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ABSTRACT

Spherical designs were introduced by Delsarte, Goethals, and Seidel in 1977. A
spherical t-design in R" is a finite set X C S"~' with the property that for every
polynomial p with degree < ¢, the average value of p on X equals the average value
of pon$§ »~1 This paper contains some existence and nonexistence results, mainly
for spherical 5-designs in R® Delsarte, Goethals, and Seidel proved that if X is a
spherical 5-design in R3, then |X|> 12 and if |X| = 12, then X consists of the
vertices of a regular icosahedron. We show that such designs exist with cardinality 16,
18, 20, 22, 24, and every integer > 26. If X is a spherical 5-design in R", then
IX{ = n(n + 1); if |X]=n(n + 1), then X has been called tight. Tight spherical
5-designs in R™ are known to exist only for n = 2,3,7,23 and possibly n = ul-2
for odd u > 7. Any tight spherical 5-design in R" must consist of n(n + 1)/2
antipodal pairs of points. We show that for n > 3, there are no spherical 5-designs in
R" consisting of n(n + 1)/2 + 1 antipodal pairs of points.

1. INTRODUCTION AND OVERVIEW

The natural way to place m points equally on a circle is to use the vertices
of a regular m-gon. Unfortunately, there is no natural way to place m points
equally on the n-sphere S"~ ' R" for most (m,n) with n > 3. Many
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164 BRUCE REZNICK

interesting geometric investigations have arisen from attempts to accommo-
date this situation. One of the most beautiful approaches is that of the
spherical design, developed by Delsarte, Goethals, and Seidel in a powerful
series of papers in the late 1970s and early 1980s [D1, G1, G2, S1]. Other
general references include the surveys of Bannai (e.g. [B3]) and Seidel [S2],
parts of the book [C1] by Conway and Sloane, and papers by Lyubich and
Vaserstein [L2] and the author [R1].

A spherical t-design in R" is a finite set X = (£} c §"! with the
property that for all polynomials p(x,,..., x,) of degree <t, the average
value of p on X is equal to the average value of p on S"~!. Write
& =(&,,....&,) and let p denote the normalized rotation-invariant
Lebesgue measure satisfying u(S”~') = 1. Then this assertion becomes

1X]

1
T L PG ) = [ [ p(w) d (1.1)

The union of two spherical ¢-designs is also a spherical ¢-design. The
rotational invariance of u implies that if X is a spherical t-design, then so is
p(X) for any rotation p of S*~ .

The properties of spherical designs described in the next two paragraphs
were all proved by Delsarte, Goethals, and Seidel in their seminal paper [D1].
For other detailed references see e.g. [R1, p. 122]. If X € R" is a spherical
t-design, then

n+s—1 n+s—2 o
IX|>( 01 )+( 0o 1 ) if t = 2s, (1.2a)
IX|>2(”:iII) if t =2s + 1. (1.2b)

A spherical t-design X of minimal cardinality (with respect to (1.2)) is called
tight. A tight spherical (2s + 1)-design X must be antipodal; that is, £ € X
implies —& € X. (An antipodal spherical 2s-design is automatically a
spherical (2s + 1)-design and hence cannot be tight.) There is a small
corpus of known tight spherical (25 + 1)- d651gns in R", which exhausts the
possibilities, except for {25 + 1, n) = (5, u* — 2) for odd integers u > 7 and
(2s +1,n) = (7,30 — 4) for integers v > 4, in which the questions of
existence are open.

For X ={§&} < 5" ! let A(X) = {§ & j # kL If X ={£} is a tight
spherical (2s + 1)- de51gn then |A(X)| =s + 1, in fact, it consists of —1
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(from the antipodal pairs) and the s roots of the associated Gegenbauer
polynomial. For 2s + 1 = 5, these roots are + y/1/(n + 2) ;for2s +1 =7,

they are 0, + y/3/(n + 4) . This property is related to the original context of
spherical designs, spherical codes. If Y={+n)cS" ' is antipodal and

|AO)\ {1} < s, then Y| < 2(":: ‘). If Y| = 2(" #51) then Y isa
tight spherical (2s + 1)-design. Thus the tight spherical (2s + 1)-designs
have maximal cardinality (with respect to a limited number of distinct angles)
and minimal cardinality (with respect to being a spherical design).

It is not too hard to show that the vertices of a regular n-gon in the plane
form a spherical t-design for n >t + 1, which is tight for n =¢ + 1. (A
proof follows Lemma 2.1.) In this sense, tight spherical designs generalize
regular polygons in the plane. Hong [H4] proved in 1982 that if Xisa
spherical ¢-design in R? and | X| = n < 2t + 1, then X must consist of the
vertices of a regular n-gon. Hong’s Theorem suggests that there might not be
too many spherical ¢-designs which are “snug,” if not actually tight. (We do
not wish to make “snug” precise; the proposed snug spherical t-designs in
this paper have one more antipodal pair than a tight spherical t-design.)

In the other direction, Seymour and Zaslavsky proved in 1984 [S3] that for
each fixed (n, t), there exists M = M'(n, t) (in the later notation of Bajnok
[B2]) so that there exist spherical t-designs in R" of every cardinality > M.
Since regular n-gons are spherical t-designs forn>t+ 1, M@ t)=t¢t+ 1.

Many known spherical designs are sets of points which are familiar from
their other combinatorial or geometric properties. The strength of X € §"~ !
is the largest ¢ so that X is a spherical t-design. (By (1.1), every such X has
strength > 0; by symmetry, an antipodal X has odd strength > 1). The
strengths of all regular polytopes in R" are analyzed in [G2]. Another
approach is to use unions of the orbits of points under finite subgroups of the
orthogonal group. In this paper, we construct designs in R? from the union of
regular polygons placed at varying “latitudes”- on the sphere. This sort of
construction has previously been used by Bajnok [B1, B2] and Hardin and
Sloane [H2).

We shall use an equivalent criterion for spherical designs discovered by
Goethals and Seidel [G2], but unstressed there. (See [R1, p. 114] for a proof.)
A set X ={&} cS" ! is a spherical t-design if and only if the following
identities hold when 0 < 25,25 + 1 < ¢:

1 N TAv .
|_X—| kZ(éklxl+.'.+§knxn) = l_l(:) n+2j (xl +‘“+xn) 5
=1 j=

(1.3a)
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1 Xl

v Z (&xyxy + +§knxn)2§+l =0. (1-3b)
IX1 =,

In fact, it suffices to verify that the identities in (1.3) hold for {2s,25 + 1} =
{t — 1, t}. (These imply the others upon repeated application of the Laplacian
to both sides.) If X = {+£,} is antipodal, then (1.3b) is automatic and (1.3a)
need only be checked for {£,}. It follows from (1.3) that the polynomials
(& - Y (cf. (3.2)) depend only on | X| and ¥, x7 for a spherical ¢-design X
in R". Thus, if X =Y U Z is a spherical ¢-design in R” and Y C V, where V
is a k-dimensional subspace of R" and if p is any rotation of V, then
p(Y) U Z is also a spherical ¢-design in R". This observation extends to affine
subspaces as well, and is implicit in the constructions of Section 2.

Formulas of the shape (1.3a), without the assumption £,/ =1 or the
constant on right-hand side, are familiar objects in number theory and
functional analysis. They were essential to Hilbert's solution of Waring’s
problem, and are equivalent to the isometric embedding of I3 into I}*!. These
equivalences were discovered independently by Lyubich and Vaserstein [1.2]
and the author [R1], and the reader is directed to these references for more
details.

In this paper, we concentrate our attention of spherical 5-designs in R’
although the methods undoubtedly generalize to (2s + 1)-designs for s > 3.
In section 2, we construct spherical 5-designs in R3 from building blocks of
regular m-gons (m > 6) which are either equatorial in S* or come in pairs at
symmetric latitudes. We may also use an antipodal pair of regular pentagons
or the north and south poles together. After introducing some technical
machinery (Theorems 2.9, 2.12), we use these sets to construct spherical
5-designs in R® with every even cardinality > 18 and every cardinality > 26
(Corollary 2.19). (Compare with the value M’(3,5) = 72 from [B2].) We also
show that an explicit 16-point spherical 4-design from [H2] is actually a
5-design. (Since the first version of this paper was circulated, Hardin and
Sloane [H3] have constructed spherical 5-designs in R® with 23 and 25
points.)

The methods in Section 2 generalize in a straightforward way to spherical
designs of greater strength and a greater number of dimensions. We do not
develop these ideas here, except to conjecture that there exist spherical
(25 + 1)-designs in R* with every cardinality > (25 + 1)* + 1 (Conjecture
2.20).

Very recently, Korevaar and Meyers [K1] have proved that there exist
spherical t-designs in R® with @(¢°) points and conjecture that @(¢*) should
be possible. Hardin and Sloane [H3] present a conjectured sequence of
spherical t-designs in R* with cardinality (¢2/2X1 + 0(1)) and have verified
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it numerically for ¢ < 21. By comparison, the lower bounds in (1.2) reduce to
(t2/4X1 + o(1). Conjecture 2.20 would imply that there exist spherical
t-designs in R® with every cardinality > t2(1 + o(1)).

Another mathematical tool is needed for the negative results—the
catalecticant. In Section 3, we recall just enough algebraic machinery from
[R1] to make the definitions comprehensible. If p(x,,..., x,) has degree 2s,
then one can define the associated Hankel form%, which is a quadratic form

in (" :i; 1) variables. The determinant of the matrix of #, is called its

catalecticant and denoted C(p). If p is a sum of r 2s-th powers of linear
forms, then #, is a positive semidefinite quadratic form whose rank is at most
n+s—

n—1
forms in n variables, then C(p) = 0. In Section 4, we first reprise the
derivation of the icosahedron as the unique tight spherical 5-design in R®
from [R1], and then combine arguments from that paper with some determi-
nantal identities to show that there is no spherical 5-design in R" for n > 3

r. In particular, if p is a sum of fewer than ( ! ) 2s-th powers of linear

consisting of (" ;' 1) + 1 pairs of antipodal points (Theorems 4.6, 4.20). The

final twist in the last proof is the observation that n(n* — 4) is not a square
for n > 3.

2. THERE ARE MANY SPHERICAL 5-DESIGNS IN R®

In order to establish the assertion made in the heading of this section, we
first need a lemma, the nontrivial portion of which can be found in [R1,
(8.29), Thm. 9.5). The earliest citation we have found for these identities is
[F1], written in 1957. The implicit generalization in this lemma to sums with
arbitrary exponents can also be found in [D2].

LEMMA 2.1.  Suppose m > 25,25 + 1. Then for any real 0,

m—1 Qar o 2s m s
b (cos(0+k?)x1+sin(0+k?)x2) (28)(x'12+x§) ,
k=0

= 225 s

(2.2a)

m—1 o oar 25+1
> (cos(0+k——)x] +sin(0+k———)x2) =0. (2.2b)
k=0 m m
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Proof. Let { = exp(2mi/m) and observe that

27 2m
cos(@ + k —-)xl + sin(() + k —)x2

m m

Then by reversing the order of summation, and using the fact that ¥~} ¢
vanishes (unless m divides r, in which case it equals m), we find that, more
generally,

m—1 Qar . Qar N
Y cos(0+k—)x1+sm(6+k——)x2
m m

k=0
NY[x, —ixy N (x, +ix,  \VI{m-1 )
i o) (g e

2 k=0

It

ji=0

m ¥ (N)(xl ;ixz e”)j( N e—”’)N_j. (2.3)

ml|2j—N J 2

The last sum in (2.3) is taken over all multiples of m in
{-N,—(N—2),....(N - 2), N}.

If N =2s < m, the only such multiple of m is 0, and occurs when j=s,

giving the sum asserted in (2.2a). If N = 25 4+ 1 < m, then no such j exists,

and the sum is vacuous. a

Since 2_28(9;3) =331 5+, Lemma 2.1 and (1.3) give another proof
a

that a regular m-gon is

Suppose now that ¢/ <1 and s = V1 — ¢* and suppose Y = {n,} =
{(cos 6;,sin 6;)} C S'. We can suspend Y at the parallel of latitude z = ¢: let
(sY,¢) = {(scos 6, ssin 6, c)}. In case ¢ = 0, (Y, 0) will be called equato-
rial; it is the standard embedding of Y into S2. We use the notation {m, 6} to
denote the regular m-gon for which 6, = 6 + 27k /m (writing {m} when 6
is unimportant).

spherical ¢-design in the plane if m > ¢.
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The next two lemmas are computational, and show how pairs of {m}s
suspended at +c can be used as building blocks for making spherical
5-designs. These combine with (1.3) to generalize in higher dimensions, but
we shall not pursue this idea here. Note that none of the sums depends on 6.

LEMMA 2.4. If m > 6, then

m-1 ok ok
Z(scos(0+ )x+ssin(9+——)y+cz
m

k=0 m

4

3m 9 4 m .
= —8—34(x2 +y?) + (Q)Eczsz(xz +y*)z® + metzt, (a)

m 27k 2k °
Y |scos| 6+ x + ssin 0+——)y+cz
k=0 m m

5\3m 4 s 232 5\™M 30,2 g
=(1)——8—cs (x +y)z+(3)—2—cs(x +y?)z® + mcz°. (b)

Proof. Expand each sum in powers of z. Since m > 6, Lemma
2.1 is operative: the sums of the odd powers of cos(6 + 2mwk/m)x +
sin(@ + 27k /m)y all vanish, and the sums of the 0-th, 2-nd and 4-th powers
. 102 2 13,2 242 .
are m, mg(x* + y*), and my 3(x* + y*)?, respectively. ]

LEMMA 2.5.

4 2k 2k !
Y |scos| 6+ x+ssin(0+— y+cz
k=0 5
= Bet(x? + y2) + 15e%2(x2 + y?)2% + 5z (a)

5

4 2mk 2wk
Y scos(0+ )x+ssin(0+—y)+cz
k=0 5 5

4 2mk 2mk i
+ Y —scos(0+ )x—ssin(0+—y)—cz) =0. (b)
k=0 5 5
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Proof. Part (a) follows in the same way as the proof of the last lemma,
and is consistent with Lemma 2.4(a) on taking m = 5. Although Lemma 2.1
does not apply to the coefficient of s in (b), the summands cancel pairwise.

|

We now introduce an auxiliary case of designs, whose generalizations are
apparent. A finite set Z = {{,} € S? is a circular 5-design if there exist A, B
and C such that

|Z]

Y (Lax + Loy + §k3Z)4
k=1

=A(x* + yQ)2 + B(x? + y?)2? + Cz*, (2.6a)
1Z| 5
Y (Gux + Loy + Gaz)” = 0. (2.6b)
k=1

By Lemma 2.4, (s{m, 8}, c) U (s{m, 6,}, —¢) is a circular 5-design for
m > 6 and any 6, 8,. By Lemma 2.5, (s{5,0,},¢) U (s{5, = 6,}, —¢) is a
circular 5-design. While keeping in mind that the pairs of {5}’s (only) must be
rotated to be antipodal, we shall write these pairs of {m}s for m > 5 as
(s{m}, + ¢) for short. The sets ({m}, + 0) consist of two equatorial {m}’s
rotated so that the points are distinct.

Two other types of circular 5-designs are {(0,0, + 1)} and ({mm, 6}, 0) for
m > 6. (Any spherical 5-design in R?, when embedded in R® on the first two
coordinates, is a circular 5-design in R2.) These of course do not exhaust the
arsenal of potential circular 5-designs.

LEmMA 2.7, If Z is a circular 5-design, then |Z] = 3A + 2B + C.
Proof. Since Z C $?, a comparison with (2.6a) shows that
|1Z| )
VAESDY (§k21 + 45+ szs)
k=1

1Z]
YL+ LA+ 2030+ 2030 + 2LA R
k=1
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2A B B
—A+A+C+2— +2— +2—.
6 6 6

(A more insightful proof, in the spirit of [R1], would take the “inner product”
of both sides of (2.6a) with (x% + y* + 2%)%) [ |

Suppose Z is a circular 5-design satisfying (2.6). Define the discrepancy
of Z to be

A(Z) = (B - &z),C — 3lZI). (2.8)

Note also that if {Z,} is a finite set of circular 5-designs, then U, Z; is also a
circular 5-design and A(U ; Z,) = L, A(Z).

THEOREM 2.9. A circular 5-design Z is a spherical 5-design if and only
if A(Z) = (0,0).

Proof. By (1.3), Z is a spherical 5-design if and only if

1 12

9 ; a2
a Y (Gax + Loy + évksz)4 = %%(V +y® + ZZ) . (2.10a)
k=1
1Z] 5
Y (Lax + Loy + §sz) = 0. (2.10b)
k=1

Suppose Z is a circular 5-design. Then (2.10b) is automatic and (2.10a) holds
if and only if (A, B,C) = (1Z]/5,21Z|/5,|Z|/5). This implies A(Z) = (0,0)
by (2.8); conversely, if A(Z) =0, then (B,C)= 21Z|/5,1Z1/5), and
by Lemma 2.7, A= 3|Z|— 1B — 2C = 3IZ| — |zl - %lZ] = YZl, as
required. |

We wish to find sets of circular 5-designs whose discrepancies cancel. A
lemma is helpful.

LEMMA 2.11.

(a) If m > 5, then A(s{m}, + ¢) = (Bms>c? — tm, 2me* — Zm).
(b) If m > 6, then Am},0) = (- %m, — Lim).

>

(0) If Z =1{0,0, + D}, then A(Z) = (- 3. 3).



172 BRUCE REZNICK

Proof. For (a), the circular 5-design Z = (s{m}, + ¢) consists of two
{m}s, thus |Z| = 2m, and by Lemmas 24 or 25, (A, B,C) =
2(2ms*, 3ms2c?, mc*) in (2.6). (As a check of Lemma 2.7, SA+2iB+C=
2ms* + 4mc?s? + 2me? = 2mlc? + s%)? = 2m.) For (b), take one {m} in
Lemma 2.4, with ¢ =0, so (A, B,C) =(Em,0,0). For (¢c), m =2 and
(A, B,C) = (0,0,2) trivially. [ |

THEOREM 2.12. In the following constructions, assume my > 6 and
m; > 5 forj>1
(@) Z, = Uj_(s{m}, + ¢)) is a spherical 5-design if and only if

r r 1 r
Z Z m].c]f1 = g Z m;. (2.13a)

j=1 j=1 j=1

-
Y me}
j=1

b) Z, = {m,}, 00 U Ui l(s {m} ‘) is a spherical 5-design if and
only if

1 1

r r
ij, ijc;‘=—m0+me
j=1

10 Pt

Z m,ct =
j=1
(2.13b)

(© 7, =(0,0,+1DU U] l(s {m} + c) is a spherical 5-design if and

j=1 ]=1 j=1

% é‘, . (2.13¢)

osl»—t
cnl»h

(@ Z; =0,0,£ DU {me},0 U Uj_(sim}, £ ¢;) is a spherical 5-
design if and only if

M-
3
QN
!
|
!
_+_
|
E
+

T 3 6 " 3

~.
I

-
=
&.Q.B
[
|
|
+
3
ag!
3

(2.13d)

.
Il
—_
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Proof. In each case, we compute the discrepancy by Lemma 2.11 and
apply Theorem 2.9; this is done in detail only for Z,. First,

Il
-

A(Z,)

22 _ 4 4_ 2 )
(6mjs]. ¢ smy, 2m;c; — gm,

.
I

il
™~

; 2 _2) _ 4 4 _ 2
(6m;c?(1 —c7) = sm;, 2mc] im),

“~.
]

hence A(Z,) = (0, 0) if and only if

r

Z m;,

j=1

[ F NN
] b

X 6mef(1 - f) =

r r
4 _
mj, Y 2me; =
j=1 j=1 j=1

which is easily seen to reduce to (2.13a). For the record, the other discrepan-
cies are

A(Z) = (—%mo, —émo) + Y (Grnjs]izc]'.2 —im,,2m.ct — %mj),

.
]
—

A(Z) = (—%,%) + ) (6mjs.20.2 — im,,2m.c} — %mv),

A(Zd) = (_%»g‘) + (_%mm _émo)

and (2.13b—d) follow in the same way. [ ]

These conditions are clearly related to quadrature formulas of strength 5
on[—1, 1]. As an application of Theorem 2.12, take r = 1, m; = 5 and =3
in (2.13¢). Then it is easy to check that 52 = — 2 + {5and 55, = — § + 35.
Thus the set of 12 points consisting of the north and south poles and two
antipodal regular pentagons suspended at z = \/g is a spherical 5-design.
This set is the regular icosahedron.
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COROLLARY 2.14. The set (s{{m,}, £ c;) U (sy{m,}, £ ¢,) with 5 <

m, < m, is a spherical 5-design with 2m, + 2m, points if either (a) or (b)
holds:

(@) m, < my, < 5m, and

1 4m, 1 4m,
cf = =+ R c§ - - 5
3 45m, 3 45m,

() m; <my <

If

PN 978

m, and

1 4m, 1 4m,
ct=—- - , cg=—+ .
3 45m, 3 45m,

Proof. By Theorem 2.12(a), we need only verify that

2 2 1 .4 4 1 .
myci + myc; = z(m; +my), myct + mycs = 5(m, + my)

and 0 < ¢? < 1. The solutions to m ¢} + myc? = 3(m, + m,) are parame-

terized by (c}, c3) = (3 + mya, 3 — m;a). Then mc} + myc; =
+(m, + m,) implies 45m,m, a® = 4, giving (a) and (b). The conditions on ¢
ultimately reduce to the bounds on m,/m,.

o,

When m, = m, = 5, 0]2 = (5 + 2v/5)/15, and the resulting figure (with
a suitable rotation of the pentagons) is the regular dodecahedron. We can
verify the values of ¢; by a kind of reverse argument. It is known (see [G2])
that the dodecahedron is a spherical 5-design; if rested on one facial
pentagon, the 20 vertices lie on two pairs of antipodal regular pentagons.
Thus the dodecahedron has the shape of Z, with m; = m, = 5 and (2.13a)

must be satisfied.

({mo},0) is a spherical 5-design with 4m, + m, points if 5<m,, 6 <
m, < 2m, and

CorROLLARY 2.15. The set X = (s{m;}, £ ¢;) U (so{m}, + ¢,) U

4m, + m
{e), ey} =50 + V30 — 2507, where v = f. (2.16)
m
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Proof. We apply Theorem 2.12(b). We must have
ml(cf + cé) = %mo + %(ml +m),
ml(c? + Cg) = Tlomo + %(ml +m;),
s0

) 4m, + m, 4m, + m,
cf+c§= —— = 10v, cf+c‘2‘= ——— =60v. (2.17)
6m1 10m1

A similar argument to the last proof shows that (2.17) implies (2.16). This
construction makes sense only if 3v — 2502 > 0, 0 < 5v — V3v — 250 and
50 + V3v — 2502 < 1. These imply that I<u< 23—5 which gives the condi-

tion on my/m,. ]
Finally we note two “sporadic” constructions.

COROLLARY 2.18. Let a = \E and B = \/§ . Then the following two
sets with 18 points are spherical 5-designs: ({8},0) U (af5}, + B) and
0,0, £ D U ({6},0) U (BB}, + a).

Proof. Apply Lemmas 2.12(b) and (d), respectively. In the first case,
note that 52 = £8 + 35 and 55 = 8 + 5. In the second case, note that
5:0= — 3+ 2+ 3i5and55= — ¢+ & + 5. |

Mimura [M1] has found that there are spherical 2-designs in R", n > 3,
with m points for m =n + 1 and m > n + 3, Bajnok has an unpublished
manuscript constructing spherical 3-designs in R® with m points for m = 6
and m > 8, Hardin and Sloane [H2] have conjectured all cardinalities for
spherical 4-designs in R" for n < 10. In particular, there exist spherical
4-designs in R® with m points for m = 12, 14 and m > 16. The 4-designs
with 14 and 16 points are given explicitly in [H2, p. 260]. Since they are
already 4-designs, they will be 5-designs if and only if they satisfy (1.3b) with
25 + 1 =5. A computation (which we omit) shows that their 16-point
4-design is actually a 5-design, but their 14-point 4-design is not a 5-design.
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The 16-point design has a fundamentally different shape from the other
designs of this paper:

{il(l’ +, b, 5 c} U {ilb’ i R o a}

U{ilc’ t, a, £ b} U {i4d, +s d, £ d},

where +, +, 4+, =1, +, +5 ¢ = —1, a, b and ¢ are the square roots of

R S L _ 1
the zeros of the cubic t° —¢* + 5t — 55, and d = /35 .

COROLLARY 2.19.  There exist spherical 5-designs in R? with cardinality
12, 16, 18, 20, 22, 24 and every integer m > 26.

Proof. Designs with 12, 16 and 18 points are given by the icosahedron,
the Hardin-Sloane design and Corollary 2.18. By taking m, = m, and m, =
m1 + 1 in Corollary 2.14, we obtain designs with 4m, and 4m,; + 2 pomts for

> 5 and hence every even cardinality > 20. Finally, since m; + 5 < £m,
for my > 5, we may take m, =m; +j for 1 <j <5 in Corollary 2.15,
obtaining designs with 5m, + j points. This gives designs of every cardinality
> 26. ]

As noted in the introduction, Hardin and Sloane [H3] have very recently
constructed spherical 5-designs with cardinality 23 and 25 and conjecture that
the list is complete: that is, there are no spherical 5-designs in R? with 13, 14,
15, 17, 19 or 21 points. This conjecture is based on extensive sophisticated
numerical experimentation. Theorem 4.6 below states that there are no
antipodal 5-designs with 14 points.

It seems likely that these constructions of 5-designs in R® generalize, both
in strength and dimension. To wit, we suspect that if 25 + 1 <m; < - <
m, < m, + 1, then there exist c,, ..., ¢, € (0,1) so that the set consisting of
antlpodal regular {m }'s suspended at +c; is a spherical (2s + 1)-design in
R3. If this is true, then there exist sphencaf (2s + 1)-designs in R? with every
even cardinality > 2s5(2s + 1). Further, we suspect that if 25 + 1 < m,,
2s + 2 < m, and mo/ml is not too large, then there exist v, ..., v, so that
the set consisting of antipodal pairs of {m,}’s suspended at + Y, together with
an equatorial {m}, is also a spherical (2s + 1)-design in R®. If these
suspicions are true, then so is the following conjecture.

CONJECTURE 2.20. If n > (2s + 1)* + 1, then there exists a spherical
(25 + 1)-design in R® with cardinality n.
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The difficulty in proving this conjecture lies in the fact that the systems of
equations satisfied by ¢ and Y for fixed {mj} have degree s. Quadratic
systems are much easier to solve! Another direction of generalization would
be to construct spherical 5-designs in R* by suspending the designs con-
structed here. We hope to study these ideas elsewhere.

3. CATALECTICANTS

In this section, we review some seemingly irrelevant algebraic topics from
[R1]. The payoff will be in the next section.

Let H,(K") denote the set of homogeneous polynomials (forms) in n
variables with degree d and coefficients in a field K of characteristic 0. We
are only interested in K = R, but the machinery is more generally applicable.
The main result cited in this section, Proposition 3.7, would be applicable to
spherical designs in any formally real field, not just R. (A notational remark:
in [R1], we wrote F, ; for H,(R"). The change to a more standard notation
also suggests a change from H, to /”Z’;.)

Suppose n > 1 and d > 0. The index set for monomials in Hy(K") is

Hn,d) = {i=(il,...,i y:0<i,€Z, Y ik=d}-
k=1

Write N(n,d) = (" : i; 1)= | An, d) and for i €. An,d), let (i) =

d' /(.- i,D) be the associated multinomial coefficient. The multinomial
abbreviation 4’ means u{' --+ u!», where u may be an n-tuple of constants or

variables. Every f € H,(K") can be written as

flan) = X e(i)a(fii)x. (3.1)

ieAn,d)

(We need char{ K) = 0 to ensure that ¢(4) # 0 in K, and so can be factored
in (3.1) from the coefficent of x* in f.) For £ € K", define (¢-)? € H,(K™)
by

(£)"(x) = (é Ekxk) = L c(i)Ex (3:2)

ieAn,d)
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Suppose now that d = 2s is even. For p € H, (K"), we define the
Hankel form Z, € H, (KN 9) as follows. Index #A(n, s) in any fixed way as
{l,,.... Iy o} Then

N(n,s) N(n,s)

Z(t oty ) = 2 2 a(p:l+ L)t (3.3)
j=1 k=1

The catalecticant of p is the determinant of the associated matrix and is
independent of the ordering chosen for An, s):

C(p) =det[a(p;lj+lk)]. (34)
For example, suppose n = 2 and m = 4, and write g a-j for
a(p;(j.4—7j))

and (j) for ¢(j, 4 — j), so (3.1) becomes
p(x, xy) = ‘1(4,0)7611 + 4“(3,1)76?’52 + 6“(2‘2)’5;27‘5 + 4“(1,3)%"; + 0(0,4)’53-
Taking ¢, = (2,0), ¢, = (1, 1) and ¢, = (0, 2), we find that
%(tlv ty,t3) = 0(4,0)t12 + 0(3,1)(t1t2 + tyt))

+ag o(tits + 15 + t5ty) + ag g(tats + taty) + ag gyt
The pattern of the catalecticant is easier to see in the matrix

Gu.0y 43,1y 92,2
A(p) = |96y e Aa3) |- (3.5)
Ge.2) 41,3 Qo4

The diagonal pattern in (3.5) holds for all binary forms, but is more obscure
for forms in three or more variables, because there is no obvious linear
ordering for An, s) for n > 3.
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If p=C(& )%, then by (3.1) and (3.2), a(p;i) = & for i €. An,2s).
Thus

N(n,s) N(n,s) N(n,s) 2
Hep(t) = % kz ity = X &l (3.6)
j=1 =1 j=1

is a perfect square. In the following proposition, we restrict K = R, although
the only place this is used is in (c), where the actual requirement is that K be
formally real.

ProposITION 3.7 (see [R1], pp. 6-8]). Suppose K = R and {£} C R".

() If p = Tpo (& )%, then Z(1) = Ty (EX00 ght )%,

() If p = X;_(& )% and r < N(n, s), then C(p) = 0.

© If p=Xi_ (& )" and Z(v) =0, then L(v; §) =0 for 1<
k < r, where

N(n,s)
L(eix) = % o e H(RY.
j=1

Proof.  Since the map p %, is linear, (a) follows from (3.6); (b) is then
immediate. In (c), we have

r N(n,s) 2 r
0=%(v)= L ( )y §;ffvj) = kZ L*(v; &),
j=1 =1

k=1
so each summand must vanish. [ ]

We end this section with a historical paragraph on catalecticants. In the
early 1850s, Sylvester studied complex binary forms (H,(C?)) and their
representations as a sum of d-th powers of linear forms. He proved [S4] that
p(x, y) € H, (C?) is a sum of s or fewer 2s-th powers of linear forms if and
only if C(p) = 0. Many years later, he used the catalecticant to show that
“most” forms in H, (C") are not a sum of N(n,s) — 1 2s-th powers of
linear forms, which violated the “constant-counting” heuristic of nineteenth
century mathematicians in a few cases. There are N(3,4) = 15 coefficients in
the general ternary quartic p € H,(C®), and since 3-5 = 15, it ought to
have a representation p(x, y, z) = X7_(a;x + by y + ¢, 2)* This is wrong.
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Clebsch proved geometrically in 1861 that six 4-th powers are needed. In
1886 (at age 721), Sylvester observed [S5] that the catalecticant of a sum of
five 4-th powers vanishes. This gives a nontrivial relation among the coeffi-
cients of a sum of five 4-th powers, hence the general ternary quartic requires

at least six 4-th powers. For more on the role of catalecticants in the algebra
of binary forms, see [K2, K3, R1].

4. TIGHT AND SNUG ANTIPODAL SPHERICAL 5-DESIGNS IN R"

Suppose X ={%¢£,,..., + £} € S* is an antipodal set of points in R?,
and let & = (a;, by, ¢;). By (1.3), X is a spherical 5-design if and only if

Y (gpx + by +c¢z) =r (xz~+-y2+z2)2

k=1

W | =
] w

r 2
= g(x2 +y® +2%). (4.1)

Consider p(x, y, z) = (x* + y* + z2)%. Since c(4,0,0) = (0, 4,0) =
c(0,0,4) =1 and ¢(2,2,0) = ¢(2,0,2) = ¢(0,2,2) = 4! /(21210!) = 6, we
have a(p;(4,0,0)) = 1, etc. and a(p;(2,2,0)) = 2= 1, etc. Index A3, 2) in
the following order; (2, 0, 0), (0, 2, 0), (0,0, 2), (1,1,0), (1,0, 1), (0, 1, 1). With
this ordering,

1 + + 0 0 0
3 1 3 0 0 0
£ 1 0 0 o0
) =16 o o Lo o (4.2)
0 0 0 0 % 0
0 0 0 0 0 =

A tight spherical 5-design X must contain N(3,2) = 6 antipodal pairs of
points. We shall prove that X consists of the vertices of a regular icosa-
hedron. The following derivation is based on the one in [RI, p. 128]; the
original observation is in [D1, p. 375]. We present it here as a warm-up to the
new results.



SPHERICAL 5-DESIGNS 181

Without loss of generality, first rotate X so that & = (1,0, 0). By (4.1),
we have

6
e Y (gx H by +z) = (2 + g +z2)2,
k=2

so glx, y, 2) = 8(x? + y* + 2%)* — x* is a sum of five 4-th powers, and

£-1 2 2 0 0 O
2 £ 2 0 0 0
2 2 6
2 2 8 0 0 0
5 5 5
C(q) = = 0.
(D=l 6 6 0 2 0 o
0 0 0 0 %2 0
0 0 0 0 0 2

This determinant identity is easily verified; in fact, the upper 3 X 3 block is
singular. It is also easily checked that Z](v) =0forv=4,-1,-100,0),
since v is a null eigenvalue of the matrix. By Proposition 3.7(c),

40% + (_l)bz + (‘—l)C]% + Oakbk + Oakck + Obkck = 0, 2 < k < 6.

Since (ay, by, c;) € S?, we have af + b + ¢ = 1; hence 547 = 1, s0 a;, =
+1/ \/gk But a, = £, - &, and this dot product is unchanged by rotation.
Further, the selection of £, as the vector rotated to (1,0,0) was arbitrary.
Thus, if X = {+ £} is a tight spherical 5-design; then

1 X
gj'fk: iﬁ forall j # k. (4.3)

Haantjes [H1] proved in 1948 that the only set X c S? of six antipodal pairs
satisfying (4.3) consists of the vertices of a regular icosahedron. We shall
argue directly, introducing the methods to be used later.

Observe that if £, and &, are any two unit vectors in R?, then there
is a rotation of X after which & = (¢, 5,0) and &, = (¢, —s,0), where
> +s>=1 Let X={4& :1 <k <6} be a tight spherical 5-design. By
replacing £, by —§; for 2 < k < 6 if necessary, we may assume without loss
of generality that &, - ¢, = +1/ V5 for 2 <k <6.In particular, &, - &, =
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2 —s2=1/V5. Let ® = (1 +V5)/2. Since (®2 - D/(P? + 1) =
O/(D@+2)=0+V5)/(5+V5)=1/V5, the choice

1
Vo +1 Vor+1

(¢.8) =

satisfies the requirements for ¢® + s*. Now consider &, = (a;, by, ¢;) for
3 < k < 6. By (4.3), the following system of equations must be satisfied by
(ak 5 bk)

E = + by=—==—5—, 4.4
N e S

1 P
& = - by = +—= :
b V<D2+1ak Vor+1 ¢ T T @+

If “+” =“47 in (4.4b), then b, =0 and a, = 1/(V®2 + 1); since
a;j + b} + ¢f = 1, we must have ¢, = +[®/(VP? + 1) If “+"=“—"in
(4.4b), then a; = 0 and b, = ®/(V®2 + 1); since a; + b + ¢ = 1, we

must have ¢, = +[1/(V®? + 1)]. We have determined the four distinct
solutions to (4.4), which can only be &, &,, &, &. Therefore,

(+®, £1,0),(0, £ P, +1),(£1,0, £ D)}. (4.5)

\/<I>2+1{

These are the Schonemann coordinates for the regular icosahedron [C2, p.
52]. It is easy to check that (4.1) now holds for {£,, ..., &}, as given in (4.5).
We now prove the first new result of this section.

THEOREM 4.6. There is no set X = {1 £, :1 < k < 7} € S? which is a
spherical 5-design.

Proof. Suppose to the contrary. Then by (4.1), we would have for
& =(a, by, c),
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7
Y (apx + by +cz)t = %(x2+y2+z2)2. (4.7)
k=1

Choose any two &,’s, which might as well be ¢, and &,, and rotate X so that
& =(c, 5,0 and ¢ = (¢, —s,0), where ¢> + s> = L and £, - & = ¢* — 5%
Define

7
g(x,y.2) = 2 (aqx + by +Ckz)4
k=3

(2P +y* + zz)2 — (ex + sy)* — (ox —sy)*. (4.8)

Then g is a sum of five 4-th powers and so C(g) = 0 by Proposition 3.7(b).

Since

ex +sy) + (ex —sy)t = 4204x4+ 426282762 ? 4 423414,
y y 5 y y

0 4
we have

% —2c* lis — 2¢%s? % 0 0
{5 — 9022 % — 9¢4 1_75 0 0

7 7 7
i e z 0 0

Clq) =0 = 15 15 5 ) -
0 0 0 - 2¢%2 0 0
0 0 0 0 % 0
0 0 0 0 0 5%
= 1967 — (12¢* — 6022 + 125*) ) (5 — 2¢%2)(%) (4.9)

where the factors follow the order of the determinants of the blocks. By (4.9),

7 =12¢" — 65%s% + 125% = 12(02 + 52)2 — 30¢%% or % = %
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Since (¢? + 52)? = 1, (4.10) reduces to c%s® = ¢ or +. Therefore,
2 2 232 _ (.2 22 2.2
(€,-&) =(c —s*) =(c* +57) —4c’s
e{l-%1-%={ w} (4.11)
Since the selection of £, and &, for rotation was arbitrary, (4.11) implies that
(§j~§k)2=%or~§5—forl<]’<k<7.
Once again, we rerotate X, so that £, = (1,0,0)and so ¢; = &, = €, - &

Since (4.7) is valid for the rotated set, upon taking the coefficient of x4 on
both sides, we find

7
1+ Y af= = (4.12)

By (4.11), a} can only take on the values § and gzz. Suppose these occur m
times and 6 — m times, respectively. Then (4.12) implies

l+m-§+(6-m) g5 = ¢,
hence m = . This is a contradiction, completing the proof. n

The generalization to R” requires two n X n determinantal identities. Let

A+A B B
B A “ee B

D,(A,B;X) =| . - (4.13)
B B A

where the entries of the matrix in (4.13) are A on the diagonal (except for the
first entry, which is A + A), and B off the diagonal.

LEMMaA 4.14.
D,(A, B;A) =(A—B)"?

X((A—B)(A+ (n—1)B) + A A+ (n—2)B)).
(4.15)
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Proof. Observe that D,(A, B;0) = (A — B)* (A + (n — 1D)B). This
formula is well known and can be proved either by eigenvalues, or from
elementary row operations: first subtract the first row from each of the other
rows, and then add each column to the first, to give an upper triangular
matrix with diagonal entries A + (n — 1)B followed by n — 1 A — B’s. But
D,(A, B; ) = DA, B;0) + AD, _,(A, B;0), which gives (4.15). [ ]

LEMMA 4.16.  If ay = B2, then the n X n determinant

A+a B+B B - B
B+B A+y B - B
B B A - B
B B B - A

=(A-B)""*((A-B) A+ (n—1)B)

+(a+v)(A+ (n—2)B) —28B). (4.17)

Proof. We expand the determinant, obtaining
D,(A, B;0) + aD,_,(A, B;0) + yD, (A, B;0)
- 2BD, (A, B;B— A) + (ay— B*)D, ,(A, B;0). (4.18)

Since ay — B*=0 and D, (A, B; B — A) = B(A — B)"~? by Lemma
4.14 (with A = B — A), (4.18) reduces to (4.17). n

We now repeat the entire discussion of the first part of this section,
following the same reasoning. What is omitted in detailed explanation is more
than compensated for in the complication of the algebra!

Let p(x,,...,x,) = (x? + -+ +x2)*, n > 3. We index An,2) as fol-
lows:

(2.0,...,0),....(0,0,....2).(1,1,...,0),(1,0,1,....)......



186 BRUCE REZNICK

Then /A p) can be written as before: the nonzero entries of this

n er 1) X (" ; 1) matrix consist of the upper left n X n block

1 1
1 3 3
1 1
3 1 3
1 1

3 1

and (g) diagonal entries of 3.
Suppose now that X is a tight spherical 5-design in R". Then X consists
of N := (" ; 1) = n(n + 1)/2 antipodal pairs, {+ £}, and by (1.3),

N

4
Z (é‘:klxl + - +§knxn)
k=1

3(n+1)
- 2(n+2)(

1-3 )
— 2+ “+x2)

N . 2 4o +22) (4.
n(n+2)(x1 : x7 + +xn) (4.19)

We may rotate X so that £ =(1,0,...,0). Since the catalecticant of
q = L}, (& +)* vanishes, and the diagonal entries are unaltered, we should

find that

3(n+1) n+1 n+1
n+1 3(n + 1) n+1

2(n + 2) 2n+2)  2An+2) | =o0
n+1 'n-;-l . 3(n.+1)
2(n + 2) 2(n + 2) m
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In the notation of Lemma 4.14, this determinant is D,(3B, B; —1) for
B=(n+1)/[2(n + 2)], or

(2B)" " *(2B((n + 2)B) — (n + 1) B)
= 92" 2B (2(n +2)B — (n+1)) =0,

as we expected. The null elgenvector for the n X n block matnx is (n +
I, —1,...,—1), hence (n + DEZ — &% — - — €2, =0 for k > 2, so &3
=1/ (n + 2). Taking the rotation into account, this implies that £ - & =

+ y1/(n + 2) for j # k, information already known via the Gegenbauer
polynomlal This argument is continued in [R1, p. 131] to show that n =
u® — 2, where u is not a multiple of 4. This is weaker than the known result
(see Bannai and Damerell [B4]), which ultimately goes back to Lemmens and
Seidel [L1], that n = u? — 2 for odd wu.

Theorem 4.6 now generalizes, though with considerable computational
complication.

THEOREM 4.20. If n > 3, then there is no spherical 5-design in R" of
the form X ={+ ¢, :1 <k < ("+1) + 1} c st L

Proof. 1f such an X exists, then, analogously to (4.19), we would have

N+1 3(N + l)
4 212
+ “oe + _— - + e +
kgl (gklxl fknxn) n(n + 2) ( x")
3(n®*+n+2) 5

- (x4 4x2) (421
2n(n + 2) (xl x") ( )
After a rotation, we may assume that ¢, = (0',7',0,...,0) and ¢, =

(o0, -7,0,...,0) with o2 +72=1 and o> — 7> = § - §,. Then
g =L X §k )4 has vanishing catalecticant. By (4.21), this means that either
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the n X n block has 0 determinant, or one of the diagonal entries is 0. In the
first case,

3v — 20 v—-20%% o
v—20%% 3v—-27% v -
v v v -+ ©v]|=0, (4.22)

where v = [n? + n + 2]/[2n(n + 2)] for simplicity, In the second case, the

only candidate diagonal entry corresponds to x?x3; in this case, v — 20 %72

=0, or

v n®+n+2
o= - = — (4.23)
2 4n(n+2)

To analyze the first case, we let @ = —20*, B= —-20%% and y=
—27* in (4.22). Then ay = B2, and applying Lemma 4.16 with A = 3v,
B = v, we find that

0=(20)" *(20(n + 2)v — (20* + 27*)(n + 1)v + 40°r%0)
= 2"_10"*1((11 +2)o —(n+ 1)(c*+ 1) + 20'272)

L n?+n+2
2n

= gn- lvn~

—((n+)(o*+7%) —20%%)|, (4.29)

so (R +n+ 2)/@n) = + Do?* - 20%% + (n + 7. Since
(n+ 1No?+ 72)? =n + 1, (4.24) thus implies that

n?+n+2 n?+n—2
(2(n+1) - (—2))0'27'2 =(n+1)— = .
In 2n

(4.25)
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After simplification, (4.23) and (4.25) combine to show that

- n®+n+ 2 4.26)
e { — .
T SV an(n+ 2) [ (

hence
(&-&) = (02 =13 = (a2 + %) — 407"

n?+n+2
el - ————
n(n + 2)

n+ 2
- {n(n + 2) } (4.27)

(If n = 3, this becomes (£, - £)* = (3 F 2)/15, as in (4.11).) Let

[ n+2 _ [ n-—2
Cc = m, Cc = m (428)

Since the selection of &, and &, for rotation was arbitrary, we conclude that
gj-gke{ic,ié}forl<j<k<N+1.

Once again, we rerotate X, so that & = (1,0,...,0) and then, by
replacing £, with — ¢, if necessary for 2 < k < N + 1, we can assume that
£ & > 0. Since X is a 5-design, (4.21) still holds. Upon taking the

coefficient of x} on both sides, we obtain the equation

N+l 3(n?+n+2)

4
1+ Ez &L= i) (4.29)

But &, = £, &, and by (4.27), & can only take on the values c¢*, ¢*.
Suppose these occur m times and N — m times, respectively. Then (4.29)
implies that

1+m

' (( n++2;)2 " (( > l) - ’") ' (( nff)z B 3(;;(; 1;)2)

(4.30)
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A little algebra shows that (4.30) reduces to

nP4+n+2
m= (4.31)

Since m must be an integer, (4.31) implies that n = 1,2 mod 4. (For n = 3,
(4.31) reduces to m = %, as before.)

We perform one final rotation. Reindex X if necessary to assume that
£ & =c, and rotate on the last n — 1 coordinates, so that &, =
(c,5,0,...,0), where ¢® +s? = 1; this keeps &, = (1,0,...,0). For 3 <
k < N+ 1, there are eight possible values for (£, - &, &, &), namely,
(c, + ¢), (¢, + &), (&, + ¢) and (&, + ©), and we have

£ & = & €y & = céy + 56,
hence

_ §g'fk_0§1'§1<

s

& =& &, ro (4-32)

We return to (4.21), and set x;= -+ =x, =0. Let m;, 1<j <8,
denote the multiplicities of the possible values (¢, - &, &, &), and apply
(4.32):

3(n®+n+ 2)

2 2312
2n(n + 2) (xl +x2)

C, .
. . c—c
=x; + (ex) +sx,) +my|ox, + Xy

; 4 -
—c ~ c? c—c?
+mylex) + ———x, | + mglexy + Xy

S

2 — 4
-C —C _ ¢ —cc
cx; + —x,| +m5lex; + Xy

+ my
s

+ mg|lox) + —
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+mglex, + ———x, | . (4.33)

For j = 1,2, we already know that |§j - &1 = ¢ for m values of k, and since

£1°& =c,

m, +my +my +my=mgz+mg+m, +mg=m — 1

nZ+n-—2
4

m, +my +mg +mg=my+m,+m.+mg=m—1

n®+n—2
= —, 4.34
; (434)
hence
nf+n-2
m, + my, = m- + my =M, m, + m, =mg + mg = —4— - M.
(4.35)

Now let u =x; — (¢/s)x, and v = (1/s)x, in (4.33). Then x, = u + cv
and x, = sv, so ¥7 + 13 = u? + 2cuv + v? and (4.33) becomes

(n*+n+2) b2 4 4
——m(uz+2cuv+vz) =(u +cv) + (cu+v)

+my(eu + ev)t + my(cu — ev)' + my(eu + av)t + my(eu — év)’

+ my(eu + cv)' + me(au — cv)* + m-(cu + eo)t + my(u — ev)’.

(4.36)
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Finally, equate the coefficients of u/v* ™/ in (4.36):

3(n*+n+2)
2n(n + 2)

=1+c*+ (m +my +my+my)c' + (mg + mg + m; + mg)ct,

(4.372)

3(n*+n+2)
—— 4c
2n{n + 2)

= 4(0 +¢® + (m, —my)e* + (my — my)c’c

+(mg — mﬁ)cE3 + (m; — m8)54), (4.37b)

3(n*+n+2)
————(4c* + 2)
2n(n + 2)

= 6(62 + 2+ (my + my)et + (my + my + mg + my)c’c?

+(m,; + m8)54), (4.37¢)

3(n*+n +2)
2n(n + 2)

= 4(03 + c + (ml — 1712)04 + (Tn3 — 'm4)653
+(my — mg)c’c + (m; — m8)54), (4.36d)

3(n*+n+2)
(v D)

=c*+ 1+ (m +my, +mg +mg)e* + (my + my + m, + my)et.

(4.37¢)
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This is not as bad as it looks! In fact, by (4.28) and (4.34), (4.37a) becomes

3(n* +n+2)

(i1 2) =1+c*'+ (m, +my + my +my,)ct

+(ms + mg + m; + my)c?

nP4+n+2 (n+2)2 n+n—2 (11—2)2

1+ S 3 5 5>
4 n*(n + 2) 4 n*(n + 2)

which is an identity. The same computation applies to (4.37e) since m, +
m, = my + mg by (4.35). Now consider (4.37c):

3(n* +n+2) )
2n(n + 2) (4" +2)

= 6(02 + ¢+ (my + my)et + (my + my + my + mg)c?c”
+(m, + m8)54)

) n*+n—2
=12¢% + 6M(c* + &%) + 12 — M c*c?.

This equation can be solved for M; miraculously, it turns out that M = 0.
Since m; > O, this implies that m; = m, = m,; = mg = 0! Now, (4.37b) and
(4.37d) reduce to

3(n* +n + 2)

2n(n + 2) dc = 4(c +c® + (my = my)c’e + (ms — mg)cd®),

(4.38a)
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3(n*+n+2)

e = (e e (= )+ Oy = ),

(4.38b)

Subtracting (4.38b) from (4.38a), we find that

0= (my —my, — (ms — mg))(c’c — cc®)

4

= (my — my — (my ~ mg))cc 7 2)

hence, m; — m, = my — mg. After dividing (4.38a) by 4c¢, we find, at last,
that

3(n* +n + 2)

2n(n +2) L+ + (my —my)(c® +8%)2. (4.39)

After some more algebraic manipulation, (4.39) reduces to

4n
V(n—2)n(n +2) = ——(m; —m,). (4.40)

n—1

Recall that, if Vr € Q for an integer r, then Vr € Z. Thus, (4.40) implies that
the integer (n — 2)n(n + 2) is a square. If n is odd, then n — 2, n and
n + 2 are pairwise relatively prime, and since their product is a square, each
must be a square. This is impossible: positive squares do not differ by 1, 2 or
4. If n is even, write n — 2 = 2%, n = 2%u, and n + 2 = 2°u,, with
a,b,c>1and u : odd. Again, the u ;s must be pairwise relatively prime, and
so are squares. By taking n mod4, we see that either two of {a, b, ¢} are
even or two are odd. In the first case, there are two squares among
{n —2,n,n+ 2} in the second case, there are two squares among
{n/2 —1,n/2,n/2 + 1}. Either case is impossible, and at long last, this
completes the proof. [ |

I thank the editors of this special volume for the opportunity to submit
this paper. By the winter of 1991, I had worked for four years on [R1] and
was relieved to find it accepted for publication. After I mentioned some open
questions from [R1] to Zoltan Fiiredi, he told me to look at spherical designs,
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a subject of which I was ignorant. After a first pass through the literature, I
wrote Prof. Seidel with pages of questions. He was extremely patient in giving
me a crash course in the subject, and the resulting revision improved [R1]
tremendously. I am honored to dedicate this paper to him. I am also happy to
thank Bela Bajnok, Eiichi Bannai, and Neil Sloane for many helpful e-mail
conversations.
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