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We consider simplices in R™ with lattice point vertices, no other boundary lattice points and
n interior lattice points, with an emphasis on the barycentric coordinates of the interior points.
We completely classify such triangles under unimodular equivalence and enumerate. For
example, in a lattice point triangle with exactly one interior point, that point must be the
centroid.

We discuss the literature for fundamental tetrahedra and prove that there are seven possible
barycentric coordinates for a one-point tetrahedron. Following suggestions of P. Erdos, we
prove that, for fixed m and n, there are only finitely many possible sets of barycentric
coordinates for the interior points. We also discuss a generalization of Beatty’s problem in
combinatorial number theory which has arisen several times in recent years.

1. Introduction

In [16] I proved, in passing, the following result about plane lattice point
triangles. Suppose T = T'(v,, V1, V) is the triangle with vertices vy, vy, v, and
suppose TNZ?= {vo, V1, V2, w} where w is strictly interior to 7. Then w =
3(vo+ vy + v,) is the centroid of T. This paper contains generalizations of this
result to n interior lattice points in a triangle, and to higher dimensional
simplices.

I should note at the outset two features which distinguish this paper from the
rest of the literature in this subject. First, we shall be exclusively concerned with
lattice points simplices (not polytopes) which have no lattice points on their
boundary. This specialization allows us to define barycentric coordinates unam-
biguously and simplifies some technical considerations. Second, we are not
directly interested in the volume of the simplices. This distinction is somewhat
deceptive, as the volume determines the denominator of the barycentric
coordinates. Despite these eccentricities, this paper inevitably poaches on the
work of others. Some methods are so natural that their use is unavoidable, and
no novelty is claimed for them. I have endeavored to credit non-trivial poaching.

As one of this paper’s referees has noted, many of the two dimensional
problems have been rediscovered several times. For example, consider the
characterization of fundamental tetrahedra (tetrahedra T with lattice point
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vertices and no other lattice points on the boundary or interior). Reeve (in 1957)
and White (in 1964) independently studied this problem, and the solution is the
compositum of their work. Further, Howe (in 1977) solved this problem
independently and Scarf has used it in his study of integer programming. One
referee also reports that it was solved also in 1982 by Betke and Gritzmann. In
this context, I cannot guarantee the full allocation of due credit. A good source of
information about the mainstream of the subject is Hammer’s book [7]. The rest
of this introduction serves as a guide to the body of the paper.

First, let me give two different proofs of the result in the first paragraph. By
Pick’s Theorem (see Section 3), T has area 13 and T(v;, v, w) =3forl=i<js<
3. The centroid is the unique point which triangulates T into three equal parts.
For a more synthetic proof (which works even if T is not in R?), let
W = AgUo + AU + A,v, be the expression of the interior point in barycentric
coordinates, so A;>0 and Y A,=1. Assuming A,=A,=1,, there are two
possibilities: Ao=3 or 3>A,. In the first case, 2w — vo= (240 — 1)vo + 24,1, +
2A,v, is another lattice point interior to 7 and w#2w — v,. In the second,
Vot v +v,—2w=Y (1—2A,)y; is also a lattice point interior to 7, hence
vy + v, + v, — 2w =w. These two approaches exemplify the differences in our
study of triangles and higher-dimensional simplices: we can look at the figure
itself, or look at the barycentric coordinates of Z™ with respect to the vertices of
the simplex.

In Section 2, we introduce some notations. Let T be a closed non-degenerate
simplex with vertices Yoy oo, U €™ and suppose TNZ" =
{vo, ..., Um» W1, ..., w,}, where the w’s are strictly interior to T. Then T is
called an n-point m-simplex; S(m, n) is the set of all n-point m-simplices. The
configuration of T, My =[4;] is the n X (;m + 1) matrix of barycentric coordin-
ates: w; = ¥ A,;v;. Two matrices have the same configuration, T~ T, if My = M,
after a relabeling of points. If 4 is a volume-preserving affine map with integer
coefficients then h gives a bijection of Z™ to itself and preserves inclusion.
Indeed, if T € S(m, n) then so is A(T) and T ~h(T). However, equivalence
under unimodular A is generally a stronger condition than having the same
configuration in higher dimensions.

In Section 3, we classify n-point triangles up to unimodular equivalence. For
example, every 2-point triangle is unimodularly equivalent to the triangle with
vertices (0,0), (1,0), (2,5) and must have configuration (1.1), up to a
permutation of rows and columns.

3101
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For any n, the barycentric coordinates are rational with denominator 2n + 1.
The number of classes of configurations for fixed # is readily computable as the
number of orbits of {e (mod(2n + 1)): (e, 2n + 1) = (e — 1, 2n + 1) = 1} under the
action of the group of order six generated by fi(x)=1—x and f,(x) =x"". The



Lattice point simplices 221

key to our analysis is Pick’s Theorem, which fixes the area of an n-point triangle
as 3(2n +1). Using Pick’s Theorem we can prove that any two fundamental
(0-point) triangles are unimodularly equivalent to each other. From this we prove
that T and T’ have the same configuration iff 7' = (T for some unimodular .

Pick’s Theorem does not generalize simply to higher dimensions—see [15],
[12]. For example, Reeve constructs a family of fundamental tetrahedra: T,, has
vertices (0,0, 0), (1,0,0), (0,1, 0), (1, 1, m). It is easy to see that T, has volume
#m; no two are unimodularly equivalent to each other.

In Section 4 we develop machinery to generalize the second method of proof of
the centroid theorem. Let A,, ={(Ao, ..., 4,,):0<A,<1, Y A, €7} and define
addition componentwise mod 1; A,, forms a Z-module. For a submodule H < A,
let G(H)={AeH:¥ A;=1}. Suppose w=Y A,v; and A’ € G({A)), where (A) is
the module generated by A. Then Aj=kA;—¢ for integers k and 4, so
w'=Y Ajy;=kw—Y¥ tv; is a lattice point. Since Y A/=1 and A/ =0, w' is
expressed in barycentric coordinates, so w ‘generates’ w'. We can look at
submodules generated by more vectors. Indeed, suppose T € S(m,n) and
My = [A;] then, necessarily, G({41, ..., 4,)) ={4;, ..., A,}. The converse is an
open question; that is, if G((41, ..., 4,))={A,,..., 1,} for A;€ A,,, does there
exist T € S(m, n) with Mr=[4;]? We give a construction, under apparently
restrictive hypotheses, which allows us to answer “yes” for m =2 and 3 and to
show that S(m, n) #6 form=2, n=0.

In Section 5, we return to simplices, per se. Using the machinery of the
previous section, we show that every n-point tetrahedron is unimodularly
equivalent to 7 =T((0, 0, 0), (1, 0, 0), (0, 1, 0), (a, b, ¢)) with (a,c)= (b, c)=
(a+b—1, c)=1. By combining the work of Reeve and White, we show that the
fundamental tetrahedra correspond to a =1 above. As noted above, this problem
has several solutions; we also discuss the Howe-Scarf work. (Unimodular
equivalence appears to be a far more restrictive condition in higher dimensions
than it is in the plane.) We show that there are, up to permutation of
components, exactly seven configurations for 1-point tetrahedra. The proof is
tedious and requires a large number of cases. Finally, we show that if T € S(m, n)
then there is a universal upper bound on the denominators in the configuration
My =[A;]. The proof is relatively short, self-contained and due to Erdés. This
theorem is also a consequence of a stronger theorem of Hensley [9, Theorem
3.4]. Hensley constructs a universal upper bound on the volume of m-simplices
with n interior lattice points (and any number of boundary lattice points.)

We conclude with a number of open problems, suggestions of other directions
of exploration and a list of acknowledgments.

2. Notations and preliminaries

In this section we fix notation and collect some simple but useful results. A
point x = (xy, ..., x,,) € R™ is a lattice point if x e Z™. Given v;€Z™, 0<j<m,
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let V={vg,...,Y,} and let T=T(V)=T(vy,..., V) denote the closed
convex hull of the v,’s. Throughout, T(V) will be assumed non-degenerate; that
is, the vectors v; — vo, 1<j=<m, form a linearly independent set in R™.

For fixed vy, ..., v,, in Z™ as above, any w € R™ can be written uniquely in
barycentric coordinates: w = ¥ A,v;, £ 4;=1; we write A = BC(w). As usual, w is
in the interior of T iff A; >0 for all j and w is on the boundary of T iff A;=0 for all
j and A, = 0 for some k. We say that w is in T(V) if w is in the interior or on the
boundary of 7, but w+v;. If weZ™ then the equations for A form an
(m+1)x(m+1) linear system with non-zero determinant AeZ: |A|=
m! Vol (T(V)). Thus, if w € Z”, then A; € Z/ A. We shall write a vector A € Q™ as

A=(ao, ..., ay)/D and say that A has denominator D if A;=a;/D and D is the
least common denominator of the 3,’s.
A simplex T=T(vy, ..., Um), m=2, is called an n-point m-simplex (Te

S(m, n)) if v;eZ™ and there are exactly n lattice points in 7, none on the
boundary. (If T € S(m, 0) then T is a fundamental m-simplex.) Given T € S(m, n)
and interior points w; = ¥ A;v;, where A, = BC(w;), form the n X (m + 1) matrix
My =[A;]. We call My the configuration of T. Two simplices T, T’ € S(m, n) have
the same configuration, written T ~ T’, if My = My after a possible permutation
of rows and columns (that is, a relabeling of points). By default, two fundamental
m-simplices have the same configuration. A natural question is this: do there exist
n-point m-simplices for all n =0, m =2. The answer is “yes”, but we defer the
construction to Section 4.

By a unimodular map, we mean an affine function h: R™—R™, h(x)=
Mx + b, where M and b have integer components and det M = 1. Observe that
a volume-preserving affine map is unimodular iff £(0, ..., 0) and h(g,), 1<i<m
are lattice points, where ¢; denotes the ith unit vector. A unimodular map h gives
a bijection of Z” to itself and preserves barycentric coordinates: if w = ¥ A;v; and
¥ A;=1 then h(w) = X A;h(v;). Thus, if T = T(V) € S(m, n) and h is unimodular
then h(T):=T(h(V)) e S(m, n) and T ~ T"'. Suppose T' = h(T) for a unimodular
h, we write T =T'. One caveat is needed: if T=T(V), T'=T(V')and T=T",
it does not follow that the affine map h defined by v; = h(v;) is unimodular: even
though 4 is volume-preserving, it need not have integer coefficients. However, for
some permutation x of {1,...,m}, the map h, defined by h,(v;)=vz; is
unimodular. We prove below (Theorem 3.2) that T~T' iff T=T"for T, T' €
S(2, n). The examples of Reeve from the introduction show that this needn’t hold
for m = 3.

3. Lattice point triangles

In this section we determine all n point triangles up to unimodular equivalence.
First we need two elementary formulas for the area of a triangle. One is that
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T((0, 0), (a, b), (c, d)) has area } jad — bc|, the other is a special case of Pick’s
theorem (see [3] for a proof): if T is a triangle with lattice point vertices, e other
lattice points on its edges and i lattice points in its interior, then T has area
i +4(e + 1). These lead immediately to our first result.

Proposition 3.1. If T € S(2, n) then the entries of My are in (2n +1)”Z.

Proof. By Pick’s Theorem, T has area 3(2n + 1) and by translation (a unimodular
map) we may assume that T =T((0, 0), (a, b), (¢, d)). Let w=(x,y) be an
interior point and compute its barycentric coordinates. As -noted in the last
section, the equations Ao+ A, +4,=1, Lja+Ac=x, A,b +A,d =y give a 3% 3
system with determinant ad —bc=+(2n+1). The conclusion follows by
Cramer’s Rule. O

For n=1, w=7Y Av; implies A, €3Z: since 4,>0 and ¥ A, =1 we must have
Ao = A, = A, =1, giving yet another proof of the centroid theorem.

We start by analyzing §(2,0). The following lemma has already been
mentioned, and leads to a complete classification of (2, n).

Lemma 3.2. If T and T' are in S(2,0) then T =T'. Indeed, the map h may be
chosen to permute the vertices in any prescribed order.

Proof. Let To = T((0, 0), (1, 0), (0, 1)) and, by a (unimodular) tranlation assume
that T = T((0, 0), (x1, 1), (x2, 2)). By Pick’s Theorem (as in Proposition 3.1),
[x1y2 — X231 =1, so h defined by h(x, y) = (x1x + x,y, y,x + y,y) is unimodular
and T = h(Ty). Similarly, T' = h'(T;) for a unimodular 4’'. The six unimodular
functions g,(x, y) =(x, y), (0, x), A =x,¥), (x,1-y), A~x—y,x), (y, 1 —x —
y) permute the vertices of 7 in all ways, so T' =h'(g(h"(T))). O

Theorem 3.3. If T and T’ are in S2,n)then T~T' ifand only if T=T'".

Proof. We have already shown that T=T' implies T~ T'. To prove the
converse, suppose T~T' and relabel the vertices so that w;=Y A,v; and

=Y A,,v Since T and T’ have the same area, the affine map k defined by
h(v ) = v; is volume-preserving; we must show that it is unimodular. Let L be the
edge vov, and suppose A,, <A, for 1=i<n. Consider T = T(vo, V1, Wi); we
claim T € S(2, 0). Otherwise, a lattice point in T could be written Holo + pavg +
,uz(kkov0+lk1v1 + Ak2v2) and we must have Ay, < u,Ai,, a contradiction. Simi-
larly, T" =T (v, v1, wi) € S2, 0). By Lemma 3.2, the affine map # defined by
h(vo) = v4, A(v,) = v} and h(wc) = wy, is unimodular. By linearity, 4(v,) = v} and
s0 h =k is unimodular. O
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Theorem 3.4. If Te€S(2, n), then T =T,:=T((0, 0), (1, 0), (e, 2n + 1)) for some
0<e<2n+1 with (e,2n+1)=(e—1,2n+1)=1. Further, T,=T, iff ¢’ =f(e)
(mod(2n + 1)), where f is in the group G generated by 1—x and x™*. In other
words, e'=e, 1—¢, e”", 1—e', (1—¢)™" or e(e — 1)~ (mod(2n + 1)).

Proof. Take T €§(2,n) and translate so that T = T((0, 0), (x1, 1), (x2, y2)),
where x;y, — x,y; = 2n + 1. Since there are no lattice points on the edges of T, x,
and y, are relatively prime; choose integers a and b so that ax, + by, = 1. Now let
h(x, y) = (ax + by, —y;x + x,y). By construction, h is unimodular and 7T =
h(T)=T, for e=ax,+by,. Since h,(x,y)=(x+ry,y) is unimodular and
hAT.) = T.s,2n+1), We may take 0<e <2n + 1. Since there are no lattice points
on the edges of T, (e,2n+1)=(e—1,2n+1)=1. Conversely, T, has area
3(2n +1), and if (¢, 2n + 1) = (e — 1, 2n + 1) = 1 then there are no edge points, so
T. €S2, n).

Now suppose T, =T,. or T,.= h(T,). There are six ways for the vertices to be
mapped. As both T, and T, have area 3(2n + 1) it is enough to show that
h(0, 0), k(1, 0) and A(0, 1) are lattice points. Fortunately the first two are vertices
of T..! Let {wo, vy, v2} ={(0, 0), (1, 0), (¢’, 2n + 1)} and suppose k(0, 0) = vy,
h(1,0) =y, h(e, 2n + 1) = v,. It is easily checked that A affine implies (0, 1) =
((2n + €)vo — evy + v,)/(2n + 1). Thus the second component of £(0, 1) is always
an integer. An enumeration of the permutations gives the six possibilities in the
conclusion. Alternatively, any permutation of {0, 1, 2} is generated by (01) and
(12), thus h will be a composition of x ' and 1 —x, using the same formula for
h(0,1). 0O

Let f(m, n) denote the number of distinct configurations in S(m, n); we are
now in a position to compute f(2, n). In view of Theorem 3.4, f(2, n) is the
number of orbits of C,,,, under the group G:

Coni1={e(mod(2n +1)): (e, 2n +1)=(e - 1,2n+1)=1}. (3.5)

We must therefore compute |C,,.,| and determine the degenerate orbits. A
major tool is the Chinese Remainder Theorem (see also Section 4).

Lemma 3.6. Suppose 2n+1=p{'---p¥, p;<p;.,, a;>0, then

L 2
(Gl =@n+ D] (1 _E> = (20 +1). (3.7)

7

Proof. By the Chinese Remainder Theorem, e € C,, ., iff €50 or 1 (mod p;), or
e tp; or tp; +1 (mod p) for 0=t < p#~'. This leaves (p; — 2)p#~! residues and
(3.7) follows immediately. The notation ¢, can be found in several textbooks,
e.g.,[13,p.37. O

An orbit of e € C,,,,; under G has six elements unless e is fixed by a non-trivial
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fie G. That is, e is in a degenerate orbit provided =1, 2e=1, e=2 or
e#—e+1=0 (mod(2n +1)). If =1 (modIIpy), then e’=1 (modp?), so
pY|(e—1)(e+1). Since 2n +1is odd, p; =3 and e = 1 (mod pf). But e € C,,,,,
so e=—1 (modp/) and e=2n (mod(2n +1)) by the Chinese Remainder
Theorem. It is easily checked that {2, n + 1, 2n} forras a degenerate orbit for all
n>1. The case e’ — e + 1 =0 requires a lemma.

Lemma 3.8. Suppose 2n+1=3p{'---py, t=0, q;=1, 3<p,;<---<p,, then
e’ —e +1=0 has no solutions mod(2n + 1) unless t <1 and p;=1 (mod 3) for all
J, in which case it has 2" solutions. All solutions are in C,,, ..

Proof. If e is a solution then e*—e+1=0 (mod3’) (if t=1) and e?—e+1=0
(mod p?). It is easily checked that e*—e + 1=0 (mod 3) has one solution and
e’—e+1=0 (mod9) has no solutions. Now suppose e’ —e +1=0 (mod p¥),
p;=5; since e=—1 is not a solution, this is equivalent to e’*=—1 (modp?),
e ¥ —1. Letting f = —e, we have f>=1, f #1. Let r be a primitive root (mod p%),
then r has order ¢(p;’) = (p; = 1)p#~' and f = r’ for some ¢. If p; =2 (mod 3), then
(3, 9(@¥))=1 so that f°=1 implies f=1 and there are no solutions to
e—e+1=0. If p;=1 (mod3) then f°=1 implies f=1, a, a®> where a =r
u=13¢(py), and there are two solutions to e>’—e+1=0. Finally, e=0 or 1
(mod p) implies e — e + 1 =1 (mod p), hence all solutions are in Cy,.;. U

Theorem 3.9. Let f(2, n) denote the number of distinct configurations in S(2, n)
and write 2n +1=3p{* - - - p¥ as in Lemma 3.8. Then

£, n) t(2n+1)+3) if t=2 or some p;=2 (mod 3)
)=
s(2n+1)+3+2Y)  otherwise (3.10)

Proof. The case n =1 is special and it is readily checked that f(1) = 1. Suppose
n=2; if e—e+1=0 (mod(2n + 1)) then e#2, n+1, 2n and {e, 1 — e} forms
an orbit under G. In the first case of (3.10) there are no orbits of this kind and all
elements of C,,,; except {2, n + 1, 2n} fall into orbits of size 6. In the second
case, there are 2"! orbits {e, 1 —e} and so f(2, n) = 4(¢p,(2n +1)—3—-2") + 1+
27 =4(,2n+ 1) +3+27Y, O

It is clear that lim,_...f(2, n) = %, but the growth is not uniform. If 6s + 1 is

prime then f(2,3s) =s +1; a standard lower estimate, a la Hardy—Wright, is
¢2(2n + 1) = cn/(loglog n)*. Here is a short table—Table 1—of f(2, n).

Table 1

n 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

fm) 1 1.2 123134 2 4 3 2 5 6 2 3 7 3 7 8 2 8 7 3
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Table 2
configurations
n orbit(s) triangle (x(2n + 1))
1 {2} (0,0),(1,0),(2,3) n 1
2 {2,3,4} 0,0}, (1,0), 2,5 3
1
3 (2,46 ©,0), (1,0, 2,7 5
3
1
{3,5} 0,0,(1,0,3,7 4
1
2
4 {2,5,8) 0,0),(1,0), (2,9 7
5
3
1
5 {2, 6, 10} (0,0), (1, 0), (2, 11) 9
7
5
3
1
8
5
2

{3,4,5,7,8,9}

(2,7, 12}

3,5,6,8,9,11}

{4, 10}

{2, 8, 14}

(0, 0), (1, 0), (3, 11)

0,0), (1,0), (2, 13)

0,0), (1, 0), (3, 13)

(0, 0), (1, 0), (4, 13)

0, 0), (1, 0), (2, 15)

VO N B RO m NN OAW WRrOARBN OOUNREWUNE WREARN MWAWNF S W= — &N W N = N =

ot —
N =W NN = =R

—
NSO W WO GO NN =B

QO UV BEWN R VANWNR OJhRWNRE GURERWNE JOWRNR AEWNE, RPWNE BN E W= = 2
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Table 2 (continued)

configurations
n orbit(s) triangle x(2n+1)
8 {2,9,16} (0,0),(1,0), (2,17 15
13
1

{3,6,8,10,12,15} (0, 0), (1, 0), (3, 17)

—
—_

U

{4,5,7,11,13,14} (0,0), (1, 0), (4, 17)

—
WNAOAOR NV W = aaNUNXoF A WK o

—
N =NDNOVAW NVW= OO EN NN A WN =

—
NN HWNRERE R OoOOVWKVEWN= AN E WN R~

—

We amplify Table 1 in Table 2 for 1 <=n <8, giving the orbits of C,,,,, the
possible configurations and representative triangles. For ease of reading, the
matrices My are multiplied by 2n + 1. Thus the only configuration for T € S(2, 2)
was given in (1.1). Geometrically, this means that in a two point triangle, one
interior point is the midpoint of a segment containing a vertex and the other
interior point. For three point triangles there are two configurations: either the
interior points are on a line with one vertex or they form a triangle with cyclically
symmetric barycentric coordinates.

We conclude this section with a more detailed analysis of the configurations in
S(2, n). Quite a few patterns are apparent in Table 2. We discuss a few which
have ramifications in S(m, n), m = 3.

Corollary 3.11. If T € S(2, n) then every column of My contains the entry
@n+1)7L

Proof. This is a corollary of Theorem 3.3. Using the notation from that proof,
note that the triangles T and T share the base L and have areas 4 and 1(2n + 1).
Hence their altitudes have ratio 1:(2n +1). Since w, = Apov; + (1 — Ao)v for v
on L, A;=1/(2n +1) by similar triangles. The choice of the third column is
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purely arbitrary. Alternatively, using Theorem 3.4, T =T, and the barycentric
coordinates of (1,1) in T, are (e —1,2n + 1 —e¢, 1)/(2n + 1). Again, the choice of
the third column is arbitrary: in the proof of Theorem 3.4, any vertex can be
translated to the origin. [

Corollary 3.12. If Te€S(2,n) and A=(ay, a;, a)/D is a row in My, then
(a0, D) =(a;, D) =(ay, D)=1 and each column of My contains distinct entries.
further, there exists an interior point w which generates all interior points.

In fact, w = (1, 1) generates all interior points in T,, 0 <e <2n + 1. The proofs
of this, and the other assertions of Corollary 3.12 are not difficult, and since they
follow immediately from Corollary 4.7, we omit them.

4. Lattice point generation

Before we discuss S(m, n) for m =3, we want to expand on the idea of lattice
points generating other lattice points. For m=2let A,,={A=(4o, ..., 4,): 0
A;<1, ¥ A; € Z} and define addition in A, componentwise mod 1: for integers &,
k'and A, A €A,,,

KA KA = ({kAo+k'AL}, . .., {kAp + K'ALY),

where {x} =x — [x] is the fractional part of x. To avoid confusion with ordinary
addition, we write kA @ k’A’ as {kA + k’'A'}. Under these definitions, A4,, forms a
Z-module. Of course A,, is determined by the other components and A4,, is
isomorphic to the m-torus, but it is easier to work in ‘homogeneous’ coordinates.

Given {Ay, ..., A} c Ay let (4, ..., 4,) be the submodule of A,, generated
by the A;’s over Z. For any Z-submodule H c A,,, G(H) = {A€ H: ¥ A; =1} is the
good part of H. We call {A,...,4,} a good set if A;>0 and
G, ..., A ))={A, ..., A, }. f A=(ay,...,a,)/D and (a;, D) =1 for all j,
then G({4)) is itself a good set because the components of {kAi} are not zero
unless {kA} =0. For convenience, we will write |G({1))| = g(4).

Why are we doing this? Suppose wy, ..., w, are lattice points in T(V) with
w;=Y A,;v; and suppose Ae G({ii,...,4,)). Then A={E k;A;} for some
integers k;; that is, A, =Y k;A; —¢ for some integers ¢. Hence w=1Y Au;,=
Y k;w; — ¥ t;u; is a lattice point; since ¥ A; =1, A=BC(w) and since 4;=0, w is
in T(V). Thus, w, ..., w, generate w. With this notation, if T € S(m, n) then
{2, ..., A} is necessarily a good set. A natural, and open, question is the
converse:

If {A,...,A,} is a good set in 7,,, does there exist T € S(m, n) with
My =[A;]?

We can answer affirmatively if m =2 or 3 (see Theorem 4.3) and we have
found no counterexample.
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We need one more definition: given T € S(m, n) with My = [A;], the rank of T
is the rank of (A, ..., 4,) as a Z-submodule of T,,. We shall prove (Theorem
4.7) that for m =2 or 3, rank(7T) = 1, but there exists T € S(7, 2) with rank 2.

For any given T € S(m, n) or set {A,, ..., A,}, we will be dealing with rational
vectors with common denominator D, say. For fixed D, A, N(D~'z2)™*!
is isomorphic to {(aq, ..., ay,):a;€Z/DZ, ¥ a;=0 (mod D)}. Unfortunately it
is desirable to maintain flexibility in denominators. For example H;=
(3,14, 1)+ H,=((0.85,0.65,0.45,0.05)), but G(H)=G(H)=(1% 4%
(={5(0.85, 0.65, 0.45, 0.05)}.)

We now give two lemmas on rank 1 submodules of A,,. First we need a version
of the Chinese Remainder Theorem which is usually left as an exercise. (See e.g.,
[13, p. 33, #14c].)

Chinese Remainder Theorem

The congruences x=a; (modm;) have a simultaneous (unique) solution
mod[m,, ..., m,) iff (m;, m;)|(a; — a;) for each (i, j), i <j. Here, [my, ..., m,]
denotes the least common multiple and (m;, m;) the greatest common divisor. In
particular, if the m;’s are pairwise relatively prime, there is no restriction on the
a;’s.

Lemma 4.1. If A € A,, has denominator D, then {kA} = {k'A} iff k =k’ (mod D).

Proof. Write A= (ao, ..., a,)/D; then {kA} = {k'A} iff ka;=k’'a; (mod D) for
0<j=<m. Let D =]l p{, since D is the denominator, for each i, p; + a; for some
Jj, hence k =k’ (mod p{) for all i. By the Chinese Remainder Theorem this is
equivalent to k=%’ (mod D). O

Lemma 4.2. Suppose H = (A, A,), where A =(ago, . . . , Qim)/Di. Then H has
rank 1 if and only if aga,; — agiar; =0 (mod(Dy, D)) for all i and j.

Proof. First suppose H has rank 1, then there exists A= (b, ..., b,)/D and
integers 7, r; so that o= {rod} and A, = {rA}. That is, there exist integers #; so
that ak}'/Dk = rkbj/D + tkj' ThuS

robirlb‘ r0b~r1b,- ag; ay; a()' al,-
O=—~——]-——]—=<———t,-><—’—t~)~<—]—t~>(——t,~>. 4.3
DD DD \p, “\p Y D, Y\p, " (4.3)

Let (Do, D) =D, Dy=DE, and D,=DE, and multiply (4.3) by DEJE,. It
follows that (agay; — agay;)/D is an integer.

Conversely, suppose agay; =aya,; (mod D) for all (i, j). Let D =TI p%; since
D | Dy, for each prime p, there exists ay, with p, 4 a,. We have Aoy = Agay;
(mod pg), or, since ay is invertible, a;;=(ay'a;)a, (modpg). That is,
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ay; = spa; (mod pg¥) for each k and (s, pi)=1. By the Chinese Remainder
Theorem there exists s, = s, (mod p{¥) with a,; = soay; (mod D) and (s, D) =1.
Finally we may choose s =s,(mod D) with (s, DE;) =1, again by the Chinese
Remainder Theorem (we need only consider primes in E; which are not in D).
Consider the simultaneous congruences

{ b; = sa,; (mod DE,)

= 4.4
bj =day; (mod DEl). ( )

Since D |sao; —ay;, there exist b; (mod DE,E,) satisfying (4.4) for each j. Now
take r,=s"'E; and r, = E,(mod DE,E,) and let D = DEE,. Then {rob;/D} =
{(s7'b;/ DEy} = a;/ DEq = aq;/ Dy and {r\b;/ D} = a;;/ Dy, hence A, = {rd}. Further,
(ro, 1) =1, so & (4, A,), thus H=(4) hasrank 1. O

We now give our most general construction for building T € S(m, n). Two
corollaries show that the hypothesis is not as restrictive as might first be thought.

Theorem 4.5. Suppose {Ai, ..., A,} is a good set, Ay, ..., A,) has rank 1 with
generator (ay, - . . , a,)/D and (a;, D)=1 for at least one j. Then there exists
T € S(m, n) Wlth MT = [A‘I]'

Proof. Without loss of generality assume that (a,,, D) = 1. If (s, D) =1, then the
sets {{kA}} and {{ksA}}, 0<k <D —1 are identical, hence we may take {sA} as
a generator. Choosing s =a,,,' (mod D), we may therefore assume that a,, = 1.

Let T=T(V) be the simplex with vertices v,=(0,...,0), v,=¢ for
1sjsm-1 and v,=(—ay,..., —Gpn-y, D). Since VolT=D/m!, T is a
non-degenerate simplex. Let w = (wy, . .., W,_1, k) be a lattice point; it is easy
to compute u = BC(W): p,, = kID, w;=w;+ ka;/D and po=1— Y77, p;. If wis in
T then 0k <D and k =0 or D clearly imply that w = v; for some j. Otherwise,
0<k<D and Os<y;<1 implies w;= —[ka;/D] for 1<j<s=m—1; that is, k
determines (wy, ..., w,_,), and further, u;={ka;/D} for 1<j<m. Since
D | Lko ka;, {po} = {kao/D}. Therefore w, as described, is a lattice point in T iff
Y. {ka;/D} =1; that is, iff {kA} € G((4)). In other words, My =[A;]. O

Corollary 4.6. S(m,n)+ 0 form=2, n=0.

Proof. Let A=(mn+1—m, 1,....1)/(mn +1). It is easy to see that G({1)) =
{{kA}: 1<k =<n}. Since (a,, D)=1, by the last theorem, there exists T €
S(m, n). Indeed, the vertices of T are 0,e;,...,€,—y and (—1,-1,...,

—1, mn + 1) and the n interior points are {(0, ..., 0, k):1<k<n}. 0O

Theorem 4.7. For m =2 or 3, every good set is realized as the configuration of
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T € S(m, n). In particular, rank(T)=1, and if A={(ay, ..., a,)/D generates
(A1, .-, L), then (a;, D) =1 for all j.

Proof. Suppose {A;,...,4,} is a good set in A, for m=2 or 3 and let
H=(A,...,A,). We first show that Ae H, A4 0 implies 4,>0 for all j. (A
priori, all we know is that A,>0 for A e G(H).) Using this, we prove that
rank(H)=1 and, if A=(ao,...,a,)/DeH, then (a, D)=1 for all j. In
particular, if H = (), then the corollary follows by Theorem 4.5.

First suppose A=(0,4,,A)eHcA,, A#0; Y A e€Z implies Ae G(H), a
contradiction. Now suppose A= (0, A;, A,, A3)e Hc A;. Then {—4}=(0,
{=A}, {—A}, {=As})e H as well. Since {x}+{—-x}=<1, T A+X{-4)=
Y ({4} +{=A})=3. Thus Ae G(H) or {—A} e G(H), another contradiction.
The same proofs obviously work for 4,=0, j=1.

If rank(H)=2 then rank({po, 1)) =2 for some po, s H. Write p,=
(@00, - - - » Gom)/ Do and py=(ay, ..., a1,)/Dy, Dy=DE, and D,=DE, with
(Eo, E)=1. By Lemma 4.2, aya,;  aqgay; (mod D) for some (i,j). But A=
{ajEopto — ag;E1uu1} € H and A, = {(aga,; — aojau)/D_} hence 4; #0, A;=0. This is
a contradiction by the last paragraph, hence rank(H) = 1.

Finally, suppose A = (ay, . . ., a,,)/D € H and (a;, D) =d >1. Writing D =dd’,
A ={d'Ay=({d'as/D}, ..., {d'a,/D}), so A} =0. Since d'<D, A’ #0 and we
have another contradiction. Taking A as the generator of H;, we are done. [

Several comments are in order. First, Corollary 3.12 follows immediately.
Second, there is no hope of generalizing this proof to m =4, since the
intermediate steps are false. Consider 4 = (1, 2, 3, 4, 5)/15. It is not hard to see
that G((4))={A} and (3,15)# 1. Further, ' = {54} =31(1,2,0,1,2) e (1) but
A2=10. On the other hand, (1, 15) =1 so there exists T € S(4, 1) with My =[1]. A
more complicated example is A = (5, 7, 11, 303, 1984)/2310. Notice that 2310 =
2-3-5-7-11 and each g; is divisible by a different prime. Suppose that, say,
{kAo} =0, then {5k/2310}=0 so k=2-3-7-11-¢t and {2-3-7-11-4}=
3(0,2,1,3,4). Since {¥}+3e)={(e}+{&)=1, {2-3-7-11-1A} ¢ G({1)).
The same thing happens if {kA;} =0 for 1<j=<4. (Indeed A was found by
applying the Chinese Remainder Theorem algorithm.) It is not hard to establish
by computer that g(4) = 105. Since (g;, 2310) >1 for 0 <j <4, we cannot apply
Theorem 4.5, and we have been unable to determine whether or not there exists
T e §(4, 105) with Mr = [{k;A;}]. One way we might be able to construct T would
be to find u = (bo, ..., by)/D with (b;, Dy=1, {su} =2 and {ku}e G({(u)) if
k=sk;. Such a phenomenon occurs for u=/(0.85,0.65,0.45,0.05), A=

4 1 1, 1), as noted above.

We conclude with one ‘sporadic’ construction of T € S(7, 2) with rank(7T) = 2.
Let 4,=(1,1,1,1,3,3,3,3)/16 and 4,=(3, 3, 3,3, 1, 1, 1, 1)/16. Then (4, 4,)
has rank 2 by Lemma 4.2 since 16 + 3*—1% It is not hard to show that
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G (M, &) ={A, A,} so it is a good set. Let T = T(V), where the v,’s are given in
(4.8).
v9=(1,1,0,0,3,3,2,2), v4=(3,3,2,2,1,0,0,1),
11=(0,1,1,0,3,2,3,2), v5=(3,2,2,3,0,1, 1, 0),
v,=(1,0,0,1,2,3,3,3), v6=1(2,3,3,300,1, 1),
v3=(0,0,1,1,2,2,2,3), v,=(2,2,3,2,1,1,0,0).

(4.8)

We must first show that T is non-degenerate: this is tantamount to showing that
det[v;] #0. In fact, a routine application of row reduction shows that |det T| =
96. Notice also that for i #j, v; % v; (mod 2), hence there are no lattice points on
the edges v,u;, Now suppose w = (W, . .., wy) is a lattice point in T and write
w=Y Ay, Then wo—wy =24, +As— 4, —Aq, so wp—wy € {—1,0,1}. If wp—w, =
1, then A, +As=1 so w is on the edge v,vs, an impossibility; if w,—w, = —1,
then 4; + A¢ = 1, which leads to another impossibility, therefore w, = w;. Similarly,
Wi =Wy, Wy=Ws, Wy=Ws5, Ws=ws and wy=wy. Thus w=(a,a,a,a, b, b, b, b);
since 11=<)};v;=<13, 11<4a+4b=<13 so either a=2 and b=1 or a=1 and
b =2. These points have barycentric coordinates A, and A, respectively. Thus
T € 5(7, 2) and rank(T) = 2.

S. Lattice point simplices

In this section we return to simplices. We start with a classification theorem
similar to Theorem 3.4 for T € $(3, n). It is a non-trivial problem to characterize
S(3, 0) up to unimodular equivalence, let alone S(3, n).

Lemma 5.1. Suppose y = (Yo, ..., Ym)€Z™*" and (y;, y,)=d. Then there is a
unimodular map which only affects the ith and jth components and sends
Gy sy dto(ooyd, ... ,0,..0).

Proof. Without loss of generality, take (i, j) = (0, 1) and choose integers a and b
so that ay,+ by, =d. Then the map h defined by A(xo, ..., x,,) = (axo + bx,,
—y1d"'xo+yod 'y, X5, . . ., X,,,) has the desired properties. [

Theorem 5.2. If TeS@3,n), then T=T,, . :=T((0,0,0), (1,0, 0), (0, 1, 0),
(@, b, c)), where 0<a<b<cand (a,c)=(b,c)=(a+b—-1,¢c)=1, ora=b=
0, ¢ =1. Conversely, such a T,, . €S3,n) forn=g((a+b—-1,c—a,c—b, 1)/
o)sic-1.

Proof. Given T € S(3, n), translate so that vy=(0, 0, 0). If v; = (v, U1y, U12)
then the iterated ged(vyo, (vy1, v12)) =1 since there are no points on the edge
Yov;. Applying Lemma 4.1 twice, we have T =T((0, 0, 0), (1, 0, 0), va, v3).
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Applying the lemma once more to the last two coordinates of v;, we have
T=T(0,0,0),(1,0,0), (s, t, 0), v53).

Since the face T((0, 0, 0), (1, 0, 0), (s, t, 0)) may be considered in S(2, 0) we
must have ¢ = 1 by Pick’s theorem and we may take s = 0 by applying Lemma 4.1
with (i, j) = (1, 0). Thus T =T, , . for some (a, b, c). By applying the unimodular
maps which send (x, y, z) to (x +jz, y + kz, z) we can put @ and b in [0, ¢), and
by permuting if necessary, we may assume a < b.

If c=1then a=b=0 and Tj,, € S(3, 0); henceforth assume ¢ =2. As in the
proof of Theorem 4.5, we compute the barycentric coordinates of a lattice point
(i’ j’ k) in Ta,b,c

+b— 1k k . bk k
BC(, j, k)=2tk=(—(a - ) = )

+1-(i+j),i i) (5.3)
As before, for each k, 0<k <c, there is a unique choice of (i, j) making
0<Ae1, A2<1 and (i, j, k) is in T if {kA} e G({A)) for A=(@a+b—-1,c—a,
¢ —b, 1)/c, where 1 has been added to A, and A, to ensure A € A;. By Theorem
4.7, T €S8(3, n) implies (c —a,c)=(c—b,c)=(@@+b-1,¢c)=1.

Conversely, if (a,c)=(b,c)=(@+b—-1,c)=1and A=(a+b—-1,c—a,c—
b, 1)/c then G({4)) is a good set (as remarked in the last section) so that
T.s.€83,n) for some n. Indeed {kA}e G((i)) implies ¥ {kA;}=1, so
Y{(c—k)A}=3 and {(c—k)A} ¢ G({4)). Since (A)={{kr}:0<k=<c-1),
n=gl)s(c-1/2. O

The first part of Theorem 5.2 was proved by Reeve for §(3,0). He also
observed that a=1 or b =1 imply T,,.€ S(3, 0) but that this condition is not
necessary: T; s ; € $(3, 0). White studied S(3, 0) in his work on admissible lattices
[19] and nearly characterized them geometrically. It is not clear how to apply
White’s criteria, which involve ‘consecutive’ planes of lattice points, to T, .
Nonetheless, White’s Theorem 2 (see below) can be used to complete the
characterization of S(3, 0). Lemma 5.4 can also be derived from a recent paper of
Noordzij [14], see the last section for more discussion. For another proof of
White’s Theorem 2, see Hossain [10], but read the review first.

Scarf [17] has studied a class of convex polyhedra in R” which arises in the
study of integer programming in »n variables. His analysis is based on a
remarkable unpublished theorem of Roger Howe about fundamental lattice point
octahedra in R>. Such a polyhedron is unimodularly equivalent to the figure
with vertices (0,0, 0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,a,d), (1, c, d),
(l,a+c,b+d), where (a+c,b+d)=1 and ad —bc=1. In the course of
proving this theorem, Theorem 5.5 naturally arises as a lemma.

White’s Theorem 2. Let ay, ay,a,, D be integers satisfying D+0 and
a;+a;#0 (mod D) for i+j. Then there exists an integer ko, 1<ko<D —1 for
which 0< )] {koa;/D} < 1.
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Lemma 5.4. If 1= (ay, a;, a5, a3)/D € A; and g(A) =0, then (a;, D) =1 and the
a;’s decompose into two pairs which sum to D (or A=0).

Proof. As in the proof of Theorem 4.7, if (a;, D) =d >1, then {d'A} or {—d'A}
is in G({1)), so (a4, D)=1. As G({1))=0, X} ,{ka/D}=2 for all k,
1<k =D —1. If the a,’s do not pair off then the hypothesis of White’s Theorem 2
is satisfied, so that {koas/D} >1, a contradiction. O

Theorem 5.5 (Reeve-White—Howe—-Scarf). A tetrahedron T is fundamental iff
T=T,, with0<sasb<candc=1lora=1lora+b=cwith(ac)=1

Proof. Returning to the notation of Theorem 5.2, T € S(3, 0) if g(4)=0 for
A=(@+b—-1,c—a,c—b,1)/c. lf c=2, then A=0, so by Lemma 4.4, a=1 or
b=lora+b=c. O

We strengthen this theorem somewhat below. It is too much to expect that
T ~ T’ implies T = T'. In fact, unimodular equivalence is hard to come by. As an
application of Theorem 5.6, only two of the 24 affine maps which permute the
vertices of T,,. are unimodular: the identity and the map which permutes
(0,0, 0) with (0,1, 0) and (1, 0, 0) with (1, b, c).

Theorem 5.6. Suppose T,y =T,y Then |c|=|f| and (d, €) = fi(a, b) (mod |c|)
for some f;, 1<i<?24, where f; is in the group generated by fi(x,y)=(1—(x +
), 9), bl y) =@, 1= (x+y)) and fi(x, y) = (x(x +y = D)7, y(x +y = 1)7). In
particular, if T p.=Ta4.. then (d, e) or (e, d) is in the set

(@, b), (1, c—b), (4, b"), (1, c —b"), (b, c — b), (b, c — b")},

where bb’' =1 (mod c).

Proof. If T =T’ then they have the same volume, so § |c| =} |f|. Now suppose
T.».and T, are given: we argue as in the proof of Theorem 3.4. Let h be the
affine map defined by h(0,0,0)=w,, £(1,0,0)=w;, h(0,1,0)=wu», and
h(a, b, ¢) = ws, where

{WO; w1y sz, Ws} = {(0; 0) 0); (1) 0; 0)) (07 19 0); (d; e’ C)},
then T, ,.=T,.. iff one of the 24 possible maps has integral coordinates (note
that h preserves volume). As before, it suffices to show that

1
h(0, 0, 1)=Z[(a+b+c——1)wo—av_v1—bwz+w3]

is a lattice point. Each permutation gives rise to a different condition on
(d, ¢) (mod ¢). For example, if wy=(1,0,0), w;,=(0,1,0), w;,=(d, ¢, c) and
ws = (0, 0, 0), then h is unimodular iff a + b —1—bd = —a — be =0 (mod ), or
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(d,e)=(b""(a+b—1), -b~'a)(modc). Since the symmetric group on
{0, 1, 2,3} is generated by (01), (02) and (03), the functional dependence is a
composition of fi, £, and f;. In the above example, (0123) =(01)(02)(03) and
(b~ a+ b —1), b~ 'a) =fi((fi(a, b))). Finally, suppose that a =1, then (d, e)
is one of the twelve displayed possibilities. Since the orbit of T;,. has twelve
members, one non-trivial permutation fixes (1, b); as noted above, this is
(02)(13). O

We see that Lemma 3.2 fails dramatically in higher dimensions. One
consequence of this theorem is that Theorem 5.5 can be strengthened somewhat.
For example, Reeve’s fundamental tetrahedron T, 5 ,=T7,, 4.

Corollary 5.7. A tetrahedron T is fundamental iff T =T1p0, or T =T, . with
I1=b<cand (b, c)=1.

Finally we can generalize Theorem 5.2 partially for m = 4. We omit the proof
and state it for m =4 only. The necessary conditions on {b, c, d, e, f, g} seem
hard to find.

Corollary 5.8. If TeS(4,n), then T=T((0,0,0,0), (1,0,0,0), (0,1,0,0),
(1’ b; C, 0)) (d’ e’f’ g))

Now we turn to S(3, 1): we need a theorem whose tedious proof we defer to
the end of the section.

Theorem 5.9. Suppose A€ A; and {A} is good; then, up to a permutation of
coordinates, A is one of the following seven vectors:
1 1
3

Gohoi) G133, G549,
5 2 4 3

1 1 3 2 i)
45 4 2 11 11 11)»
(%: %) —13'31 %); (%) 17> %J ﬁ)’ ( b %J 195 19)'

-
~~
Hlu‘
'

(5.10)

oM e

Corollary 5.11. If T € S(3, 1), then My is listed in (5.10); f(3, 1) =17.

Proof. Given T € S(3, 1) and My = A, {1} is a good set and so 4 is in (5.10). By
Theorem 4.7, every good set in Aj; is achieved. O

As might be expected, there exist T~ T', T+ T' in S(3, 1). Indeed, recall that
GG, 4,4 H)=G((0.85,0.65, 0.45, 0.05))), and using the construction of
Theorem 4.5, we have T_, _; 4~ T_,5 _¢ 50 With common configuration (3, 5,3,
but T_; _y 4F T _13.—9,2, since their volumes differ.

Finally, we turn to a non-constructive existence theorem which bounds the
denominators in My for T € S(m, n). The proof is essentially due to Erdos [4]

who has graciously permitted us to reproduce it here. Although this result is a
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consequence of a theorem of Hensley [9], we have chosen nevertheless to include
it.

Theorem 5.12. Suppose A=(ay, . . ., a,)/D is given with Y[.oA;=1. There is a
computable function D(m, n) so that D > D(m, n) implies g(1) > n.

Corollary 5.13. The function f(m, n) is finite for each m =2, n =0.

Proof of Corollary. Suppose T € S(m, n) and A, = (ao, ..., a,)/D is a row in
My, then A € G({4;)) implies A is also a row in Mz, hence D < D(m, n). As there
are finitely many partitions of D < D(m, n), there are finitely many possible rows
and so f(m, n) <. Note that this proof works whether or not rank(T)=1. O

To prove Theorem 5.12 we need some notation and two easy lemmas. Let
||lx || = min({x}, {—x}) denote the distance from x to the nearest integer. The first
lemma collects some simple inequalities satisfied by || ||. The second may be
found in Hardy and Wright [8; Chapter 11] and can be proved by a standard
pigeonhole principle argument. We omit the proofs.

Lemma 5.14.
@ [l +yl=Ixll+ Iy,
(i) llx —yll<Hx} = {3,
(iii) [|nx|| <n [lx]},
(iv) llyll < {x} implies {x +y} < {x} +|ly|l.

Lemma 5.15. (Dirichlet). Given }>¢>0 and Ap=4,=---21,>0, L A, =1,
there exists t, 1<t <(1+ &7")Y"*" such that ||tA;|| < e for 0<j<m.

Proof of Theorem 5.12. Write A= (ay, . . ., a,,)/D and assume without loss of
generality that 4o=---=>4,. We also assume that g(3)<n and will get the
bound on D by showing that, for D sufficiently large, there exists ¢ so that
1+nt<Dand {(1+kt)A} e G({A)) for 0k <n.

Since 4y=-+-=A,,, Ag=(m+1)"" and A, = (1 — Ag)/m. Suppose A,=n/(n +
1), then {sAo}=sko—(s—1) for 1<s<n+1, hence Y {sA;}=<{sho}+
YLl {sA)}<shg—(s— 1)+ X/L,s4,=1 for 1<s<n+1, violating the hypothe-
sis. Therefore, Ag<n/(n+1) and so i,=(m(n+1))"". We now proceed by
induction, supposing A; = (N(j, m, n))”" and proving A;,, = (N(j + 1, m, n))~! for
a suitably defined integer N(j, m, n). Indeed take N(1,m,n)=m(n+1) and
define

NG +1, m, n) =2(m = j)(1 + n(1 + 2aN(j, m, n)™*1)).

Suppose 4;=(N(j, m, n))™" and consider two possibilities for D: D <N(j +
1,m,n) or D>N(j+1, m, n). In the first case, A,,; =a;,,/D=1/D so A,,,=
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(N( + 1, m, n))"". We must work harder in the second case. By Lemma 5.15
there exists £, 1<t<(1+2n/A)""" <(1+2aN(j, m, n))""'<D/n, such that
lA;]| <A;/2n for 0<i<m. We consider separately 0<i<j and j+1<i<m.
First,

{A}=Ai=4;>nk/2n>n (|2 ]| > [t

by Lemma 5.14, hence for 0 <k <n,

_ﬁ {A+ kA< 21+“m|l<2/1+2/1sig <13.

But |[G((A))|<n and 1+nt <D, so L, {(1+kt)A;} >3 for at least one k,
0=k =n. Hence

l< 2 {1+ k)A) < 2 (1 + ko)A, < 2 (1+ kt)A;,

i=j+1 i=j+1 i=j+1
<(m—j)A+n(l+2aNQ, m, n))" A,
or
1+1 = (N(I + 1 m, n))—

By repeating the argument we see that A; = A,, = (N(m, n, n))‘bl. By one final
application of Lemma 5.15, there exists 7, 1 <t < (2 + nN(m, m, n))™*! such that
24| < (nN(m, m, n) + 1)"* < A,,/n for 0<j<m. Thus, for 0<k <n,

2AA+KOAT <D A+ lked || <D A+ A, <2,
j=0 j=0 j=0

That is, {(1+ kt)A;} € G({A)). Since g(A) <n, 1+ nt= D. Putting together these
arguments, if D =D(m, n) =2+ n(2 +nN(m, m, n)y"*!, then g(A)=n+1. O

As might be expected, the bound D(m, n) given in the previous proof is
terrible; for example, D(3, 1) =8.8 X 10*. In fact, by Theorem 5.9, L 4, =1,
4;>0, g(A)=1 imply D =<19. Neither theorem covers (0.85,0.65,0.45,0.05)
(D =20). However, by Hensley’s Theorem 3.4 [9], there is an upper bound of the
volume of any m-simplex with n interior points, disregarding possible boundary
lattice points. The bounds are somewhat better, but still huge. By refining the
induction at early stages, the upper bound for denominators in the configuration
of a one-point tetrahedron is reduced to 74088 =42°. In general, however,
D(m, n) and Hensley’s upper bound have asymptotic logloglog’s. The recent
construction of Zaks, Perles and Wills [20] gives a lower bound which compares
in this way with Hensley’s (better) upper bound in the same way. The example in
[20] has many lattice points on the boundary, so perhaps D(m, n) can be
significantly improved.

Proof of Theorem 5.9. Suppose {A} € A; is good; A= /(ay, a,, a, ay)/D with
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(a;, D) = 1. Assume without loss of generality that a,> a, = a, = a;. By hypothe-
sis, ¥ {kA;}=2 for 2<k=<D —1; and as X {ki;} + {(D —k)A;} =4 it follows
that ¥, {kA,} =2 for 2<k <D —2. Hence ¥ [kA]= Y (kA; — {kA;}) =k —2 for
2<k<D-2, or Y[24,]=0 and ¥ ([(k+DA]—[kA])=1 for 2<k<D -3.
Thus 1 > A, and for 2<k < D — 3, the equation

(k+ 1A, >m>kA; (5.16)

has a solution for exactly one j and some integer m. (Since (a;, D) =1, kA, is not
an integer.) Equation (5.16) is equivalent to k +1>ma; !> k. Hence the four
sequences {[4'], [24;1], . ..}, 0=<j =<3, partition {2,3, ..., D —3}. In particu-
lar, A; = A;,, implies [4;]=D —3 or D =(D —3)a;; that is, 4;=1. We now let
r;=A;"' and remove the understanding that 7, = D/a;. We shall prove below that
the four sequences {[{mr]]}, m=1, r,>2, can partition {2, 3, ..., D —3} only if
D =<19.

Suppose 2<r<r<r<r; and D>10 and {[mr;]} partition {2,...,D —3}.
Then clearly [rg] =2, so [2r,] =4 or 5, hence [n]=3. Since [2r]=60r 7, [] =4
or 5, depending on what [2r] is. This analysis quickly becomes unwieldy and it
seems easier to first consider the possible beginnings for {[mro]} and {[mn]} with
{mr,] < 15. In Table 3, constructed with the aid of the Farey sequence, we list the
13 choices for {[mr,]} and 7 choices for {[mr]}. This gives 91 cases! For example,
J represents {[mr))}, 1<m=6 when ¥=<r<3 In Table 4 we present
(A,...,M}vs{N,..., T} An entry Xn means n = [mgro] = [myr1] so the case
is excluded. An entry such as {4,7, 11,14} for K vs N means that no integers
between 2 and 15 are duplicated and that {[mr)]}U {[mnr;]} must partition
{4,7,11, 14}.

We are now down to 21 cases. However, the smallest appearing number k in an
entry must be [r;] and so [2r;] = 2k or 2k + 1 must also appear. This rules out AT,
for example, since 5 appears in {5, 9,13} but 10 and 11 do not. We are now down
to seven cases and five different remainders: 5,8,11,14; 4,8,11,14;
4,6,9,12,15; 4,7,9,12,15; and 4, 6,9, 12, 14. In the first, we must have [r] =5
and [2r,] = 11, so [r;] =8, but 14 is uncovered. In the second, [r,] =4 so [2r,] =8
and [rs] = 11, but [3r;] = 12 or 13 is already taken. In the third and fourth, [r,] =4
and [2r,] = 9 so [3r,] = 13 or 14, which are also already taken. Finally, there is no

Tabie 3

A:2,4,6,8,10,12,14 H: 2,4,7,9,12,14 N: 3,6,9,12,15
B:2,4,6,810,12,15 1:2,57,10,12,15 0:3,6,9,12
C:2,4,6,8,10,13,15 J: 2,5,7,10, 13, 15 P:3,69,13
D:2,4,6,8,11,13,15 K:2,5/8,10,13 0: 3,6,10,13
E: 2,4,6,9,11,13,15 L:2,5,8,11,13 R: 3,7,10,14
F: 2,4,6,9,11,13 M: 2,5 8,11, 14 S:3,7,11, 14
G:2,4,7,9,11, 14 T:3,7,11, 15
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Table 4
N 0 P Q R N T
A X6 X6 X6 X6 X10 X14 59,13
B X6 X6 X6 X6 X10 59,13 X15
C X6 X6 X6 X6 X10 59,12 X15
D X6 X6 X6 X6 59,12 X1 X11
E X6 X6 X6 X6 5,8,12 X111 X11
F X6 X6 X6 X6 58,12, 15 X11 X1
G X9 X9 X9 5,8,12,15 X7 X7 X7
H X9 X9 X9 58,11, 14 X7 X7 X7
I X12 X12 4, 8,11, 14 X10 X7 X7 X7
J X15 4, 8,11, 14 X13 X10 X7 X7 X7
K 4,7,11,14 4,7,11,14,15 X13 X10 X10 4,6,9,12,15 4,6,9,12,14
L 4,7,10,14 4,7,10,14,15 XI13 X13 4,6,9,12,15 X11 Xl11
M4,7,10,13 4,7,10,13,15 4,7,10,12,15 4,7,9,12,15 X14 X11 X1

contradiction in KT: 4, 6, 9, 12, 14 and we must have [r,] =4, [2r,] =9, [3r,] =14,
[rs] =6, [2r3] =12. Recalling what K and T stand for, {[mr;]}, up to 15, are
{2,5,8,10,13}, {3,7,11,15}, {4,9,14}, {6,12}. Thus [6r,] =15 or 16; since
[4r,] =15, [6ry] = 16, but then no [mr;] can equal 17. Therefore D —3=<16 or
D <19.

We are not done yet! However, we need only check partitions of D <19 into
relatively prime parts with 3D >ao>3D >a, >1D if D =10. For each partition
we only have to check that ¥ {ka/D} =2 for 2=<k <3D. This is easily done by
hand and we omit the details, which lead to (5.10). O

We should point out that Beatty’s Problem—see [1], and [5], for a survey—says
that {[nx]} and {[ny]} partition the positive integers if and only if x>0, y >0,
x'+y'=1 and both are irrational. Uspensky [18] proved that
{[nx1]}, - . ., {[nxx]} can partition Z* only if k <2, see Graham [6] for a short
proof.

6. Open questions and related matters

The principal question raised by this paper has already been stated: If
{M, ..., 2.} €A,, is a good set, does there exist T € S(m, n) with My =[A;]? It
would be desirable to characterize submodules H c A,, with a specified good part
and to find conditions on 4, ..., 4, so that A e G({4,, . . ., 4,)) implies 4, > 0.
Let r(m) = sup{rank(T): T € S(m, n)}; we know that r(2) =r(3) =1 and r(7) = 2.
How does r(m) behave? For that matter, is there a good algorithm for
determining rank(H)? Another numerical question involves f(m, n), the number
of distinct configurations in S(m, n). All that is known is f(2, n) from Theorem
3.9, f(3, 1) =7 from Theorem 5.9 and f(m, n) < from Theorem 5.12.

One further generalization we have not discussed is relaxing the condition that
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interior points be off the boundary of 7. Theorem 3.1 applies with minor
alterations; if there are k edge points and n — k interior points, then 1, € Z/
(2n +1—k) by Pick’s Theorem. Theorem 5.12 also applies since any boundary
point w can be thought of as interior to an m’-dimensional face. Thus if
BC(w)=(ai,...,a,,0,...,0)/D and D>D(m',n), then w generates n
points on that face. As remarked after the proof of Theorem 5.12, there is some
literature on vol T'; see, e.g. [9] and [20].

We now turn to a family of related questions. It is perhaps best to start with a
question posed in 1979 by Kimberling [11].

For which q, b, ¢, d does [ka] + [kb] = [kc] + [kd], for all k? 6.1)

Before the combined solution [2] of many authors could be printed, Noordzij
solved it as well [14], crediting Heath-Brown with the problem. Actually,
Pomerance had told Heath-Brown about [11].

Theorem 6.2 (Noordzij, [14]). If (6.1) holds, then at least one of a+ b, a —c or
a —d is an integer.

Since the condition in (6.1) implies @ + b = ¢ + d, it is equivalent to:
For which q, b, ¢, d does {ka} + {kb} = {kc} + {kd}, for all k?  (6.3)

Thus, Theorem 6.2 is equivalent to Theorem 6.4.

Theorem 6.4. If (6.3) holds, then {{a}, {b}} = {{c}, {d}}, or {a} + {b} ={c} +
{d}=1.

We now show that Theorem 6.4 implies Lemma 4.4. Suppose ¥ {ka,/D} =2
for 1sk<D -1, then, as before, (4, D)=1 so that {ka;/D}=0 if
k =0 (mod D). If k# 0 (mod D), then {k(D —a;)/D}=1- {ka;/D}, hence (6.3)
holds for (a, b, ¢, d) =(ay, a1, D —a,, D —as)/D. By Theorem 6.4, a,+ a;=0
(mod D) for some j. The proofs in [19], [2] and [14] are neither direct nor short.
We outline an alternative proof which seems to be simpler than either. (It is,
however, not as strong as Theorem 6.2.)

By considering t(ay, a;, a,, a;)/D, where t =a;' (mod D) we may assume that
ag=1. Suppose Y, {ka;/D} =Y. {2ka;/D} =2, then exactly two of the {ka;/D}’s
are =3. For 1<k <3D, let hj(a) (resp. hp(a)) denote the number of {ka/D}’s
which are greater than (resp. less than) 3 and let A,(A) =hj(a) — hp(a). Then
Y. Ap(a;) =0, and since Ap(1)= —[$(D —1)], Ap(a;) must be large for some
1=<j=3. Since Ap(a)=—Ap(D —a), we assume a<3D and partition the
multiples ka/D into ‘runs’ with constant integer part. Each full run contributes
—1,00r1to ¥ Ap (a), so |Ap(a)| is bounded by the number of runs plus the size
of a partial run. By a delicate casing out, it can be proved that |Ap(a)| <4 |Ap(1)]
fora#1, D—1unless D=6s+1, r=3, 25, 45+ 1, 6s—2o0r D=6s+2, r=3,
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2s +1, 45 + 1, 65 — 1, where there is equality. Ultimately, this implies that some
a=D—1.

More generally, one can ask for conditions on 4 =(ay, . . ., 4,,)/D which imply
that g(4) = 0. When m >3, this means that 2<}, {kq;/D} <m — 1, so we cannot
easily generalize the proof of Theorem 5.9. There seems to be a wider class of
examples; it is not necessary that the a;’s form groups which sum to 0 (mod D).
For example, g((2, 3, 4, 5, 12)/13) =0. Indeed, if p >3(m*—m —2) is a prime,
then g(1) =0 for

A=(2,3,4,.... m—1,p—(m*—m—4)/2,p—1lp.

The key to the proof of this is the following lemma, whose proof we omit.

Lemma 6.5. Suppose a,a+b, ..., a+1b is an arithmetic progression with | =3
and Y, {a+kb}<1. Then {a}, {a+b},...,{a+1b} is also an arithmetic
progression.

(This lemma is false for / =2 as 1/13, 8/13, 15/13 illustrates.) Examples such as
these, when combined with the construction of Theorem 4.5, indicate that the
classification of higher fundamental simplices will not be easy.

Finally, we can jettison the geometric rationale and ask the following question.
For fixed m, which sequences of integers {r.} can be written r, = ¥./2, {kA;} for
some (Ag, ..., A,)? Two immediate necessary conditions are 0<r,<m and
re + 1o <rc.r. These are not sufficient as rn=1, r,=2, 2<k=17 is not
achievable for m = 3. (The question seems to be open whether the sequences are
finite or infinite.) An argument similar to, but easier than, that proving Theorem
59showsthatr,=2, =1, r,=2, 2<k=<s, m =3, is achievable only for s < 16,
with A= (0.68, 0.63, 0.58, 0.11) as one solution. Alternatively, let s(m) be the
largest s so that =1, r, =2, 2=<k <y is achievable for a given m. How does
s(m) grow? Heuristically, the {kA;}’s may be thought of as linearly independent
random variables with a uniform distribution on [0,1]. In this case, the
‘probability’ that Y72, {kA;} =1 is 1/m!. (For A=(5,7, 11, 303, 1984)/2310,
g(A) =105 and 2310/24 =96.)
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