoree d, and the
. convex subcone I(n,d) consisting of the finite sums of squares of forms
du spectre reel. . . .
of degree d4/2 in the variables KyoooorX,. As is well xnown
t(n,d) # Fin,d) except for very special pairs (n,d), namely the pairs
- topos étale ‘ withn=2c0rd=2or (n,d) = (3,4) (Hilbert, cf. [CL] for an elemen-

tary proof).

.1scher Rdume. . ) ) .
s . In this paper we ask for relations between the sets EP(n,d) and

EX(n,d) of extremal elements of the ccnes P(n,d) and z(n,d). Notice

-spology over a : that, since our cones are closed (after addinc the oricin), every ele-
:aigebraic spaces. : ment in P(n,d) resp. I(n,d) is a finite sum of elemdtnts in EP(n,d)
< resp. EZ(n,d). Thus the sets EP(n,d) and EIL(n,d) deserve special
- attentica.
--ures and reduced Cur main result, Theorem 6.1 in §6, is the determination of alil
~-2rg 51 149-195 pairs (n,d) such that EI(n,d) is contained in EP(n,d}), whicnh means
Ef(n,d) = EP(n,d) N £(n,d). This answers Problem B in the survey arti-
_i1oen Korpern. cle [CL1].
In order to obtain the result a general cbservation turns out o

o
be helpful:

a) Let ¥ be arn irreducikle indefinite form in El[x1,...,xn] of ldegree

r. Then €or any ¢ € P(n,d)

F € EP(n,d) e FH° € EP(n,d+2r),

F € ET(n,d) == FHZ € EL(n,d+2r),
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cf. Theorem 5.1. We also feel that the following observation sheds

light on the problem:

b) If F € EP(n,d) then F° € EL(n,2d),

cf. Theorem 5.2.

our "“counterexamples” G € EX(n,d), G £ EP(n,d) are of the form
G = HZF2 with H a product of irreducible indefinite forms and F an
irreducible psd form of some degree e which is not extremal in P(n,e).
Basic counterexamples will be explicitly constructed in §6 for
(n,d) = (3,12) and (n,d) = (4,8).

The observations a) and b) rely on the nresence of "transversal
zeros" for some forms coming up in the proofs. A transversal zero of a
polynomial F(x1,...,xn) over R is a point c € ®R? such that F changes
sion in every neighbourhood of c. If F has no multiple irreducible
factcrs then a point ¢ of the zero set Z(F) < R turns out to be a
transversal zero if and only 1f£ Z(F) has local dimension n-! at c,

cf. Theorem 3.4.

The first half of our paper is devoted to a ceometric study of
transversal zercs and to the guestion how far a rolyncmial is deter-
mined by its transversal zeros. We try to do all this on a natural
level of generality. This leads us to study the set lD]IR of real
points of an effective Weil divisor D on a normal algebraic variety X
over IR. But for the applications of the theory of transversal zeros

made in §5 and §6 it suffices to consider the case when X 1s a projec-
n=1
R

preduct of projective spaces.

tive space PP , Or - if one wants to study also multiforms - a direct

We suspect that many of our considerations on cransversal zercs
are more or less "folklore", well knowa %0 the exmerts. However, to
our knowledge, no coherent account of this useful theory seems to
exist in the literature. Thus we feel that these Prcceedings are a

good place to explicate the basic facts.

In the whole paper we admit any real closed field R as ground field
instead of the field IR of real numbers. Using some standard results
from semialcebraic topoclogy, all contained in {(CK]) and §1 of the pre-
sent paper, this does not cause additional difficulties. Thus we never
need Tarski's principle to transfer elementary statements froem R to
other real closed fields.
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§ 1 The pure dimensional parts of a semialgebraic set

We start with a variety X over a real closed field R, L.e. a re-
duced algebraic scheme over R. The set X(R) of rational points of X is
a semialgebraic space in the sense of [DK], and we use freely the
language of “"semialgebraic topology" developed in that paper. In par-
ticular we make use of the dimension theory in (DK, §81.

Let N be a semialgebraic subset of X(R). For any point x of N the
local dimension dime of N at x is defined as the infimum of the di-

mensions of all semialgebraic neighbourhoods of x in N (DK, §13]1. We
introduce the sets (k = 0,1,2,...)

£ (N) := {x € N !dime > k}.

Of course Zk(N) is empty if k exceeds the dimension 4 of N. It is
clear from [DK, §8] that every zk(N) is a closed subset of N (in the
strong topoloay, as always). We shall need some elementary facts
about the sets IK(N) (actually only about EA(N)), not covered by the
paper [DK].

sroposition 1.1. &, (N) is semialgebraic for every k = O.

K
It is trivial to verify this lemma using the theorem that every
affine semialgebraic space can be triangulated [DK1]. A more elemen-
tary proof, which also gives additional insight, runs as follows. Let
4 = dim(N). For k > d there is nothing to prove. We now deal with the
case k = d. We may assume that X Iis affine. Let Y denote the Zariski

closure of N in X, and let S denote the singular locus of Y. Then
N' := (Y(R)~S(R)) N N

.s an cpen senialgebraic subset of N and the complement in N, i.e.

"% n S(R), has dimension at most d&-1. Suppose wWe xnow already thuat

T.(N') is semialcepbraic. Let L te the closure of I (N') in N. This is
izain a semialgepraic set. N>L is open in N and has dimension at most
t=1. Thus N~ L is disjoint from Zd{N). On the cther hand L 1s con-<
tained in £d(N), since Zd(N) is closed and contains zd(N'). Thus

Ed(N) coincides with the semialgebraic set L.

Replacing N by N' and X by X\ S we assume now that Y is smooth.
Let ¥,,...,Y, denote the connected components of Y. The set zd(N) is
the union of the sets I (N N Yi(R))’ and it suffices to prcve that

these sets are semialgebraic. N N Yi(R) is Zariski dense 1n Y,. Re-
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,‘; placing N by anyone of the sets N N Yi(R) we assume that in addition
2y Y ts connected, hence irreducible.
i
v We have N = N, U ... U N, with non empty sets
PR
" = { | = R > ] = “ee
- Ni {x € Y(R) ,gi(x) o, fiJ(X) o, 3=1, ,sir,
{;‘,‘ where gi'fij are functions in the affine ring R (Y]. If g; is not zero
W
i f then dim N1 < n-1, But if 94 is zero then Ni is open in Y(R}), hence
P ) : :
3.{ N, © zd(N), since Y is smooth and thus Y(R) has local dimension d at
é?{ every point [DK, §8]. It is now clear that I4(N) is the closure of the
b R
Ey‘ union of all Ni with g, = O in the set N. Thus Zd(N) is indeed semial-
r gebraic.
Consider now the cpen semialcgebraic subset Ny oi= N\~Zd(N) of N.
A Clearly
K
, - .
zd_1\N) Zd(N) U Zd_1(N1).
_ We know from the proof already civen that Zd_1<N,) and Zd(N) are semi-
. algebraic. Thus Zd_1(N) is semialgebraic. Repeatinag this arcument we
& see that all zk(N) are semialcebraic, and our lemma is proved.
:; Proposition 1.2. For every k = O the semialcebraic set
¥
e Q -
Zk(N) = tk(N)\~£k+1(N),
'%" consisting of all points x € N with dime==k, is pure of dimensicn X,
£
>3 i.e. dim, £2(N) =x for every x € I2(N).
j;':' X T% k
> Proof. Let x ke a point of ZE(N) and let UO be an onen semialcebraic
aeichbournocd of x in N wich din U, = k. For anv open scmialrzebraic
; neighbourhocd U < Co of X in N we then also have dim U = X. Moreover
for every sucn U tnere exists an ccan semialgetraic sucset V of U
~ which is semialcebraically isomorphic to an open non empty subset of
R*[CK, §8]. Cleariv v is contained 1in ES(N} N . Thus
dim(ZZ(N) 0 ) = k. Q.E.0.
- We call ZS(N) the npure k-dimensional part of N. More specifically,
;;. if dim N = 4 we call Zg(N) = I 4(N) the pure part of N.
2

Example 2.3. If X is irreducible of dimension n, and if the set

;.-. |: .v'v '
ast & s
oS TN
T Tt
o

Y
RS o

X(R)rea of regular points of X in X(R) is not empty, then the pure
part Zn(X(R)) of X(R) is the closure of X(R)rec in X(R).

4y
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Indeed, X(R)req

sion at most n-1 at every singular point which is not contained in the

closure of X(R)req‘

is pure of dimension n, and X(R) has local dimen-

§ 2 Transversal zeros of aloebraic functions

We assume in this section that the variety X over R is irreducible,
that the set X(R) of real points is not empty, and that X is regqular
at every point of X(R). Then X(R) is an n-dimensional semialgebraic
manifold [DK, §13} with n = dim X. We also assume that X is affine,
and we denote the ring R(X] of regular functions on X by A. On the
space X(R) every f € A takes values in R. We are interested in the zeros
and the sign behaviour of the functions £ : X(R) - R.

Definition 2.1. Let L be a subset of X(R) on which f does not vanish

everywhere. We say that f is positive semidefinite (resp. positive

daefinite) en L 1f £(x) =z O (resp. f£(x) > O) for all x € L. In the same
way we use the words "negative semidefinite" and "necative definite".
If there exist points x € L and y € L with £(x) > O and £(y) < O, then
we call £ indefinite on L.

Definition 2.2. Let £ be a non zero element of A. A transversal zero

of £ is a point x € X(R) such that f is indefinite on every semialge-
braic neighbourhood V of x in X(R). Notice that f cannot wvanish every-
wnere on V since dim V = n.

We denote by Z(f) the set of zeros of f on X(R) and by 7 _(£) the
set of transversal zeros of f£. We finallv denote by N{f) -he clcsed
Q

reduced subscheme of all zeros of £ on X. Thus I (f) is the set of
re
cl

mne clocure of the set of points of X(R) wnere £ i3 positive with *-he

al points of N(f) and Zt(f) is a subset of I (f). The set I (f) is

osed and semialgebraic in X(R). The setlt(f) is the intersec+tion of

closure of the set where £ is recative. Thus I _(f}) is also clcsed and

semialgebraic in X(R).

-~

Proposition I2.3. For every non zero recular function £ on X the set

I, (f) of transversal zeros is either empty or pure of dimension n-1.

Proof. Let a be a given point of Zt(f). We choose an oven neignbour-
hood V of a in X(R) with a semialgebraic isomorphism ¢ : V¥ = V' onto
an open semialgebraic convex subset V' of R®. (Recall that X(R) is a

semialgebraic manifold.) We then choose a point X, € V with f(xo) > 0
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and an open semialgebraic subset U « V such that f(y) < O for every
y € U and such that U’ := @(U) is convex in R". We finally choose a
hyperplane H of R™ with H N U' # @ and not containing the point

s xé := w(xo). Now consider the central projection
n o RPN ({x'}) — H
o
onto H with center xé. We claim that

(») W-w(Zt(f) nv)y >2HNU'.

Indeed, let y' € H N U' be given and let v' : [0,1] = V' be the

straight path from xé to y',

y'(t) = (1-t)xé + ty'.
,?; Then v := w-1- v' is a semialgebraic path in V running from the point
‘ X to the preimage y of y'. Since f(xo) > O and f(y) < O there exists
some point T € ]0,1[ where the semialcebraic function foe Yy on 0,1}
changes sign. v(t) is clearly a transversal zero of f. The point
Ev y'(tr) lies in w(Zt(f) A V) and maps under n to the point y'. Thus the
inclusion (s) holds true. This implies that
v dim I_(£f) n Vv 2 n-1,
3 £
;E since dim (H n U') = n=1. But IZ(f) N V has dimension at most n-1 since
s' this set is contained in N(f). Thus Zt(f) i Vv has dimension n-1 for
z every open semialgebraic neighbourhood V of a.
e Q.E.D.
g

Corollary 2.4. Let £ and g ke non zero regular functions on X. Let

N,

a € X(R) be a transversal zero of f and assume that Zt(f) N U is con-

wgim
Fumd

tained in IZ(g) for scme neighbourhood U of a. Then £ and g have a nen

: . : N . .
trivial common factor in tne regular local ring CX 2t 4 Recall that
-

5

"
: Ox a is a unique factorization domain.}
’
Proof. For every affine Zariski neighbourhcod W cf a in X the semi-

algebraic set W N U N Zt(f) has dimensicn n-1 by Proposition 2.3

abe 2. Our hypothesis implies that this set is contained in the inter-
section N(f) N N(g) N W of the hypersurfaces £ = 0 and g = O on W.
Thus the (algebraic!) dimension of N(f) N N(g) N W cannot be smaller
than n-1 for any Zariski neighbourhood W of a. This implies that
there exists some h € A which is a prime element in Ox'a and has the

property that
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N(h) N W < N(f) n N(g) N W
for small Zariski neighbourhoods W of a. By the local Nullstellensatz
h divides both f and g in Ox a
’

In the same vein we cbtain

Corollary 2.5. Let again f and g be non zero functions on X. Suppose

that for some open semialgebraic subset U of X(R) the set Zt(f) nNuUis
not empty and contained in I(g). Then the complex hypersurfaces N{f)
and N(g) have a common irreducible component. In particular, if A is
factorial then f and g have a non trivial common factor in A.

Proposition 2.6. Let £ and g be non zero regular functions on X, and

assume that the hypersurfaces N(f) and N(g) have no irreducible compo-

nent in common. Then

Zt(fg) =2 _(f) U ta).

proof. a) Let a be a point of X(R) which is not contained in

Zt(f) U Zt(q). Then there exists a neighbourhood U of a in X(R) such
that both £ and g are semidefinite on U (ccsitive or negative). Then
also the product fg is semidefinite on U, and a is not a transversal
zero of fg. This proves that Zt(fq) is contained in Zt(f) u Zt(g)'
(Our hypothesis, that N(f) and N(g) have no common component, is not
vet needed for that.)

b) We show that the set M := Zt(f) is contained in Zt(fq), which will
finish the proof. We may assume that M is not empty. By Propositicn
2.3 M is pure of dimension n~1. On the other hand the set

N o:= 2_(f) n I _(g) has dimension at most n-2, since N is contained in
the ingersectién of the hypersurfaces N(f) and N(g) which have nc
common irreducible component. Thus the set M~ N is dense in M (a
“rivial argument, cf. [DK, §13]). Since Zt(fg) is cloged it suffices

to verify that MNN is contained in Zt(fq).

Let x be a point of M~N, which means that x € 2 _(f), x £ I, ().

~ve choose a neighbourhood UO of x on which g is semidefinite. Now £ is

.

indefinite on every neighbourhood U < Uo of x. Thus also fag is indefi-

nite on every such U. This implies that x € I, (fq).

Q.e.d.
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1
Corollary ~.7. Assume that A is factorial. Let f be a non zero ele~
ment of A ~d let
e e
- 1 t
£ up, cev Py

be the decomposition of f into powers of pairwise non associated prime
elements Pqs....Pp with u a unit of A. Then Zt(f) is the union ot
the sets Zt(pi) with e, odd.

e
Proof. Apply Proposition 2.6 and observe that Zt(pi

ej . .
e, is even and Zt(pi ) = Zt(pi) if e, is odd.

i) is empty if

In the same vein we obtain for the semialgebraic set germ Zt(f)a
of a non zero function £ € A at any point a € X{(R):

Corollary 2.8. Let

e, e
f =up, -

be the decomposition of £ into prime elements in the fac*torial ring

) 7 i i with 3
Lx,a‘ Then “t(f)a is the union of the set germs Zt(pi)a with e, odd.

§ 3 purely indefinite divisors

We still assume that X is an irreducible n-dimensional variety
over R and that the set X(R) is not empty and contains no singular
points of X. But we no longer assume that X is affine. Our
terminolocy from §2 then rakes over from functions to effective divi-

sors D = O on X, by which we always mean effective Weil divisors.

Definition 3.1. Let D be an effective divisor on X and let a be a

coint of X(R). Let f be the local equaticn of D on some affine Zariysv
cpen neichbourrnood V of a. We call D indefini at a, Lf £ is indefi
rite on everyv neighbournood of a in V(R). Similarly we call D semica
finite (resp. definite) at a, if £ is positive cr negative semidefi-

nite (resp. definite) on some neighbourhcod of a in V(R). The points

1

&

of X(R) wnere D is indefinite are called the transversal £oints

O

and the set of these points is denoted by D . This set is a closed
semialgebraic subset of the set of real points iDlg 2= iDj N X(R) of
the support !D' of D.

Let D = e1D1 + .. * etDt be the decomposition of D into irredu-
cible components.
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Proposition 3.2. |D|t is the union of all sets ‘Dilt with e, odd.

This is clear from Proposition 2.6 in §2, or its corollary 2.8.

Definition 3.3. We call an effective divisor D indefinite, if IDIt

not empty, i.e. if D is indefinite at some point of X{(R). We call D

semidefinite, if IDIt is empty, and we call D definite if |D|R is
empty. Finally, we call D purely indefinite, if D # O and there does
not exist a semidefinite effective divisor E # O with E & D. This
means that D is non zero, has no multiple components, and that all

irreducible components of D are indefinite.

It is clear from Proposition 2.3 in §2 that for every effective
divisor D on X the set ZD!t is either empty or pure of dimension n-1.

This result can be improved.

Theorem 3.4. Assume that D has no multiple components. Then the semi-
i1lgebraic set fD!t of transversal points of D ccincides with the pure

{n-1)-dimensional part Zn_l(jD?R) of the set fDlR of real points on
Di.

Proof. It remains to verify that D is indefinite at any given pcint

a of D R with dima D'R = n-1. We choose a local equation £ of D on

some affine Zariski open neighbourhood W of a in X. Let U be any semi-
algebraic open neighbourhood of a in W(R). The set U N {DiR has di-
mension n-1, but the set of points in TD!R which are singular on DI

has dimension at most n-2. Thus U0 ‘D‘R contains some regular peint b

of D'. There exists a reqular system of parameters 51’f2""’f1 of

+he regular local ring Ox 5 such that fT defines the cgerm of the
!

3

variaty ‘D' at b. The functions £, and £ differ in 7, only by a

b
un:t, nence we may assume that £ = fl‘ By the implicié function theo-
rem the system (f,,...,f1) vields a semialgebraic isomorphism of some
open semialgebraic ne q“bournood U'e U of b in X(R) onto some open
semialcebraic subset Qs R%. since FT L) = O certainly £ = f1 chances
sign on U'. A forticri £ is indefinite on U.

Q.e.d.

We mention that the thecrem now proved implies a generalization of
the "Sign-Changing Criterion” of Dubois and Efroymson for extending an

ordering P of a field k to a given function field over k ([DE, Th.2.7),
cf. also [ELW, §4 his}
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Corollary 3.5. (Dubois ~ Efroymson for V = AQ). Let - -e an ordered
field and R be a real closure of k with respect to t 7iven ordering.

Let V be an absolutely irreducible variety without s.  sular points
over k and D a prime divisor on V. Let VR denote the variety over R
obtained from V by base cxtension and let D denote the effective divi-
sor on VR obtained from D by base extension. Then the ordering 2f k
can be extended to the function field k(D) of O i{f and only if D is
indefinite.

Proof. The ordering of k extends to k(D) if and only if there exists
a field composite of k(D) and R over k, which is formally real. These
field composites are the function fields R(D1),...,R(DS) of the irre-
ducible components Dl""’Ds of the divisor D. The prime divisors B
all occur with multiplicity one in D. Thus D is indefinite 1f at least

one Di is indefinite. By Theorem 3.4 a given Dy is indefinite if and

only if the := o0f real points Di(R) of © has dimension n-1 wit"

n := dim V % VR' 8ut dim Dl R} = n-1' =ans that the variety :; .as
nonsingular . points, cf. §1. Now 1t is a well known fact, due =o
Artin, that ~as nonsingular real points if and only if the field

R(Di) is forr..ly real ([A, §4], cf. also [E]).

We return to our irreducible variety X over R.

Proposition 3.6. Let D be an effective divisor # O without multiple

components. Then ID!R is Zariski dense in |D| if and only if D is
purely indefinite. In this case even Eth is Zariski dense in 'D!.
Proof. Let D1""'Dr denote the irreducible components of D. Clearly

iDl, =D

iDig (R) U ... UD.(R)

1

is Zariski dense in D if and cnly if every DL(R) is Zariski dense 1in
Di' This means that DL(R) nas the semialcebraic dimens:icn n-1, i.e.
-18

that Zn (R}) is not empty, and in that case cf course already
(Di(R)) is Zariski dense in D,. The proposition ncw Zollows Zfrcom

z
n-1
~ne preceding Theorem 3.4.

This is perhaps the appropriate place to indicate a relation be-
tween our investigations and the real Nullstellensatz of Dubois-Risler-
Stengle [S, Theorem 2]. Assume that X is an affine variety over R and
that W is a closed subvariety of X. Let A denote the affine ring of X
and &t the ideal of functions in A vanishing on W. Then the real Null-

stellensatz says in particular that W(R) is Zariski dense in W if and
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only if the ideal < is "real", i.e.

2 2
h1 AETIPE ¢ hr €Ol » h1 €41,...,hr € Cb

for arbitrary elements h1,...,hr of A. (This is essentially Risler's
version of the real Nullstellensatz [Ri], (Ri,].) Thus if X is irre-
ducible and has no singular real points then the proposition we just
proved says the followinqg:

Corollary 3.7. Let X be affine and I(D) denote the ideal of functions
in R[(X] vanishing on |D| for D an effective divisor # O without multi-

ple components. Then I(D) is real if and only if D is purely indefi-

nite.

If D is a prime divisor then clearly I(D) is real if and 6nly if
the function field R(D) is formally real, and we are back to the arqu-~
ments which led to the Sign-Changing Criterion above (Corollary 3.5).

Definition 3.8. We call a semialcebraic subset M of X(R) pure and

full of dimension k in X, if dim M = k (hence the Zariski closure Z of

M in X has dimension k) and M is the pure part Zk(Z(R)) of Z(R).

In this terminology we can say accordinc to Thecrem 3.4 and Prono-
sition 3.6 that for every non zero purely indefinite divisor on X the
set {Dit is pure and full of dimension n-1 in X. We now prove a con-
verse of this statement.

Theorem 3.9. Let M be a pure and full (n-1)-dimensional semialagebraic

subset of X(R). Then there exists a unigue purely indefinite divisor
D on X such that M coincides with the set ‘Di, of transversal points

-

of D. The variety 'D, is the Zariski closure of M in X.

denote the irreducible compcnents of 2. The set M is the union cf <he
closed semialcebraic subsects ML := M N zi(R>, i=1,...,r. Dencoting by

2} the Zariski clesure of M, in X we have z! = 2, and
i i i

1

Z2: U ... U Z; = Z1 U ... U Zr,

and we conclude that Zi = Zi for i=1,...,r. This means that every Mi
is Zariski dense in Zi. Since Zi is not contained in the union of the
Zj with j # i, also Mi is not contained in the union of the Mj with

j # i. Thus
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n-1. This implies dim ML = n-1 and dim z.L = n-1 for every i=1,...,n.
The set ZL(R) contains Mi' hence has acgain dimensicn n-1. We now ccn-
v clude from Theorem 3.4 that for every i =1,...,r the prime divisor Zl

is indefinite. We introduce the purely indefinite divisor

By construction |[D| is the Zariski closure 2 of M. Since M is pure and

full, M coincides with Zn_1(|D[R). By Theorem 3.4 this last set is
!D]t. It is now also clear that D is the only purely indefinite divi-
sor with ‘Dlt = M, since by Promcsition 3.6 for any sucn divisor D'
the wvariety iD'! is the Zariski closure of M in X.

nN.e.d.

A mild generalization of these results is possible. Assume cnly

that X 1s an irreducible n~dimensicnal wvariety wnich is ncrnal a

it

4 every real point, and that X(R) has dimension n. Let X' denote tne
5 open subvariety of all reqular points of X. Then X(R) ~X'(R) has di-
‘ mension at most n-Z. In particular X'(R) is not emnty. Let D be an

effective divisor on X and let D' denote the restriction of U tc X'.

Definition 3.10. We call D indefinite (resp. semidefinite, resp.

3

®*

.§§ purely indefinite) if D' is indefinite (resp. semidefinite, reso.
purely indefinite). We denote by ¢th the closure of the semialcebraic
set :D"t in X(R).

It is evident that all the theorems, propositions and corollaries
in this section, except Corollary 3.5, remain true word Ly word .a the
present more general situation. Corollary 3.5 remains true Ior a nor-

B

mal irreducible variety V over k 1instead of a recular variety.
§ 4 A remark on semidefinite prime divisors

As before let X be an irreducible n-dimensional variety cver R
such tnat X(R) is also n-dimensional and conéains only normal noints.
We regard on X(R) beside the strong topology also the coarser Zariski
topology. This is the topology on X(R) induced by the Zariski topolog
of X. Every Zariski closed subset M of X(R) is a finite union of irre
ducible closed subsets M1""'Mr with Mi & Mj for i # j. We call thes:
subsets Mi the irreducible components of M. They are uniquely deter-
mined by M.
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Every irreducible Zariski closed subset M of X(R) which has dimen-
sion n-1 is clearly the set of real points of an indefinite prime di-
visor D on X uniquely determined by M (cf. Theorem 3.9, which says
much more than this.) We now prove a weak analogue of this statement
for lower dimensional irreducible Zariski closed subsets of X(R).
Uniqueness of the prime divisor D can no longer be expected. Thus the
following theorem is less valuable than Theorem 3.9.

Theorem 4.1. Suppose that X is also guasiprojective, i.e. a locally
closed subscheme of some projective space ]P:. Let M be an irreducible
zariski closed subset of X(R) of dimension at most n-2. Then there

exists some semidefinite prime divisor D on X such that M = D(R).

For the proof we replace X by its normalization, which does not
change anything for the space X(R). Now the zero divisor div(f) and
the pole divisor div(f)_ of any non zero rational function f on X are

monestly defined as Weil divisors.

The set X(R) is contained in the affine open subscheme V of Pi

which is the complement of the hypersurface xg L xé = 0. We
X4 (R) and

introduce the Zariski closure Xy of X N V in V. Then X(R)
X1 is an affine variety. Let W denote the Zariski closure of M in Xy .

We choose regular functions 9yseeerg, ON x1 such that W is the reduced
X (q1) n...n Nx

For the }egular function1

subscheme N
X

(qr) of all common zeros of gqree-s9, ON
1°

g =g

2 + ...+ 02
1 °r

on X1 we have

M= (x € X1(R) Tg(x) =0},

We now extend the regular function g X N V to a rational function £
on X in tne unigue nossitle wav. The domain of definition of £ ccntains
X N Vv, hence X(R). Thus the pole divisor E := div(f)_ has in its sup-
port nc real points, i.e. E is definite. On the other hand we have Zor
the zero divisor D := div(f)

iDig = {x € X(R) | £(x) =0} = (x € Xy(R) [g(x) =0} =M.
Let D = e1D1 + ...+ est be the decomposition of D into prime divi-
SOrs. M is the union of the Zariski closed subsets D1(R),...,DS(R)-
Since M is irreducible, M coincides with one of these sets, say
M = D,(R). The prime divisor D, is semidefinite according to Theorem

3.4, or already Proposition 2.3, and our theorem is proved.
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§ S Extremal positive semidefinite forms and extremal squares

Let X be the (n-1)-dimensional projective space P:_1(n z 2), Every
effective divisor D on X is the divisor div(F) of a form F(x1,...,xn)
with coefficients in R uniquely determined by D up to a multiplicative
constant. In this way the prime divisors correspond with the irreduct-
ble forms, the indefinite divisors correspond with the indefinite forms
in the usual sense - notice that X(R) is connected -, and the semidefi
nite (resp. definite) divisors correspoﬁd with the positive semidefi-

nite (resp. definite) forms, of course also with the negative semidefi-

nite (resp. definite) forms.

.,xn] purely indefinite, if the divisor
This means that F is not constant, all
and no -reducible factors

We call a form F € R[x1,.
div(F) is purely indefinite.
irreducible factors of F are indefinite,
occur with multiplicity > 1.

For any integral number r =2 O we dencte by - the set of all non

zero forms of degree r in R[x1,...,xn] and by F ':e union of all F(r).
For any even number d z O we denote by P(d) the convex cone in F(d)
consisting of all psd (= postive semidefinite) forms of degree d in
R{x,,. .,xn], and by P the union of all ?(d). Similarly we denote by
L(d) the convex subcone of P(d) consisting of all finite sums of
squares of non zero forms in R[x1,...,xn] of degree %, and by I the

union of the sets I (d).

The cones P(d) U {0} and £(d) U {0} are well known to be closed
semialgebraic subsets of the vector space F(d) U {0}. Our theory in §2
has some applications to the theory of the sets E(P(d)) and E(L(d)) of
extremal points of the cones P(d) and I(d). we refer the reader to the
paper [CL] for the background, some results, and concrete examples in
this theory. Let again E(P) denote the unicn of sets E(P(d)) and E(I)

the unicn ¢f %Zhe sets E{I(d)).

If nothing else is said all forms in thz sequel are understocod to
be forms in Xis-.er X OvVer R. For any two such forms we mean by
"F z G" that F-G lies in P U {0}. In particular then F and G must have
the same degree. Similarly we mean by “F >>G" that F-G lies in
I U {0}. Clearly an element F of P lies in E(P) if and only if
F 2 Gz 0 implies G = AF with some constant 1. Similarly an element F
of I lies in E(I) if and only if F>>G>>0 implies G = AF with some
constant \. Of course in both cases the constant )} lies in the inter-
val [0,1].
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Theorem 5.1. 1) Let F and G be psd forms. Assume that F € E(P) and G
divides F. Then G € E(P). '

1i) Assume that F € E(I) and F = G-H2

G € E(T).

with some forms G and H. Then

iii) Let G be a psd form and H a purely indefinite form. Then G lies’
in E(P) if and only if GHZ lies in E(P). .

iv) Let again G be a psd form and H a purely indefinite form. Then G
lies in E(I) if and only if GH® lies in E(I).

proof. 1)
G - G' z O. We have to verify that G' = )G with some constant A. Since

We have F = G H with some psd form H. Suppose that

iv

O we have GH =z G'H = O. Since F is extremal this implies

O

'Y = \GH with some constant ) and then G' =AG.

ii) We may induct on the number of irreducible factors of H and thus
assume that H is irreducible. Since F is an extremal sum of squares F

Now H divides L. We have L = HS with some
2

is actually a square L2

form S and then F = stz. From this we obtain G = S

In particular

G € I. We see now by the same argument as in i) that G is extremal in
.

11i) If GH?
above. Assume now that G is extremal. It suffices to consider the case

is extremal then also G is extremal as has been proved

that H is indefinite and irreducible, since we then obtain the full re-
2 > L = 0. The set
of real zeros l(H) is contained in Z(L). By a mild application of

Corol. 2.5 we see that H divides L. (Restrict H and L to the n-stand-

sult by iteration. Let L be a non zero form with GH

ard open affine subvarieties of P;f1 JSince H is indefinite then also

HZ divides L, cf. Proposition 3.2.  We have L = HzL' with some psd form
2 = L'Hz > 0 that G = L' = O. Since G is extremal
2

this implies L'=)G with some constant ) and then L = AGH" .

L' and obtain from GH

iv) We again retreat to the case that H is irreducible and indefinite.
If GHZ lies in E(L) then by ii) also G lies in E(I). Assume now that
G € E(L£). Suppose that GH2 » L» O. We have

with some forms MysooooMy of same degree. The set l(H) is contained in
every zero set Z(Mi). Thus by Corollary 2.5 we have Mi = HNi with some
forms Ni and L =HZL1, where

2 2
L N1 + ...+ Nr € L.
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we can apply the same araument to the sum of squares GHZ - L ana have
GHZ- L = HZS1 with some S, € I. We obtain G = L, *+ S1. Since G is ex-
tremal in £ this implies L, = \G with some constant } € [0,1] and then

L = xGH2 . Thus GH2 is indeed extremal in I. Theorem 5.1 is now conm-

pletely proved.

We may ask for which forms F the square F2 is extremal in I or
even in P. By part iii) of Theorem 5.1 the latter is true for any pro-
duct F of irreducible indefinite forms. We also know from parts i) and
ii) of the theorem that

-

2 2
(F1F2) € E(Z) = F1 € E(Z), Fy € E(Z);

2 2 2 <
(F1F2) € E(P) = F, € E(P), F; € E(P).
To pursue %this question further we may cmit 'in 3 grven form F all irre
ducible indefinite factors, according to Theoren 5.1, and assume tnhat

F is psd. We have the following partial result.

et F ke a form in E(P). Then Fz has the foilowing

Theorem 3.2. L
property: If F¢ = G2 + § with some osd form H and some form G then
G2 = ¢F° with some constant €. (Of course ¢ lies in the interval

{0%1].) In particular FZ € E(T).

Proof We may assume that F # =G. We distinguish two cases.

Case 1: F -G is semidefinite. 1f F-3 would be necative semidefinite
twen also F + G would be negative semicdefinite, since Fz-Gz = 0. Thu
the sum 2F cf F- 35 anéd F+G ~ould te necative semidefinite, wnicnh LS
not true. Thus F~-3 =z C. Since F2 -<J: = (F-3G}(F+G) 1s =sd, aiso

F+G = O. from the relacien

F = (F +G)/2 + \F - G)/2

we obtain, since F is extremal,

(F G)/2 = M\F, (F + G)/2 = .F

with constants A > O, . > O such that \ + u = 1. This implies

G = (u=-3%)F and then G2 (s - \)ZFZ, as desired.

[}
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-ns GH2 - L and have Case 2. F -G is indefinite. According to Proposition 3.2 there existg
-~ S . Since G is ex- an irreducible indefinite form P which divides F =G with an odd multj-

-~ \ € [{0,1] and then plicity. Stince FZ -szz O the form P occurs in FZ--G2 with even multj-
‘r2m 5.1 1S now com=- plicity, again by Propostion 3.2. Thus P divides also F+G, hence p

divides both F and G. Since F is psd even P2 divides F. We hayr

23 .
F = P‘F1 with a form Fy € E(P) by Theorem 5.1.i. We also hava 5 = PG
with some form G' and the equation

extremal in I or
P4F2 = 920'2 + H.

is true for any pro- 1

- i) and
-now from parts i) Thus H = PZH' with a form H' € P, and

pzpf =G24y,
The zero set I(P) is contained in 1(G') and also in Z(H'). Thus by §2
the irreducible indefinite from p divides both G' and H', the latter
one with an even multiplicity. We obtain G' = p G1’ H' = P2H1 with
oven form £ oall irre- . H, €P, and
nd sume that 2
.Y 83 F1=G$+H1.

The proof can now be completed by inducticn on the degree of F, since
o F d ha: .
-he follcwing T, has smaller degree than F

icme form G o=hen ) Q.e.d.

n the ir rval ;
-7 the lnte Remark. 1In all these considerations we could have replaced ocur pro-
— - n n

jective space P; ! by a product PR1>t... > PRI, i.e. work with

L]
multiforms instead of forms. Thus Theorems 5.1 and 5.2 remain true for

Tultiforms instead of forms.

“NC Cases.

This imnlies

e
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§ 6 Comparison of the sets EP(n,d) and EI(n,d). _ i

Looking again for forms F such that F2 is extremal in I or even in
P it is natural to ask whether every r? € E(L) actually lies in E(P).
In case of a positive answer we would know from Theorems 5.1 and 5.2
for any psd form F that FZ lies in E(I) if and only if F lies in E(P),
and the relation between the sets E(X) and E(P) would be well under-

stood.

Unfortunately things turn out to be not that simple. Let us write
more precisely P(n,d) instead of P(d) and IZ(n,d) instead of Z(d) to
indic.~e the number n of wvariables of the forms under consideration.
We ask for which pairs (n,d) with n 2z 2, d =2 2 and even, the set
EXI(n,d) of extremal points of the cone Z{n,d) is contained in the set
EP(n,d) of extremal pcints of the cone P(n,d). The following theorem

gives a complete answer to this gquestion.

Theorem 6.1, Let n = 2 be a natural number and 4 be an even natural

number. Then EIZ(n,d) < EP(n,d) precisely in the following cases.

i) n = 2; ii)y d = 6; iii) (n,d) = (3,8); iv) (n,d) = (3,10).

Thus the question, whether EYX(n,d) is contained in EP(n,d) is

answered by the following chart:

d 2 4 6 8 10 12 14

n
2 v/ v % v v v '
3 v P4 v v ! X X
4 v v v X x X
S 1% v v X X
6 v v v X X X
Legend: v = Dositive answer

x
]

rnegative answer

The rest of the section is devoted to a proof of this theorem. If
n=2o0rd =2 then £{(n,éd) = P(n,d) and there is nothing to be proved.
Thus we assume henceforth that n - 3 and d = 4.

4 or d = 6. Let F be a form with

Consider now the case that d
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pz € EX(n,d). Suppose that F2 does not lie in EP(n,d). Cancelling out
in F all indefintte irreducible factors we obtain a form with the same
Properties, as follows from Theorem 5.1. Thus we may assume that F has
only psd factors. Then F cannot have degree 3. Thus F is a psd qua-
dratic form. After a linear change of coordinates we have

‘ 2 2
F = X4 + ... * X

with 1 < r = n. Now

2 2,2

2 2 2
(x2 + ... * xt) + (x2 + ...+ x )7

4 2

+
F® = Xy 2 X
we see that Fz is not extremal in I(n,4). This contradiction proves

~nat EZ(n,d) is contained in EP{(n,d) for 4 < 6.

Ssuppose now that F is a form of degree 4 in n variables such that
FZ lies in EI but not in EP. If F would contain an indefinite irreduc-
:ble factor then taking out this factor we would obtain a form G witl
GZ € EI(n,d} but G2 ¢ EP(n,d) for some d < 6 (Theorem 5.1). This has
peen proved to be impossible. Thus F does not contain an indefinite
cactor and we may assume in particular that F is psd. If F would be
reducible then F = 0102 with psd guadratic forms Q, and Q,. But then
also the factors Qi and Q% of QfQ% would lie in EI (Theorem 5.1), which
means that Q, and 02 would be squares of linear forms. This contradicts
the fact that F has no indefinite factors. Thus F must be an irreduc-

ible positive semidefinite quartic.

It is known since Hilbert that P(3,4) = £(3,4), cf. [CL, §6] for
an elementary troof in the case R = na‘). Thus in the case n = 3 our
sarm F has to be a sum of squares, put not a sguare, and we obtain as
above a contradiction to the assumotion that F2 is extremal in Z(3,8).

We nave proved that EI(3,8) 1is contained in EP(3,8).

Assume now chat F is a form in 3 variables of degree 5 such that

-
-

"y

is extremal in L£(3,10). F contalns an irreducible factor H cf cdd
3

w

b

cree, F = HG. 3y Theorenm 5.1 the form G° is extremal in L. Since

N
e

H . PA : -
cdeqg G” =3 we Xxnow that G° 15 extremal in P. Thus, again by Theorem 3.1,

2

the form F° is extremal in P. We have nroved that EI(3,10) 1is contained

in EP(3,10).

*)

This proof works equally well cver all real closed fields R, taking
into account the rudiments of [DK, §9]. No appeal to Tarski's
principle is necessary.
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We now have verified all the affirmative answers in the chart
above. To get all negative answers it suffices to check th - EIL(3,12)
{s not contained in EP(3,12) and EI(4,8 is not contained EP(4,8).
Indeed, recarding a form F in the variablies XyroonoX, also 3 a form
in the variables XyoeoorXoqe it 1s an easy cxercise to prcve that’

F% € EZ(n,d) = F2 € EZ(n+1, d),

and it is trivial that
2 2
F® £ EP(n,d) = F° € EP(n+1,d).

Furthermore choosing some linear form L in the variables XprewerX o

is evident from Theorem 5.1 that
F% € EC(n,d) = F°L? € EZ(n, d+2)
and

F% ¢ EP(n,d) » £°L% ¢ EP(n, d+2) .

We shall now exhibit a ferm in EZ(3,12) which is not extremal in
P(3,12). Fortunately a counterexampnle for (n,d) = (4,8) can ke con-
structed by similar zrinciples. Thus it will be sufficient %o devote

our main efforts to the case (n,d) = (3,12).

We start with +the ternary sextic

S(x,y,2) = x4y2 + y422 + z4x2 - 3x2y22
in [CL]. This form has seven zeros: (1,0,0), (0,1,0), (0,C.°, (1,1,
(=*,1,1), (1,-1,1) and (1,1,-1). We shall look at an auxi form
T(x,¥.2) = (xzy + yzz - zzx - xvz)

wnich is chosen 1n such a way that it vanishes on all zeros of S,

except (-1,1,1},
o~ . . . ; -2
-necrem 6.2. Let I(x,y,2) = S{x,y,z) + Ti(x,y,2z). Then n := <% lies

EZ(3,12) but not in EP(3,12).

The fact that p is not extremal in P(3,12) will be deduced from
easy lemma (Lemma 1), and follows by the wav also from Theorem 5.1.
while the fact that P is extremal in I(3,12) will be deduced from a

difficult lemma (Lemma 2).

4
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The forms 52, ST, Tz

Lemma 1. are linearly independent over R.
Proof. Suppose asz + BST + YT2 = O, where a,8,y € R. Evaluating at
(-1,1,1) € 1(S)~2(T), we get Y = O, Dividinag by S, we get a$ + BT = Q,
so clearly a = g = 0.
Q.e.d.
2 2 2

Since p = £ = s° + 25T + T°, this lemma clearly implies that o

cannot be extremal in P(3,12). It remains to be shown that p is
extremal in £(3,12).

2 2

Lemma 2. Let f be as in the theorem. If £ = h,  + ... + hi in R{x,y,zl

then eacn ‘n.L is an R-linear combination of S and T.

“
Using this lemma we can show that p = £° is extremal in Z(3,12) as
follows. If 52 = h? PRI hz, ~we write h, = a.§ + b. T with a.,b. € R.
r i i i i*7L
Ther
- 5 r r r
£2 5% 4251 + 1% = (za¥ys? + 2(za,b,) ST + (£b,) T2,
T - 1 - 17
so by Lemma 1,
r r r
ral =zpl =zab, =
1 T I
C : . 2 2 2 2
This implies that a; = bi for 1 =1 =1, so hi =ay (S+T)" = a/p, as

desiréd.

Qur job is now to nrove Lemma 2. For this we need a third lemma

which is true for arbitrary polynomials instead of just ternary forms.

Lﬁmma }. Suppose £ € R[xx,...,xn] is positive semidefinite and
€€ = h; ..+ hi with polynomials n, € R[x,,...,x_]. Let a € R™ be a
zero of £. Then a is also a zero ¢of 7, and ct every.par:ial derivative
Rk, (Y 7 L 2, 17 T on).

-+ J
Proof. Since is pscé clearly a is a zero oI every :f/ﬁxj, 1t 3 % on.
—_— 5

Cemputine the zartial der:ivatives of £7, we hawe

—_—f = 2f —— .
IX . X3
] ]
2 .2 . .
3 2 “s € OF
£ = [— —_ =
OX.oX, ~ if - < 2ﬁx %,
57k 3 13

.
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80 these partial derivatives all vanish at a. (In fict even the third
order partial derivatives of f2 vanish at a. We do not need this in the
following.) From ¢ = h1(a)2 L h,(a)2 we have of course
h1(a) = ... = hr(a) = 0. Computing ! ‘/axg)(fz) from the expression

fz = hf + ...+ hi, we get

r 2%h, 3, r oh,
0= I [2h1(a)3§_‘(a) + 2(3;—(a)) ] =2 I 5;—(3) '
i=1 3 3 i=1 b]
ahi
80 3;—(a) = 0 for all i,j.
3 Q.e.d.

We now enter the proof of Lemma 2. Thus f = S + T, and a decomno-~
sition fz = h? ..+ hi with forms hi € R{x,y,z] of degree 6 is
given. Let h be any of the forms hi‘ The first step in the nrocf is to
determine which are the sextic monomials which may occur in h. This
can be done by inspection - but it is easier to invoke the general
method of "cages", cf. [R]t)Denotinq the cage of a form g by C(g) we

have by the latter method
cth) e lce?) = e,

and C(f) contains the lattice points (4,2,0), (0,4,2), (2,0,4),
(2,2,2), (3,2,1), (3,1,2), (2,3,1), (2,1,3), (1,2,3), (1,3,2). If we
represent the points of C(f) by their first two coordinates, we have
the following picture of a "projection" of C(f).

s
7]
!

(4,2

(2'0) nxn

(Actually all lattice points of C(f) occur as monomials in £.) Thus we
may express the sextic form h in the following way:

e
[

A more detailed account of this method will be given in [CLR].
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2 + by4z2 + cxzz4 + dx2y222 + ex3y2z + qx3y22 +

2 + lxyzzJ.

h(x,y,2) = ax‘y

+ 1x2y32 + szsz + kxyzz
By Lemma J the partial derivatives 3h/3x, 3h/Jy, dh/3z must vanish at
the points (1,1,1), (%,1,-1) and (1,-1,1) of Z(f). This leads to the
following system of nine linear homogeneous equations in the ten
“unknowns"” a,b,...,k, 1.

[ (1) 4a  +2c+2d+le+3g+2i+29+ k+ 1=0 (j% at (1,1,1))

(2) 4a +2c+2d-3e+3g-21-23+ k- 1=0 (,....(1,1,-1))

(3) 4a +2c+2d+3le=3g-2i~2j- k+ 1=0 (..... (1,-1,1))
(4) 2a+db +2d+2e+ g+3i+ j+3k+21=0 (é% at (1,1,1))
{ (5) 2a+4b  +2d-2e+ g-3i- j+3k-21=0 (..... (1,1,-1))
(6) 2a+4b  +2d+2e- g-3i- j-3k+21=0 (..... (1,=1,1))
(7 2b+d4ceadr e+2gr 1+33+2ke3l=0 (= at (1,1,1))
(8) 2b+d4c+2d- e+2g- i-3j+2k=31=0 (..... (1,1,=-1))
(9) 2b+4c+24+ e-2g- i-3j—2k+31=0 (eean. (1,-1,1))

By explicit computation we shall show that this linear system of
equations has a solution space of dimension 2 (with a basis corresvond-
ing, of, course, to S and T). We proceed as follows:

[(1') =2 e+ 2i 4254 L=o0
(2 = L2583 39421 4294 k=0
(3 =22 4a e+ 2a+ 394k =0
(40) = L2030, 26 w314 je21 =0
<y =28 g5 343k =0
(6') = iil%iél: 2a + 4b + 2d + g + 3k =0
(7 = 28 ek v 35+ 31 =0
8y = 23 94 v 35+ 2k =0 '
(9') = lll%iﬁl, 2b + 4c + 24 + 2g + 2k = O
Note that (1')*(4é)+(7') gives (1") e+ i + 3j +1 =0
(2+(50+ (8 Jiyeg (2 g+ i+3 k=0
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From (1"), (4') and (7'), we get i=3=-e=-1,
From (2"), (5') and (8'), we get i=3j=-g=-k.

Eliminating g from (3'), (6") and (9') and dividing by 2, we get

(3") 2a + ¢ +d+ 2k =0,
(6") a + 2b +d + 2k =0,
(9") b+ 2c +d + 2k =0,
<hicn leads easily to a = b = ¢ and d = -3a - 2k. Thus, a and k are

sne ‘ree paraneters,and tne solution snace to -our linear system cft
eguat:ions has dimension 2. Since S and T do cive rise to independent
solusions in the solution space, we can conclude that h = aS + 8T

(a,3 € R). More explicitely, the general solution tc the linear system

is given v

{a,b,c,d.e,a,i,3,k,1) = (a,a,a,-3a-2k,k,k,~k,-k,k,k)
a(1,1,1,-3,0,...,0) + k(0,0,0,-2,1,1,-1,-1,1,1)

(@a+501,1,1,-3,0,...,0 -5 11,-2,-2,2,2,-2,72)

So we are finished by noting that {(1,1,1,-3,0,...,0) corresponds to S

and (1, 1,1,1,-2,-2,2

2,-2,-2) corresponds to T. We now have proved

[ ]

’
Lemma 2 andé Tneorem 6.

Tne counterexamplie needed to show tnat £I(4,8) is not contained in
£P4,3: 1s en-irely analogous. We use D := (Q+U)2 wnere
4 2.2 2_2 2.2
Qlw,%,7,2: = W + X7y + VY z° + z2°x° - 4XYZW,
e < 2
Ciw,R,7,2) =(wS v xy = yz - zxX) .
.

The form Q has seven zeros: (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,1,1,1),

(1,%,-1,-1;, (1,-1,1,-1), (1,-1,-1,%), all of which are zeros of U
excep: the last one. By a cage consideraticon similar to the one used
befors we can see that, if p = hf L hi, then any of the h. 's has
wne form '
4 2 2.2 .
NlwW, R, y, 00 = aw  + b yz v ooyaTes c:zxz + CXY2w
~ 2] -
+ aw vy - ivwTyz - Jw 2

+ kaTRy + lxTyz o+ muzx,

witn eleven pessible torms. By Lemma 3 the four first partial deriva-
€ 5 Gf nomaet vanlen o : . . _
wves of nomuace vanishoen (1,1,1,1, (i,1,-1,-1) ard (v,-1,1,-1.

This < . .
115 gives us 12 lincar homoueneous eqquations in the 11 unknowns

———— e =

I

N
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a,b,...,1,m. A calculation similar to the one we did shows that the
solution space has dimension 2, hence is spanned by the 11-tuples
corresponding to Q and U.

There remains one problem open which fits naturally into the circle
of ideas of this paper:

Question. For which (n,d) does there exist a form F € EP(n,d) such
that F? € EP(n,2d)?

Notice that by Theorem 5.2 the form F2 lies in Ei(n,2d). Thus the

gquestion is for a "“stronger" counterexample to the inclusion EL < EP.

|
| t
P
! i
i
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