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Sums of Squares of Real Polynomials

M. D. CHOL, T. Y. LAM, AND B. REZNICK

§1. Introduction

Given that an element g in a ring A4 is a sum of squares in A4, say
a= Ef.;l a,.2 , it is natural to ask for the smallest ¢ (called the length of a
in A) for which such an expression is possible. For any subset S of 4,
the pythagoras number P(S) of S is defined to be sup{length(a)}, where
a ranges over all elements of S which are sums of squares in 4. The
computation of P(S) is an interesting, but often difficult task.

For the field of rational functions K, =R(x,, ..., x,) over the real field
R, Pfister [Pf] has shown that P(K,) < 2" . This upper bound is known to
be sharp only for n < 2 [CEP]. As for lower bounds, one can deduce from
[CEP] that, for n > 2, P(K,) > n+ 2. The precise value of P(K,) for
n > 3 remains unknown. On the other hand, Z. D. Dai and the present au-
thors [CDLR] have shown that, for the polynomial ring 4, = R[x,, ..., x,],
P(A,) = oo for n>2 (while, of course, P(4,)=2).

The results mentioned above provides the backdrop of this work, in which
we study the problem of computing the lengths of homogeneous polynomials
(or forms) in A, . In doing so, we shall not be interested in writing forms as
sums of squares of rational functions; instead, we shall only be interested in
writing forms as sums of squares of other polynomials (necessarily forms).
Thus, throughout this paper, “sums of squares” shall always mean sums of
squares of polynomials (or forms). We note in passing that any sum of squares
is psd (= “positive semidefinite”), though in general a psd polynomial need
not be a sum of squares [Hi]. :

An n-ary m-ic shall mean a form f = f(x,, ..., x,) € 4, of degree m.
Let F, ,, denote the R-space of n-ary m-ics in 4, . Our main object of
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study in this paper is the set of pythagoras numbers P(n, m) := P(F, ).
Two well-known examples are: P(2, m) = 2 (for binary m-ics, m > 0) and
P(n,2) = n (for n-ary quadratics). A remarkable theorem of Hilbert [Hi]
says that P(3, 4) = 3 for ternary quartics.1 No other values of P(n, m)
have appeared in the literature, except that R. M. Robinson [Re] has shown
that P(n, m) < (":’fl—l ). (In particular, P(n, m) is finite, which is not a
priori obvious).

In the present work, we develop a general method for studying sums of
squares in the polynomial ring A, . The gist of our method lies in the obser-
vation (§2) that, if a form f is written, in a specific way, as a sum of squares,
say f=Y, hi2 , then we can associate to this expression a “Gram matrix” ob-
tained from dot products of certain vectors arising from the coefficients of
the h;’s. By considering all expressions of f as a sum of squares, we get
a family of associated Gram matrices. The minimum of the ranks of these
Gram matrices turns out to be precisely the length of f (Theorem 2.4). This
result provides the key to the general analysis of the length of polynomials
undertaken in this paper.

In §3, we introduce the geometric-combinatorial method of “cages”. This
approach reveals some interesting connections between the theory of sums of
squares in 4, and the geometry of numbers. For fixed n, m (m even), a
cage C is, roughly speaking, a “convex” collection of n-ary m-ic monomials.
To such a cage C, we can associate two families of forms:

(1.1) F+(C): = {f: f is psd, containing only monomials in C},
(1.2) F(C): ={feF+(C): f is a sum of squares}.

Using the second family, we can define the pythagoras number of the cage:
P(C) := sup{length(f): f € F(C)}.

In case C is the “full” cage C, ,, consisting of all n-ary m-ic monomials,
we recover, of course, the pythagoras number P(n, m) introduced before.
For any cage C, there are three basic combinatorial invariants:

! = I(C) := number of monomials in C,

e = e(C) := number of even monomials in C,

a = a(C) := number of distinct “geometric means”
of pairs of even monomials in C.

In §4 and onward, we use these invariants to get information on F *Qo),
F(C), and P(C). In §5, we characterize the “interiors” of F*(C), F(C)

Hilbert’s proof of this theorem expressed in the older language of algebraic geometry is
understandably appreciated by few modern readers. For a proof of Hilbert’s result written in
the current mathematical terminology, see [Ra, Chapter 7], or the article of Swan [Sw] in these
Proceedings.
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(Proposition 5.4, 5.5), and show that these two spaces have topological di-

mensions, respectively,. /(C) and a(C). In §4 and §6, we obtain upper and
lower bounds for P(C) in terms of e =e(C) and a =a(C):

MAIN THEOREM (see (4.4) and (6.1)). For any cage C, we have

ale<iA<P(C)<A<e,

where A= (VI+8a—1)/2 and A= (2e+1—1/(2e + 1)’ — 8a)/2.
In the case of the full cage C = C, , , one has /(C) = (MMl e(C) =

n—1
("t%l‘l), and one can show that a(C) = /(C) (Lemma 3.4). Thus, the
theorem gives explicit upper and lower bounds for the pythagoras number
P(n,m).

If we fix m and let n vary, the theorem above implies that P(n, m)
has the order of magnitude of n™? (see (6.4)). For instance, for quartic
forms (m = 4), P(n,4) is roughly between 0.092n> and 0.289n” (see
(6.5)), when n is large. Of course, if we fix » > 3 and let m vary, then
sup{P(n, m)} is co according to our earlier work [CDLR].

The flexibility of using cages enables us to get sharper results for specific
classes of forms. For instance, applying the Main Theorem above to bi-
quadratic forms Zaijk,xixjykyl (1<i,j<n;,1<k,l<n,), we see that
the pythagoras number for such forms is at most

(\/1 +2n,ny(n, + 1)(n, + 1) - 1)/2.

§2. Sums of squares and Gram matrices

In this section, we show that the problem of expressing a form f as a
sum of squares of other forms and the problem of computing length(f) can
both be studied naturally from the viewpoint of linear algebra. The basic
arguments needed from linear algebra will be collected here for later use.

We adopt the following multinomial notation: for x = (x,, ..., x,) and
a=(a,...,a,),wrte x* = Xyl x3". Agiven n-ary m-ic can be written
as f(x) =) a,x", where o ranges over some set of n-tuples of nonnegative
integers with o, +---+ o, = m. Suppose f is a sum of squares, say,
f= 2;=1 hi2 . As we have indicated before, the &,’s must be m/2-ics, say
hi=Ygudx? (1<i<i). Let Up=(u,...,u})eR". Then

(2.1) i
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Comparing coeflicients, we get

(2.2) a, = Z Uy - Uy
B+p'=a

Conversely, if there exist f-vectors {Uﬁ} C R’ which satisfy (2.2), then we
can write f as a sum of ¢ squares, using the coordinates of the Uﬂ ’s to
construct the A;’s. Thus, ﬁnding the length of f becomes a question of
finding a set of vectors {U }C R’ for the smallest possible t, such that the
dot products Uﬂ Ug satlsfy certain linear equations, viz. (2.2).

i Consider the dot product matrix (Ug - Uy ) whose rows and columns are
y indexed by B, B'. We say that this is the Gram matrix associated with the
sum of squares expression f = )_ h? . In the literature, the characterization
for such Gram matrices is well known. We shall recall this characterization
3 in the form we need in later sections. For the sake of completeness, we shall
e : also supply a proof.

PROPOSITION 2.3. Let (vgy) be a symmetric real matrix with associated
- - quadratic form Q(y) = v 55 VgVg - Then there exist real vectors {Vg} with
VeV =vgg (forall B, B') ifand only if Q(y) is psd. If this is the case, the

smallest t for which such vectors can be found in R’ is precisely rank(v 55')
(i.e., the rank of the quadratic form Q).

ProoF. If vectors V; = (v(l) (’)) exist w1th Vg« Vy = Vgg , then
_ 5 0,0
Vggr = >im1Yp Vgi - Thus,

2
o= 3 (S ooy =3 (va;)yﬂ) -0,
8.8

| so the rank of Q is at most s. Conversely, suppose Q is psd with rank s.
: Then )

2
o) = E"’ppypyp Z(ng)yﬂ)

for suitable real numbers {vff)} Comparing the coefficients of YgYg oOR
. . 1
both sides, we get vﬂﬂ = i1 vf;) ;') Letting V ('vé), cees v;f)) , We
have then Vgp = V Ve . QED
From our calculatlons at the beginning of this section and the above char-
acterization of Gram matrices, we obtain immediately the following:

THEOREM 2.4. (1) Let f(x) =Y a,x", and V = (vgy) be a real sym-
metric matrix. The following statements are equivalent:
(A) f is a sum of squares and V is a Gram matrix associated to f (with
I respect to some sums of squares expression f =73 hi2 );
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(B) V is psd and

(2.5) Y v =a, (forala).
B+p'=a
(2) If f is a sum of squares, then
(2.6) length(f) = min{rank V'} = min{length Q},

where V ranges over all Gram matrices associated to f, and Q ranges over
the quadratic forms associated to such V’s.

Via this result, one is able to reduce the notion of length for arbitrary
forms to the more familiar notion of the length of gquadratic forms.

For later reference, we make the following observation on the Gram matrix
of a nonnegative linear combination of forms (of the same degree).

LEMMA 2.7 (Semilinearity). Suppose f = Ehf has associated Gram ma-

trix U, and g = Zkf has associated Gram matrix V. Then for any
c,d >0, the following sum of squares expression

(2.8) cf +dg =Y (Vo) + Z(\/ij)z
has associated Gram matrix cU +dV .

ProoF. Suppose {Uy}, {V,} are the (row) vectors arising from the 4,’s
and k;’s respectively. Then {(VeUy, vd V,)} are the (row) vectors arising
from {vch,, Vdk}. Since

(VeUy, VdVy) - (VeUy , VdVy) = cUp - Uy +dVy -V,

the Gram matrix associated with the expression (2.8) is clearly cU+dV .QED

Let f= El Wb 2 bea given expression of f as a sum of ¢ squares, and,
as before, write h; = Eﬂ 2) # and Uﬂ = (u ﬂ), ey g)). We can always
derive other expressions of f as a sum of ¢ squares by the following proce-
dure. Let (c;;) bea ¢ x ¢ real orthogonal matrix, and let {h =2.pllp i xP }
by defined by

(71 ..-,ilt)=(h1""’ht)(cij)'
Then El—l i E, 1% =f’and

b= Zhicij Z (Z ugc, )

implies that u =) u(') . Thus, we may think of the new U ’s as the
old vectors U s expressed 1n coordmates with respect to a new orthonormal

basis of R’. In particular, U U = U U , and so the two expressions

(2.9) 'f=zt:hf, f=ztji1§
i=1
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of f as sums of ¢ squares have the same Gram matrix. In the sequel, we
shall say that the second expression for f above is obtained from the first
by an orthogonal transformation or that the two expressions are orthogonally
equivalent.

ProrosITION 2.10. A sum of squares expression f = Z§=1 gi2 can be ob-
tained from (2.9) by an orthogonal transformation if and only if the two
expressions have the same Gram matrix.

PrOOF. We need only prove the “if” part. Write g, = Zp 8 ) A s ﬂ =

(vl(,l) yeen (t)) and assume that
(2.11) Uy-Uy =V,-V forall B, g

Let A (resp., B) be the subspace of R’ spanned by the Uy’s (resp., Vj ’s).
From (2.11), it is easy to show that the map given by

Y eUyjed)y gV, eB
is well defined, and is an isometry from 4 to B. By Witt’s Extension Theo-

rem [La, p. 26] (which is obvious in the present context), this extends to an
isometry of R’. Therefore, we may view the I/;q ’s as the coordinate vectors

of the U fi ’s. with respect to some orthonormal basis of R’. Reversing the
calculation given before the statement of (2.10), we see that the expression
f= Ei ’ g2 is obtainable by an orthogonal transformation of the expression
f El 1 l QED

In view of the Proposition above, the classification of the Gram matrices of
f corresponds to the classification of the expression of f as sums of squares
up to orthogonal equivalence.

For ease of notation, we shall often label the f’sas B,, 8,, ..., B,, and
write accordingly U; for U, , etc. For any such fixed labelling, if fisa
sum of squares, we can alway‘s write it as a sum of squares in a specific way,
as in the following result.

COROLLARY 2.12. Let f = 22:1 hf. Then, after an orthogonal transfor-
mation, we can write [ = Z:=1 gi2 such that x® occurs only in 8> xP2
occurs only in g,, g,, etc.

PRroOOF. By the Gram-Schmidt Orthonormalization Process, it is possible
to choose an orthonormal basis {e; ,..., e} for R’ such that, for each i,
the vector U, lies in the span of {e'1 - elf} . By the discussion preceding
(2.10), the new orthonormal basis {e1 > s e;} determines an orthogonal
transformation of f = Ei=1 h,.2 into a new expression f = Ei.:, g,.2 . The
new vectors ¥, ¥,, ... associated with this expression now have the form

(,0,0,...,0), (x,%,0,...,0),...,soforany I, xPi can only occur in -

8 >8>---» &, as desired. QED
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This result will be very useful later in obtaining lower bounds for the length
of sums of squares of forms; see (6.1).
We shall now address the following important question: Suppose a form
f is known to be a sum of squares. What kind of algebrazc object is the set
of Gram matrices associated to 7 Let f = Zl 1 h be a specific expression
of f as a sum of ¢ squares, with an associated Gram matrix (uﬂ ). Then
any solution for (2.5) is given by vgg = gy +eﬂ g where (g4) satisfy the
homogeneous linear equations 3 g o 650 = 0. Of course, we also want
Egpr = Egip 1O insure the symmetry of (v /). Note that the above linear
equations are linearly independent. Thus, 1f the indexing set for a (resp.,
B) has a (resp., e) elements, then (v 85’ /) can be expressed linearly by
d := e(e+1)/2—a independent parameters 4, ..., 4;. In the corresponding

parameter space R’ , the Gram matrices associated with f is then a closed
semialgebraic set, defined by polynomial inequalitiesin A, ..., A; dictated by
the condition that the principal minors in the Gram matrix be all nonnegative.
These inequalities could considerably cut down the “degree of freedom™ for
the Gram matrices. For instance, it may happen that J is a large number,
but f has a unigue Gram matrix V. This would, indeed, be a very fortunate
case, because then length(f) is immediately computed by determining rank
V , and we further know that f has a unique expression as a sum of squares,
up to orthogonal transformation.

ExaMPLE 2.13. Let f(x, y) € R[x, y] be a product of m distinct irre-
ducible binary quadratic forms. Classify the different expressions of f asa
sum of two squares, up to orthogonal equivalence.

Without loss of generality, we may assume that the coefficient of x®™ in
f is 1. We shall first construct 2™~ ! essentially different ways of writing f
as a sum of two squares, and then show that these are all the possible ways,
up to orthogonal equivalence.

Write f(x,y) = Hﬁl(x—ajy)(x—ajy) in C[x, y], and define real forms
P(x,y), @Q(x,y) by P+iQ =] (x ~ a;y). In this way, we obtain one

way of writing' f as a sum of two squares, namely, f = P2+Q If we replace
one or more of the a; ’s by a;,we obtain another pair of real forms, say P’,

Q', such that f = P'2 + Q'2 Ostensrbly, this gives 2™ decompositions. Up
to orthogonal equivalence, however, it is easy to see that we get only am-l
decompositions. (Since the coefﬁc1ents of x™ in P and P’ are both 1, the
two expressmns f= P+ Q and f = P?y Q'2 are orthogonally equlvalent
iff @ =+0.)

It is now easy to see that we have exhausted all possible ways of writing
f as a sum of two squares, up to orthogonal equivalence. For, let f =
P+ Q (P + zQ)(P zé) By the theorem of unique factorization, we
see that P + lQ AP +iQ’) for some A€ C, where P', Q@ are as above.

Clearly, A2’ = 1, so writing A = a + bi, we have a’ + b’ =1 , 1.e., (_abz)
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is an orthogonal matrix. Since (P, Q) = (P, a5, z) , the expression
f= P+ QZ is orthogonally equivalent to the expression f = P?+ Q'2
constructed in the last paragraph. In view of Proposition 2.10, the analysis
above shows that f has exactly 2™~ Gram matrices; each of these Gram
matrices has rank 2 since f is not a perfect square

For a concrete example, let m =2 and f = (x +y )(x +4y ) Ageneral
Gram matrix for f is easily seen to be of the form

1 0 r
G =0 5-2r 0 (Irf<2)),
r 0 4

where the rows (and columns) correspond to the monomials x* , Xy, and
¥*, in that order. Since det(G ) = (r+2)(r —2)(2r - 5), the two Gram

matrices of rank 2 are given by the parameter values r = +2; namely,

1 0 2 1 0 -2
01 0] and 0 9 o0].
2 0 4 -2 0 4

The corresponding expressions of f as sums of two squares are
2 2,2 2 2 2,2 2
f="+2y)" +(xy)” and f=(x"-2y")"+(xy),
as predicted by the proof of (2.13). (Incidentally, these are pre01sely the
expressions obtained by applying the 2-square identity to (x +y )(x + 4y )
in the two obvious ways.)

While we are on the topic of psd binary forms, the following remarkable
application of the Gram matrix method seems worth mentioning:

PROPOSITION 2.14. Let (a;;)o<;, j<n be a psd real symmetric matrix. Then
there exists a psd real symmetric matrix (b;;) of rank < 2 such that Z

= Er+]—r bU for every r.

i+j=r u

ProoF. Specialize the psd quadratic form ) a; %% by x; — t

where ¢ is a real variable. We get a psd polynomlal f (t) = Zaijt’” =
2 (Xipjer & ])t which can then be written as p(t) + q(t) The Gram ma-
trix (b ) associated with this expression of f as a sum of two squares is
the matrrx we want, since 3, . b, =3, . a; follows from (2.2). (Of
course, we are applying the Gram matrix method here in the mhomogeneous
case.) QED

§3. The method of cages

To study n-ary m-ics more systematically, we set up some notations for
the geometry of R”. Throughout the rest of the paper, we write

C m={(cl,...,cn):OSCiGR,Zci=m}.
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This is an (n— 1)-simplex with vertices (m,0,...,0), (0,m,...,0),...,
and (0,0,...,m). An n-tuple a = (¢, ..., @,) € R" is called a lattice
point if each o, € Z; a is called an even lattice point if each a; € 2Z.
(Lattlce points w111 be consistently denoted by Greek letters.) For any set
C C R", we shall write

L(C) := CNZ" (the set of lattice points in C),
E(C):=Cn(2Z)" (the set of even lattice points in C).

An n-ary m-ic f is written as f = ) a_x®, where a ranges over (some
subset of) L(C, ,). Following [Re,], we define the cage of f, denoted
C(f), to be the (closed) convex hull of those a for which a, # 0 (C(f) is
also known as the “Newton polytope” of f). We recall the following basic
fact obtained earlier by the third author:

THEOREM 3.1 [Re, , Lemma in §3]. If f above is psd, then the cage C(f)
is the convex hull of a finite set of even lattice points (i.e., C(f) is the convex

hull of E(C(f))).

Conversely, if C is the convex hull of some nonempty set of even lattice
pointsin C, , (m necessarily even), then C is indeed the cage of a suitable
psd n-ary m-ic. Forinstance, C is the cage of the sum of squares f = Y x*,
where o ranges over E(C). In the following, we shall call any such C a
cage in C, , , without reference to any speciﬁc psd form (or forms) f.
Observe that if f is psd, then C(f) = C, ,, iff X\, ..., %, all have
positive coefficients in f'; that is, iff hone of the standard unit vectors is a
zero of f.

In this section, we shall begin the development of a general theory for
sums of squares with respect to any cage C in C, , (m even). Of course,
C= Cn n Will be a special case. The point is that the theory developed for
a general cage C will have greater flexibility in applications, and will in fact
yield stronger results in most cases.

For C any cage in Cn’m , we adopt the following notations and terminol-
ogy. The set L(C) of lattice points in C is called the frame of the case C
(see [Re,]). The set 3C = {ic: c € C} is called the half-cage of C. Note
that from the definitions, we have L(%C) = %E (C). For any a € L(C), let
D(a) = C(a) denote the set of ordered pairs (B, 8') of lattice points in
the half-cage 2C such that B + B’ = a (vector addition). Then we define:

(3.2) A(C) = {a € L(C): D(a) # @}.

This consists of lattice points a € C which decompose in at least one way as a
sum of two lattice points in the half-cage. Since L(% C)= %E (C), we see that
A(C) is just the set of “averages” (hence the notation “ 4 ) of pairs of even
lattice points in C . Note that we have the inclusions L(C) 2 4(C) 2 E(C)
(the latter is seen by viewing g € E(C) as f = %( B + B)) . These inclusions
may fail to be equalities in general. However, we shall show below (cf. (3.4))
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that L(C) = A(C) for the “full” cage C =C, , . We have also shown that
L(C) = A(C) for any ternary cage C C C; ,,, though this result will not be
presented here.

Permanent Notations (3.3). Foranycage CC C, ., we shall write F*(C)
for the family of n-ary me-ics f such that f is psd and C(f) € C. We
write F(C) for the subfamily {f € F *(C): f is a sum of squares}. The
form f. = X ,crc) x® € F(C) will be called the principal form of the
cage. The basic numerical invariants for C are: [ = I(C), a=a(C) and
¢ = e(C) , which are, respectively, the cardinalities of L=L(C), A=A(C),
and E = E(C). Obviously, we have the inequalities e < a < e(e +1)/2.
The number & = 6(C) := e(e + 1)/2 —a > 0 will be called the defect of the
cage C; the significance of J has already been hinted at in the discussion
following Theorem 2.4. For the full cage C=C, ,, , we write

L, ,=LC), A, = A(C), and E, , = E(C).

n
Then I(n, m) = I(C) is the number of m-ic monomials in x,, ..., X,,
ie., l(n,m)= (”:’fl_l ). In the same vein, e(n, m) = e(C) is the number

1 .
of m/2-ic monomials, i.e., e(n, m) = ("+n§_ml"). The following lemma

nt+m—1 )

computes the remaining number: a(n, m)=(" ",

LEmMaA 3.4, For C=C, , (m even), we have L, , = Ay m-

PrOOF. We must show that any n-tuple o = (e, ..., @,) €L, , canbe
written as o = 1(y +7'), where y,y' € E, ,,. Since m is even, we must
have an even number of odd components among {a;} . Now define 7, y as
follows:

;= y; =a, ifq;iseven,
{ Y=o+ -1, ¥ =0, (-1 if @, is the kth odd component.

Since «; odd implies that «; > 1, we have 7;, ¥; > 0. Finally,
k
Yon=2 e+ (C) =m,
k

since there are an even number of odd o, ’s. Similarly Y7, =m,so0 7, y €
E, ,, . We have now the desired decomposition a = %(y +7).QED

Going back to an arbitrary cage C C Cn’m , we shall now supply the
motivation for the definitions of D(a) and A(C) given earlier. Let f =
Yo acL(C) ax® e F(C), say f = ZL] hf (h; = m/2-ics). We recall the
following basic relationship between C(f) and C(h;):

THEOREM 3.5 Re Theorem 1]. For any i,  C(h,) C 1C(/).
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. . . _ Q) B .
According to this result, we can write h; = EﬂeL( % ol * - As in §2,
(i) 0

write U,e = (u B o Ug ) . By our earlier calculation, we have
(3.6) a,= Y, U-Up
(B,B)ED(a)

for any a € L(C). This basic equation is the principal motivation for intro-
ducing the sets D(a). Note that this sum is nonempty iff o € A(C).
As in §2, we say that U = (Uﬂ . Uﬂ,) is the Gram matrix associated to

the sum of squares expression f = Zh,.z . Strictly speaking, this Gram ma-
trix depends on the choice of C (as well as on the equation f = Ehiz) .

However, if C’ is another cage such that C C C’, we see easily that the
new Gram matrix of f = Ehf with respect to C’ is just (gg) (since the
“new vectors” U, with y € L(%C')\L(%C) are all zero). Thus, for all intents
and purposes, we may regard the Gram matrix of f = Zh,.z as “indepen-
dent” of the choice of C. As an example, consider the principal form of the
cage fo 1= . E(C) x% . With respect to this sum of squares expression, one
checks easily that the associated Gram matrix is the identity matrix (of size
e(C) x e(C)). ,

Going back to the equation (3.6), we can now record some nontrivial
necessary conditions for a form f to be a sum of squares.

PrOPOSITION 3.7. Let f=3 ax*e€ F(C);say f=3%, hl.z. Then

(1) For any a € L(C)\A(C), we have a,=0.

(2) For any a € E(C) such that |D(a)| =1, we have a, > 0. If in fact
a, =0, then the monomial x*? cannot occur in any of the h,’s.

ProoF. (1) If a ¢ A(C), then (3.6) is an empty sum, so a, =0.

(2) By hypothesis, D(a) = {(8, B)}, where g = /2 € L(3C). Thus,
a, = Uﬂ . Uﬂ >0. If a, =0, then we must have Uﬂ = (; this means that
x? cannot occur in any of the A,.QED

The simplest example of an even lattice point a € E(C) with |D(a)| =1
is when a = (m, 0, ..., 0) (assuming it lies in C). For this choice of o,
(2) above says that x;" occurs with non-negative coefficient in f, and that
if x{" does not occur in f, then x;"/ 2 cannot occur in any of the A,’s. This
is, of course, obvious upon evaluation of f = Ehf at (1,0,...,0).

The above type of necessary conditions derived for sums of squares may be
viewed as the general abstract formulation of the “term inspection” method
used by the first two authors in [CL,]. For illustration, let us reiterate two
of the key examples in [CL,], using the current notations.

ExAMPLE 3.8. For the psd quaternary quartic

f(W,x,y,Z)='w4+x2y2+y222+x222—4wxyz,
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let C = C(f), which is the tetrahedron with vertices (4, 0, 0,0, (0,2,
2,0), (0,0,2,2), (0,2,0,2),and E(C) consists precisely of these four
points. By checking out the averages of pairs of these four points, we see
that |4(C)| = 10, and that (1,1,1,1) ¢ A(C). But (1,1,1, e L(C);
in fact, L(C) consists of A(C) plus the one point (1, 1,1, 1), soin this
example, e = 4, a = 10, and / = 11. By (3.7)(1), the occurrence of the
term wxyz (corresponding to (1, 1, 1, 1)) shows that f cannot be a sum
of squares. ,
ExaMPLE 3.9. For the psd ternary sextic

fx,y,2)= x4y2 + y4z2 +xtt - 3x2yzz2 ,
again let C = C(f). The sets L(C), L(%C) and A(C) are easily found by
inspection, as follows:

(3.10)E(C) = {(4, 2,0), (0,4,2),(2,0,4),(2,2,2)}
L(C)=1E(C)={(2,1,0),(0,2,1),(1,0,2), (1,1, 1)}
L(C)=A(C) =
E(C)u{(1,2,3),(2,3,1),(3,1,2),(1,3,2),(2,1,3), 3,2, D}

In particular, D(2,2,2) = {(B8, B)}, where g =(1,1,1). But a4y,2,2) =
—3, 50 (3.7)(2) shows that f cannot be a sum of squares. In this example,
e=4,a=101=10 2 We can illustrate the sets in (3.10) by a 2-dimensional
picture (the projection of C onto the first two coordinates’ (see Figure 1).
ExAMPLE 3.11. To show how the Gram matrix method works, let us com-
pute, for example, the length of f(v,w,x,y, z)= ('v2 + 'wz)(xz +y2 + zz)
and some different ways of expressing f as a sum of squares. The 2-square
identity implies that length(f) < 4, but we shall show length(f) = 4 inde-
pendently. Let C = C(f). Then E(C) = {(y, 7))}, where y = (2, 0) or
(0,2), and ¥ = (2,0,0), (0,2,0) or (0,0,2). Using the quadratic
monomials vx, wy,wz, vy, vz, wx (in that order) to index rows and
columns, an arbitrary Gram matrix for f is easily seen to be of the form:

1 »r s 0 0 O
r 1. 0 0 -t O
s 01 ¢+ 0 O
(3.12) 0 0 ¢+ 1 0 -r
0 -t 0 0 1 -—s

0 0 0 —r —s 1
Assume this matrix has rank 3; then any 4 x4 minor has zero determinant.

Applying this to the minor formed by the first, second, fourth and sixth rows
and columns, we see that r = =1, and similarly, s = =1, ¢ = 1. But

2As we have pointed out in the paragraph preceding (3.3), a = holds for any cage in the
ternary case. :

3This is a useful technique. In general, since C C C, . » the last coordinate is redundant,
so it suffices to look at the “picture” obtained by projectiné C onto the first n — 1 coordinates.
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o2

(L1
B3(1,0)

The Cage C = C(f), The half-cage 1C,
E(C)= {al s Oy, O3, a4} L(%C) = {ﬂl > Bz: ﬂ3 > B4}

Y

FIGURE 1

then the minor formed by the first four rows and columns has determinant
—1, a contradiction. Thus, length(f) > 4. Setting t = 0, r = cosf, and
s =sinf, (3.12) decomposes into a direct sum of two psd 3 x 3 matrices
of rank 2, so we get an infinite family of Gram matrices for f of rank 4. An
easy realization of these Gram matrices by dot products in R* is given by
(U,,=(1,0,0,0),

Uwy = (cos@,sinf,0,0),

{ U,, = (sin@, —co0sf,0,0),

va = (0, 0, cosf, sinf),

bz = (0,0,sin6, —cosf),

{ U, =(0,0,-1,0).

This leads to a one-parameter family of expressions of f as a sum of four
squares

-

(3.13) f =[vx + (cos O)wy + (sin 49)'wz]2 + [(sin B)wy — (cos t9)wz]2

+ [(cos @)vy + (sinf)vz — 'wx]2 + [(sin 8)vy — (cos 8)v z]2.
Note that for 0 < @ < 2z, the family above gives orthogonally inequivalent
representations of f as a sum of four squares, since different 6’s in the range
[0, 27) give rise to different Gram matrices. Concerning this point, let us
make two further observations:

3.14. Our definition of orthogonal equivalence of representations of a form

as a sum of squares is not to be confused with the orthogonal equivalence of




116 M. D. CHOI, T. Y. LAM, AND B. REZNICK

bilinear pairings defined by Yuzvinsky [Yu] and Bier-Schwardmann [BS]. In
fact, though the representations of f in (3.13) as sums of four squares are
inequivalent in our sense, the corresponding bilinear maps By: R*xR > R*

given by the four expressions in brackets in (3.13) are mutually equivalent in
the sense of Yuzvinsky and Bier-Schwardmann. (This can be easily seen from
the fact that we can also derive (3.13) from the 2-square identity, together

with an orthogonal transformation on y2 +2° )

3.15. The example given in (3.11) shows that a form of length 4 may have
infinitely many Gram matrices of rank 4. On the other hand, the ideas used
in Example (2.13) show that a form of length 2 can have at most a finite
number of Gram matrices of rank 2. It is, therefore, natural to ask: if a form
g has length 3, must g have only finitely many Gram matrices of rank 3?7
While this turned out to be the case in the few examples we have chosen to
compute, a general answer to the question has so far eluded us.

§4. Upper bounds for the pythagoras number

To any case C C C, , , we shall associate the following positive integer,
called the pythagoras number of the cage:

(4.1) P(C) := sup{length(f): f € F(C)},

where F(C) is as defined in (1.2). Clearly, if C' is another cage such that
C' c C, then P(C’) < P(C). We observe that the pythagoras number of a
cage is always finite; in fact we have the following bound.

PROPOSITION 4.2. For any cage CC C, ., P(C) <e(C).

ProOOF. Let f = Eh,.z € F(C), with associated Gram matrix indexed by
B,B e 1E(C). This square matrix has size |E(C)| = e(C), so its rank is
< ¢(C). By (2.6), we have length(f) < e(C).QED

Following the practice in (3.3), we shall write P(n, m) := P(Cn,m) . By
classical results on binary forms and quadratic forms, we have P(2, m) =
2, and P(n,2) = n. Hilbert’s famous result on ternary forms [Hi] gives
P(3, 4) = 3. From (4.2), we have the upper bounds P(n, m) < e(n,m) <
I(n, m). The weaker bound P(n, m) < l(n, m) = (":’” ') was implicit
in [Hi} and explicitly noted by R. M. Robinson in [Ro]; the sharper bound
P(n,m)<e(n,m)= ("+ 2 ‘1) was first announced in [CL,]. Our next goal
is to show that, even for a general cage C C C, ., the upper bound P(C) <

e(C) for the pythagoras number in (4.2) can be cons1derably improved. We
first establish an elementary lemma on quadratic forms:

LemMmA 4.3. Let q(z,, ..., z,) be a nonzero real quadratic form. Then

there exists A € R such that zf+~--+z,2—,lq(z1 s .. Z,) is psd with rank <
t—1.

4
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PrROOF. On the sphere zf+---+zt2 =1,let M = max|q(z,, ..., z,)|>0.
Then for any (qa,, ..., a,) eR,

—M(af+---+a,2)5q(al,... ,at)SM(af+---+at2),
and hence the quadratic forms
2 2 -1
q'(z],...,z,) =zt z, 2 M gz, ..., z)

are both psd. Choosing 4 = +M ! with the sign depending on whether
q assumes the value M or —M on the unit sphere, we can ensure that
g = (zf + -+ zt2 ) — Aq has a nontrivial zero, so that the rank of q is
<t-1.QED

THEOREM 4.4. For any cage C C C, m»let P=P(C), a=a(C), and
€ =1e(C). Then P(P+1)/2<a. Let A= A(C):= (vVT+8a-1)/2 be
the positive root of the quadratic equation G(x) = X +x-2a=0. Then
P < A<e (improving (4.2)).

PROOF. Suppose we have shown P(P+1)/2 < a. Then clearly P cannot
exceed the positive root A of the quadratic equation G(x)=0. Also, G(e) =
e(e + 1) — 2a > 0 by our earlier observation (see (3.3)), so we must have
A<e.

We shall now prove the inequality P(P +1)/2 < a. Let f = ZLI hi2 €
F(C), with associated Gram matrix (uﬂﬂl). By (4.2), we may assume
that this sum of squares expression has been chosen so that ¢ <e. If
Ht+1)/2 > a, we shall show that length(f) < t—1. Let Qu(y)=zul,ﬁ,yﬂyﬂ: .
We may assume that rank Q, = t for otherwise we would already have
length(f) < rank(Q,) <t (by (2.4)). Let Vpgr = Ugg —}.sﬁﬂ, and Q (y) =
Q,(») — AQ,(y), where 1 € R is to be specified, and {8MI} are subject to
the conditions

Epp = Egp and Z Egp =0 (Va€ A(C)).
B+B'=a

This amounts to a linear system with a equations and e(e+1)/2 unknowns.
Since Q, (y) is psd of rank ¢, there is an invertible linear change of variables
=Mz such that Q, (y) = z5 +--- + z . Since Q,(¥) = Q,(¥) - 1Q,(¥),
we now impose the restriction that 0,(y) can only involve the variables
Zg s ees Zg - The general coefficients of z pZg in Q,(y) is a linear combi-
nation of the €gg s, 50 if we set Le(e+1)— $t(t+1) of these equal to zero,
we have now imposed, altogether, %e(e+ 1)— %t(t+1)+a homogeneous linear
conditions on }e(e + 1) unknowns. Thus, if 11(t+ 1) > a, there is a non-
trivial solution {eﬂﬂ,}. Now let q(zﬁl s eees zﬂ’) = Q,(Mz) # 0 and apply
Lemma 4.3. This enables us to find 1 € R such that 0,)=0,0-10,(»)
is psd of rank <¢— 1. Thus, by (2.6), length(f) <t—1.QED
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For the full cage C = Cn’m , we write A(n, m) = A(Cn,m) . In the case of
n-ary quadratic forms, for example, we have a(n, 2) =I(n, 2)=n(n+1)/2
and g(x)=(x—n)(x+n+1),s0 A(n,2)=n=-e(n, 2). In this case, (4.2)
and (4.4) give the best bound for the pythagoras number, since we know that
P(n,2) = n. But in general we cannot expect A(C) to be a sharp upper
bound for P(C) since the derivation of A(C) did not take into account the
specific geometric configuration of C. A case in point is the (full) cage of
binary me-ics, C = C2,m' For this cage, a(2, m) =12, m)=m+ 1, and
A2, m)=(vV8m+9 - 1)/2, but of course we know that P(2, m)=2!

In the ternary case (n = 3), the upper bound A takes a particularly simple
form for the full cage. Here a =a(3, m)=(m+1)(m+2)/2,s0 1+ 8a =
(2m+ 3)2 , leading to P(3, m) < A(3, m) = m+ 1. During the Conference,
David Leep informed us that, by using quadratic form theory over the field
R(x), he has shown that P(3, m) < 2 + 2. His proof [Le] for this sharper
upper bound (in the ternary case) will appear elsewhere. (Unfortunately,
neither bound would give Hilbert’s impressive result P(3,4)=13.)

To conclude this section, we shall apply (4.4) to a cage which has proved
to be of considerable importance in the literature. This is the cage of (n,, n,;
m,, m,) biforms, i.e., forms of the shape f=} cax“ , where a=(a,..., a,;
b,..., bnz) with > a; =m, and 3} b, = m,. These are forms which can
be viewed as an n,-ary m,-ic in one set of variables whose “coefficients” are
n,-ary m,-ic in another set of variables. The cage C = C(n,, n,; m,, m,)
arising from these biforms is essentially the “direct product” Cnl m, % an "
From this and (3.4), we see easily that 4(C) = L(C), and that a(C) =
a(n,, m)a(n,, m,), e(C) =e(n,, m,)e(n,, m,). Thus, we get from (4.4):

CoROLLARY 4.5. For even m,, m,, the pythagoras number for (n,, n,;
m, , m,) biforms is at most (v/T+ 8a—1)/2, where a = ("™~ ).("F™ly

n—1 n,—1

To get a feeling for this bound, look at the case of biquadratic forms:
(m,, m,) = (2, 2). Here the pythagoras number is at most

(\/1 +2nny(n, + 1)(ny + 1) = 1)/2.

Taking (n,, n,; m,,m,)=(n,2;2,2), for instance, this bound is
Viti2n(n+1)-1 < V3@n+1) -1
2 - 2 ’

so the pythagoras number for biquadratic forms of the shape

Sxp x50, 2)

is at most [v3n+ 3@] , as was announced in our earlier work [CLR, §7]. We
should note, however, that David Leep [Le] has obtained better pythagoras
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number bounds in this case, and indeed in the case when (ny,ny;my, my) =
(n,2;2,m). '

§5. Dimension and interior of F +(C ) and F(C)
Recall that, for a cage C C C F +(C) is the family of psd n-ary

n,m?
m-ics f with C(f) C C, and F(C) is the subfamily of F*(C) consisting
of sums of squares. These two sets can be made into topological spaces in a
natural way, by regarding two forms as “close” if their respective coefficients
are close in the real line topology. More precisely, we embed F*(C ) in R
(I=1(C)) by taking f =3, - c,x* € F*(C) 1o (c,) € R' and pull back

the topology from R'. Similarly, we embed F(C) in R® (@ = a(C)) by
taking f =3, ¢, x" € F(C) (cf. (3.7)(1)) to (c,) € R® and pull back

the topology from R”. In this way, we shall view F *(C) as a cone in R,
and F(C) as a conein R®. (For more details on this viewpoint, see [Re,].)

In this section, we shall determine the “degrees of freedom” for these two
cones. This will be important for deriving lower bounds for P(C) in the
next section. To talk in more precise language, we shall use the notion of
“dimension” for topological spaces. For an exposition of dimension theory
(for separable metric spaces4), see the book of Hurewicz and Wallman [HW].
More pertinent for our present purposes is the following basic fact:

5.1. A subset F C R* has dimension k iff F has a nonempty interior,
ie., iff F contains a nonempty open (k-dimensional) ball.
For any cage C C C let Int(F*(C)) denote the interior of F *(C)

n,m?
as a subspace of R/ ,» and let Int(F(C)) denote the interior of F (C) as a
subspace of R?. Recall that the principal form of the case C is the form
Joi= > oe E(C) x%. The key result of this section is the following:

THEOREM 5.2. The principal form f. lies in both Int(F*(C)) and
Int(F(C)).

In particular, Int(F*(C)) and Int(F(C)) are both nonempty. It follows
from (5.1) that:

CoROLLARY 5.3. For any cage C C Coim»
(1) dim F*(C) =1 :=(C),
(2) dimF(C) =a:=a(C).

PRrROOF OF THEOREM 5.2. We show first that fe € Int(F¥(C)). The argu-
ment here exploits the Arithmetic-Geometric Inequality. Observe that this
inequality has the following formulation: If a; are even lattice points and
Y =2 A0, with 4, >0, 2 A;=1,then ¥ 4,x% > |x"|. Let y € L(C); say

“The spaces in question, F +(C) and F(C), are, in fact, semialgebraic spaces. For a modern
treatment of dimension theory for general semialgebraic spaces, see [DK, §8].
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Y= Lacrc) o> With 4,20, 354, =1. Then
K< 3 ax<s Y X =1

a€E(C) a€E(C)

Take any form h(x) =3, &,X Wwith Y le,| < 1. Then

yEL(C) YEL(C)
ie., fo—h e F*(C). This shows that f. € Int(F*(C)).
To show that f. € Int(F(C)), take any y € 4(C), say y = jlo +a,),
a; € E(C). From
2+ x% £ 2x7 = (£ x™)
we see that f. + 2x" are both sums of squares. Given any form A(x) =
¥ e4(c) 2¢,x” with }[e,| < 1, we have then

fo—h= (1 -3 |ay|) fo+ Y le\(fo £2x") € F(C).

Thus, f. € Int(F(C)).QED

In the special case when C is the full cage Cn,m , the dimension formulas
in (5.3) were first proved by R. M. Robinson [Re]. However, the interior form
in F*(C) and F(C) discovered by Robinson was not the principal form;
rather, it is the form g(x) = x{" +---+x, . The fact that g € Int(F(C, ,,))
can be seen directly as follows. Let y € L(Cn,m) . By a theorem in Hardy,
Littlewood, and Pélya [HLP, p. 55}, 3" x;" + x’ is a sum of squares. Thus,
for any form h(x) = Zeyxy with > e | < 1, we have

g(x) — h(x) = (1 -3 |s,|) DREAED DA (Zx{" + xy) € F(C, ).

This shows that g € Int(F(C, ,.)), and hence, also g € Int(F *(C,, ) since
a(C, ) =1UC, ,).

In the balance of this section, we shall characterize the forms in Int(F*(C)),
Int(F(C)), and establish an inclusion relation between these two sets. We
first deal with Int(F*(C)).

PROPOSITION 5.4. For any cage C C C, and f € F*(C), the following
statements are equivalent: '

(1) feIn(F*(C));

(2) f2ef, forsome ¢>0.
Incase C=C, ., these are also equivalent to

(3) f is a strictly definite form (i.e., f has no nontrivial real zeros).

PrOOF. (1) = (2) is clear. For the converse, assume that f > &f.,
where ¢ > 0. Since f. € Int(F*(C)), we have f, > h for any form

h= Zy €L(C) syx’, where {sy} are sufficiently small, and hence, f > &f. >
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eh. This shows that f € Int(F*(C)). Now assume C = Cpim- If fe
Int(F*(C)), then f > &(x{ +: .-+ x™) for some ¢ > 0, so clearly (3) holds.
Conversely, assume (3) holds. Then, on the unit sphere st ,wehave f>¢

for some &> 0. For any form h =Y &,x” with 3 le,| < ¢,and x € s,
we have

) —hx)ze= lel-1x"I =~ lel 20,

and so f > h everywhere, whence feInt(FT(C)).QED
We shall now characterize the forms in Int(F(C)).

PROPOSITION 5.5. For any cage C € C, ., and f € F(C), the following
statements are equivalent. ’

(1) feIny(F(C));

(2) f—efo € F(C) for some & >0;

(3) f admitsan e x e nonsingular Gram matrix (e = e(C)).

PrOOF. (1) = (2) is clear from the definition of the interior.

(2)= (3) Say f=¢ef-+ &, where ¢ >0 and g € F(C). Recall that J,
(the e x e identity matrix) is the Gram matrix associated with the expression
fe=2 pebE C)(xﬂ )2. Let ¥V be a Gram matrix associated with g. Then,

by Lemma 2.7, eI, +V is a Gram matrix for f. Since V is psd, el, +V
is clearly nonsingular.

(3) = (1) Suppose f(x) = 2acA(C) a x* hasan exe nonsingular Gram
matrix (ug ﬁ/). Consider a perturbation f,(x) = f(x) + 20 A(C) g, x* of f.
For {e } sufficiently small, we shall show that f,(x) also admits a Gram
matrix, so (by 2.4)) f, € F(C). The desired Gram matrix (v p’) for f,
will be obtained by a perturbation of (u ﬂ:) ,Say Vgg =Upgp +Egg' where
Epp = Eg'p- The numbers vgp must satisfy

S vy =a,te, (Va € A(C)),
(8,B)€D(a)

so the g54 must satisfy

Yo gy =g, (Va € A(C)).
(8,8")€D(a)

Clearly, this is satisfied if we choose &g5 = ¢,/|D(c)|, where o = g+p
(the symmetry condition g5 = &g is automatic for these choices). If the
g, ’s are small, so are the &4 ’s. Since (ug ﬂl) is nonsingular, it is positive
definite, and so its small perturbations will also be positive definite. Thus,
for {e,} sufficiently small, (v, ) will be a (nonsingular) Gram matrix for
f,,as desired. QED

ReMaArK. Of course, the Proposition above gives a new proof for f. €
Int(F(C)) . But the proof given earlier for (5.2) was considerably easier.
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COROLLARY 5.6. For any cage C C C, m» we have

(1) Int(F(C)) C Int(F*(C));

(2) Int(F(C)) = F(C)NInt(F*(C)) iff F*(C)NR® = F(C). (Here, we
identify R® with Rx - x Rx {0} x -+ x {0} in R').

PrOOF. (1) is clear by the characterizations in Propositions (5.4) and (5.5).

(2) Suppose F*(C)NR® = F(C). Let f € F(C)NnInt(F*(C)). By (5.4),
we have f > ef. for some ¢ > 0. Then f—¢f. € F*(C)NR® = F(C), so
by (5.5), f € Int(F(C)). This shows that

F(C)nInt(F*(C)) C Int(F(C)),

and by (1), this is an equality. Conversely, assume that F (C)NR* #£ F (C).
Take a form f € F*(C)NR® such that f ¢ F(C). Since f. € Int(F(C))
and f € R?, we have Jo+ef € F(C) for sufficiently small ¢. Thus, the set

N:={n>0:f+nf. € F(C)}

is nonempty. Note that F(C) is a closed subspace of R® (this can be easily
established by an argument similar to that in [Ro, p. 268]). Thus, N is
a closed set in R. Let 1y be the least element of N. Since f ¢ F(C),
M, > 0. Then, by (5.4),

g:=f+nyfp € m(F(C)) N F(C),

but, for ¢ > 0 (no matter how small),

§—efe=f+m,—efe ¢ F(C)

by the choice of 7,. Thus, g ¢ Int(F(C)), and we have a strict containment
F(C)NnInt(F*(C)) D Int(F(C)).QED

To conclude this section, we would like to mention a result from func-
tion theory and dimension theory which will be needed in the next section.
This concerns the behavior of dimension under polynomial mappings. While
examples such as Peano’s space-filling curve show that dimensions may in-
crease under a continuous mapping, it is known that the same cannot happen
under polynomial maps. Thus, if H: R” — R® is a polynomial mapping
(i.e., the coordinate functions are given by polynomials), then we must have
dim(im H) < w. In particular, our determination of dim F (C) in (5.3)(2)
has the following consequence.

ProposITION 5.7. If H: R” — RY©) s q polynomial mapping such that
im(H) 2 F(C), then w > a(C).

Since this result will be crucial to §6, we sketch a direct proof here for
the convenience of the reader. Assume, instead, that w < a := a(C).
Let h,.(x1 »---5%,), 1 < i< a, be the coordinate functions of H. Since
the number of polynomials involved is larger than the number of variables,
the A;’s cannot be algebraically independent. Thus, there exists a relation
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F(hy,..., h,) =0 for some nonzero polynomial F € R[¢,...,?]. But
then im(H) is contained in the real hypersurface defined by F(z,...,t,) =
0. This is a contradiction since the hypothesis im(H) D F(C) implies that
im(H) contains an open ball in R*, according to (5.3)(2). (Similar ideas
can be used to prove the more general result mentioned in the paragraph
preceding the Proposition.)

§6. Lower bounds for the Pythagoras number

The results of the last section allow us to establish a lower bound for the
pythagoras number of a cage.

THEOREM 6.1. For any cage C C C, - let P=P(C), a=a(C), and
e=e(C). Then P* - (2¢ + 1)P + 2a < 0. To be more explicit, let

1= XC) = 2e+1-1/(2e+1)?-8a

2

be the smaller root of the quadratic equation g(x) := x* - (2e+1)x+2a=0.
Then P>A>ale.

Proor. We label points in 4(C) by e, ..., a, and points in %E(C) by
Bys-.., B,. Allforms f e F(C) can be written

P e .
(6.2) f=3"k with h(x) =3 ulxP.
i=1 j=1

At first blush, there are eP independent “variables” uy) for 1 <j<e
and 1 < i < P. But the Gram-Schmidt Lemma (2.12) shows that we can
write f in such a way that uﬁ.i) = 0 for i > j. This “cuts a corner” off the
block of variables, and, since P < e, leaves a total of w := eP — %P(P -1
independent variables. Now define a mapping H: R” — R? so that the /th
coordinate function of H is the coefficient of x* in the expression for f
in (6.2), namely:

P . »
Z Z v}')v,(c').

Bit+By=cy i=1

Viewing {vj(.'): i < j} as independent variables, we see that H is a polyno-
mial (in fact quadratic) mapping. Hence, by Proposition 5.7, eP —
1P(P—1) > a. This means P’ — (2¢ + 1)P +2a < 0, so P < A, the
smaller root of g(x) := x - (2e 4+ 1)x + 2a = 0 given in (6.1). If we carry
out the argument above without the “clipped corner”, we will get a weaker
inequality eP > a, so we must have A > a/e. Alternatively, note that
glaje) = a(a - e)/e2 2> 0. Since a/e < (e+1)/2 < (2e + 1)/2, this implies
that a/e < 1.QED
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REMARK 6.3. The Upper Bound Theorem (4.4) and the Lower Bound The-
orem (6.1) together show that A4(C) < A(C). This, of course, can also be
verified directly: From A2+ A = 2a, we get g(A) = 2A(A —e). Since
0<A<e,wehave g(A)<0,s0 A>A4.

Applying (4.4) and (6.1) to the full cage C, , , we obtain an explicit
description of the asymptotic behavior of the pythagoras numbers P(n, m)
where we fix (the degree) m and let (the number of variables) n go to
infinity:

THEOREM 6.4. There exist positive constants y,(m) and y,(m) such that

yl(m)n'"/2 <Pn,m)< yz(m)nm/2

n_,
PROOF. Let a = a(n, m) = ("“:l_l), and e = e(n, m) = ("+% ). By
(4.4), we have
P(n,m)g———'1+28a_1.sﬁa=\/%-\/n(n+l)---(n+m—1),
and by (6.1), we have

(/)(

P(n,m)>ale= +2) (n+m—1)

From these bounds, it is clear that

— ) - m/2)!
fim n”™*P(n, m) < \ 2 and lim n~"2P(n, m) > # ,
n—oo m! n—o0 m!

from which the theorem follows. QED

If m = 2, (6.4) becomes y,(2)n < P(n,2) < 7,(2)n. But of course,
we know that P(n,2) = n. If m = 4, it is not difficult to work out the
bounds A(n, 4) and A(n, 4), as a(n, 4) = n(n+ 1)(n+2)(n + 3)/24 and
e(n, 4) = n(n+ 1)/2. Omitting the deals, one computes that
(6.5)

A(n, 4) = \/_(n +3n+1)— +o(1) (?l—ﬁz0289),

1 1 1 1 1 1
A(n,4)=<2 \/_) n+= n+2<1+7—6)+0(1) (5—%~0'092)'
These formulas, therefore, give asymptotic estimates of the pythagoras num-
ber for quartic forms in terms of the number of variables.

Recall that, if C, C’ are two cages such that C' C C, then P(C") < P(C).
Somewhat surprisingly, the lower bound A-function is not monotone with
respect to the inclusion relation. For instance, let C' be the cage discussed
in Example 3.9, where e(C) =4, a(C") = 10, and hence, AMC')=4. But
for C=Cy42 C’, we have e(3, 6) = 10, a(3, 6) =28, and hence,

MG, ¢) = (21 - VIT)/2m 7 < X(C).
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In this particular example, we get no additional information since P(3, 6) >
4 and P(3, 6) > n are the same statement. But in general, P(C) > A(C')
may be sharper than P(C) > A(C). This suggests the following definition:
A(C) = sup{A(C")}, where the supremum is taken over all cages C' C C. It
follows that, for any cage C, P(C) > A(C). To show that this is indeed a
strengthening of (6.1), let us compare, for instance, A(n, 4) and A(n, 4) for
the cage C=C, , ‘

Let C' be the “subcage” of Cn, 4 With the corners clipped off, so E (C')
consists of all permutations of (2, 2,0, ..., 0). Itis easy to see that e(C’) =
e(n,4) —n,and a(C'Y=a(n, 4) — n®. A routine computation shows that

MC) = (%—%)n2+(%—%>n+(%—%>+o(l). |

Comparing this with the second formula in (6.5), we get

3 3 3
MC —/1C=<——1)n——+01 (—-mo.zzs),
(C)-4(C) 7 W (1) 7
so in fact lim, _, (l(n 4)—A(n, 4)) =
The the convemence of the reader, we compﬂe the following Table 1 for

A(n, m) and A(n, m) for n <5 and m < 8, rounding off to three decimal
places:

n m e(n,m) aln,m) An,m) A(N m)
2 2 2 32

2 4 3 5 2 2.702
2 6 4 7 2 3.275
2 8 5 9 2 3.772
3 2 3 6 3 3

3 4 6 15 3 5

3 6 10 28 3.135 7

3 8 15 45 3.242 9

4 2 4 10 4 4

4 4 10 35 4.156 7.882
4 6 20 84 4.618 12.471
4 8 35 165 5 17.673
5 2 5 15 5 5 _
5 4 15 70 5.488 11.343
5 6 35 210 6.513 20

5 8

70 495 7.411 30.968

Thus, P(3,6)€ {4,5,6,7}, P(4,4)€{5,6,7},and P(5,4)€{6,7,
8,9, 10, 11}, etc.
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