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The Universality Theorems for Oriented Matroids and
Polytopes

Jiirgen Richter-Gebert

ABSTRACT. Universality Theorems are exciting achievements in the theories
of polytopes and oriented matroids. This article surveys the main develop-
ments in that context. We explain the basic constructions that lead to Uni-
versality Theorems. In particular, we show that one can use the Universality
Theorem for rank 3 oriented matroids to obtain a Universality Theorem for
6-dimensional polytopes.

1. Universality theorems

Oriented matroids and polytopes are most fundamental objects in combina-
torial geometry. A major breakthrough in both fields was the development of so
called Universality Theorems. Intuitively speaking, a universality theorem states
that realization spaces of oriented matroids (resp. polytopes) can be very compli-
cated objects. For any reasonable complexity measure (like algorithmic complexity,
topological complexity, algebraic complexity, etc.) questions related to realization
spaces are as difficult as the corresponding problem for general systems of polyno-
mial inequalities.

It is the purpose of this article to sketch the main developments and achieve-
ments 1n this field over the last decade, to clarify the main concepts and to give
an idea of the proof techniques that were applied. In principle, this article could
be used as a “quick reference guide” for the constructions (not for the proofs) that
lead to the Universality Theorems for ortented matroids and polytopes.

1.1. Oriented matroids. Oriented matroids are combinatorial models of vec-
tor configurations in the real linear space R”. An oriented matroid contains all
relevant data about the relative positions of vectors in a configuration. There are
two kinds of oriented matroids: realizable oriented matroids (that come from con-
crete vector configurations), and non-realizable oriented matroids (which can be
considered as combinatorial or topological generalizations of point configurations).
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Here we will be concerned with the realizable case only. We use “+” and “—” as

shorthand for “+1” and “-1.7
The oriented matroid of a rank d vector configuration V = (vy,...,v,) € R%™

is the pair My = ({1,...,n}, Ly), with
Ly = {(sign(v1,y), ... sign(vn,y)) |y € R} C {=,0,+}"
The elements of Ly are the covectors of V.. Each single covector is a sign vector
that encodes how an oriented linear hyperplane
H(y) = {x e R | (z,y) = 0}

partitions the vectors in V' (with the exception that H (0, ... ,0) is the entire space,
and not a hyperplane). The vectors on H(y) are marked “0,” those vectors on the
positive side of H(y) are marked “4”, and those vectors on the negative side of H(y)
are marked “—.” The set Ly gives the complete collection of all such partitions.
In general, an oriented matroid is a pair M := ({1,... ,n}, L), with £ C {—,0,+}"
that satisfies a system of certain axioms, which model the combinatorial behavior of
hyperplane partitions (see [BLSWZ, BS]}. The partial order on £ that is induced
by the order relations “~ < 0” and “+ < 0” becomes a lattice (£, <), where we

add an artificial maximal element.

/
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FIGURE 1: Affine picture of an oriented matroid.

We will often use vector configurations in order to represent affine point con-
figurations. Tor planar affine configurations this is done by the usual embedding
into the (z = 1)-plane. A point (z,y) in the affine plane is then associated with a
vector (z,y,1). The covectors of the affine point configuration are obtained as the
partitions by oriented affine hyperplanes. Planar point configurations (with not all
points on a line) correspond to rank 3 vector configurations. Figure 1 shows the
affine picture of a planar configuration and some of the covectors.
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An oriented matroid can—in the realizable case—be considered as the combi-
natorial type of the corresponding point configuration (in the same way as a face
lattice is the combinatorial type of a polytope). In particular, the oriented matroid
My, completely describes which subsets of V' form a linear basis. In Figure 1 for
instance (1,2, 3) forms a basis. A realization of M is a vector configuration V' with
My = M. The realization space of M is the set of all its realizations considered
as a topological space with the natural Hausdorff topology. However, we usually
factor out linear transformations, which trivially operate on all realization spaces.
Let b =(1,...,d) be a basis of M. The realization space of M w.r.t. b is the set

R(M,b) = {VER"'d|M:MV and v; = e; fori:l,...,d}.

Here ey, ..., eq are the d unit vectors of R?. In other words, the realization space
of an oriented matroid M is the set of all point configurations V' with My = M,
modulo linear transformations. In fact, up to a rational change of coordinates, it
does not matter which particular basis is chosen. Therefore it is possible to speak
of the realization space of an oriented matroid.

In our example of Figure 1 the realization space with respect to the fixed basis
{1,2,3) is the set of all locations of points 4,...,7 that produce the same set of
covectors. If the position of point 7 is given, then the positions of 4,...,6 are
determined by collinearity conditions. Thus the realization space is described by
all admissible choices of point 7. We get the right oriented matroid if 7 is chosen
in the interior of the triangle (1,2,3). Thus from a topological point of view the
realization space is just an open disk.

1.2. Ringel’s isotopy conjecture. One of the problems that initiated major
research activities in the area of oriented matroids was the Isotopy Congecture of
G. Ringel that was posed in 1956 [Ri]. His “conjecture” (which originally was
jusl a question) was stated in terms of planar line arrangements (which are —
via polarity—equivalent to rank 3 vector configurations). A collection of lines L
partitions the plane into a number of cells. The combinatorial type £(L) of a planar
(and labeled) line arrangement L is the combinatorial structure of the cell complex
that is associated with L. This combinatorial type can be derived from (and is up
to reorientation equivalent to) the oriented matroid of the point configuration that
corresponds to L via polarity: The face lattice of this cell complex is isomorphic to
the lattice (L, <) of the corresponding vector configuration V. In terms of line
arrangements Ringel’s Conjecture may be stated as follows.

CONJECTURE 1.1. Any two line arrangements of identical combinatorial type
L can be continuously deformed into each other, such that every intermediate con-
figuration is again a line arrangement of the same combinatorial type L.
This conjecture can be easily rephrased in terms of rank 3 oriented matroids:

CONJECTURE 1.2. The realization spaces of realizable rank 3 oriented matroids
are path connected.

In other words, this conjecture asks the following: Given two rank 3 vector
configurations V' € R3” and W & R3” with the same oriented matroid M =
My = Mw . Is there a continuous function f : [0, 1] = R®"? such that f(0) = V,
f(1) = W and My,) = M for all t € [0,1]. It is also easy to derive an affine

version that asks for the isotopy of planar point configurations.



272 JURGEN RICHTER-GEBERT

The isotopy conjecture was shown to fail heavily: In 1986 N. E. Mnév proved
that realization spaces of rank 3 oriented matroids may essentially have the ho-
motopy type of any finite simplicial complex [M]. In particular, they may have
arbitrarily many connected components. In the same series of articles (a collection
of papers from the Rohlin Seminar in St. Petersburg) where Mnév’s general result
was published, K. Suvorov [Su] presented a small example consisting of only 14
points that counters the Isotopy Conjecture. We here give another such example
(found by the author [R2]). It consists also of 14 points but compared to Suvorov’s
example it has the additional properties of being symmetric and constructible. A
picture of this configuration is drawn in Figure 2 (on the right).

11 9 \ 1 ¢] /
13 10 N 1
/N
14 N /14\
12

12

T
2

B —>

FIGURE 2: A point configuration that violates the isotopy property.

Two of the points (namely 1 and 2) are chosen at infinity on the z-axis and on
the y-axis. Then two points 3 and 4 are chosen such that they are not collinear with
1 or 2. The four points 1...4 form a projective basis for the configuration. Point
5 is chosen on the segment that joins 3 and 4. This point is located close to the
middle of this segment—but not at the middle! The points 6...14 (in this order)
are determined uniquely as the intersections of lines through previously constructed
points. In particular, point 14 is the intersection of the lines (1,3) and (2,4). Call
the resulting oriented matroid Mpg. After the choice of the projective basis 1,...,4
the only free parameter in the construction is the position of point 5 on the line
3 v 4. If this point is chosen exactly in the middle of 3 and 4, then the three points
12,13, 14 are collinear (Figure 2 on the left). At every position close to the middle
these three points are oriented counterclockwise. Thus the realization space of Mg
is a disconnected set: an open interval with one point deleted.

The oriented matroid My also represents a smallest known example of an
oriented matroid that has a combinatorial automorphism that cannot be realized
geometrically.

1.3. Mnév’s universality theorem. The results of Mnév concerning realiza-
tlon spaces of oriented matroids are by far deeper than the construction of sporadic
examples with complicated realization spaces. One could say that with respect to
any “reasonable complexity measure” related to the realizability problem rank 3



THE UNIVERSALITY THEOREMS FOR ORIENTED MATROIDS AND POLYTOPES 273

oriented matroids behave as complicated as possible. We just mention a few of
these measures.

e The realizability problem is as complicated as solving arbitrary systems of
polynomial equations and inequalities.

o Realization spaces of oriented matroids may have the homotopy type of an
arbitrary finite simplicial complex.

o All algebraic numbers are needed to realize all (realizable) oriented matroids.

The crucial point in the proof of such theorems is to find a technique that translates
the problem of solving a system of polynomial equations and inequalities into the
realizability problem of a certain oriented matroid.

The proofs of the following three versions of the Universality Theorem for
oriented matroids need increasing technical effort. However, the underlying con-
struction that gives the desired results is essentially the same for all three versions.
We will later on explain the main ingredients of this construction.

THEOREM 1. (Universality for oriented matroids)

(1) There is a polynomial algorithm that takes as input a system Q of polyno-
mial equations and strict inequalities with integer coefficients and produces
an oriented matroid M(Q) such that the realizability problem for M(Q) is
equivalent to the solvability problem of Q.

(i1) For every basic primary semialgebraic set V defined over 7 there is an ori-
ented matroid M whose realization space is homotopy equivalent to V.

(ii1) For every basic primary semialgebraic set V defined over Z there is an ori-
ented matroid M whose realization space is stably equivalent to V.

We will present a sketch of a proof of the simplest version (i) later in Section 2.
The transition from version (i) to version (ii) can be made by the observation that
every realization of M(Q) corresponds to a solution of €2, and conversely, every
solution of Q2 corresponds to a contractible set of realizations of M(Q). Continuity
arguments prove that the the realization space of M(2) form the total space of a
trivial fibration of the solution space of .

The technically hardest version is to prove that the solution space of Q and the
realization space of M(£2) are indeed stably equivalent. Stable equivalence is a very
strong and restrictive concept of homotopy equivalence that makes also statements
about the algebraic nature of the equivalence relation. We will clarify this in the
next section.

1.4. What is “stable equivalence?” Stable equivalence is an equivalence
relation on semialgebraic sets. The idea behind the concept of stable equivalence is
that semialgebraic sets that only differ by a “trivial fibration” and a rational change
of coordinates should be considered as stably equivalent, while semialgebraic sets
that differ in certain “characteristic properties” should not turn out to be stably
equivalent. In particular, stable equivalence should preserve the homotopy type,
and respect the algebraic complexity and the singularity structure.

The concept of stable equivalence has been used by different authors. However,
the precise definitions they used (see [G, M, S]) vary substantially in their technical
content. We here use a version that is stronger than previously used variants.
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To be more specific we start with the notion of a basic semialgebraic set. Let
Q= ({fitoci<r, {gi}oci<s, {hi}oci<s) be a finite collection of polynomials

fl)"' >f7'1g17"' 7g8)h17“~ 1h’t e Z[Ila"' ,.l'n]
with integer coefficients. The basic semialgebraic set V(2) € R™ is the set

V:V(Q)::{wER"I fitw)=0fori=1,...,r
gi(g) <O0fori=1,...,s
h,v(az)SOforz':l,...,t}

defined as the solution of a finite number of polynomial equations and polynomial
inequalities. A basic semialgebraic set is called primary, if the defining equations
contain no non-strict inequalities (i.e., t = 0 in the above notion).

Let V C R™ and W C R"*¢ be basic semialgebraic sets with #(W) =V, where
7 is the canonical projection m: R?**4 — R” that deletes the last d coordinates. V
is a stable projection of W if W has the form

W={(v,0) R |veV and 6Y(v') > 0; ¥f(v)) = O forall i € X; j € Y}.

Here X and Y denote finite (possibly empty) index sets. For i € X and j € Y the
functions ¢ and ¢; are affine functionals whose parameters depend polynomially
on V. Thus we have

‘75?(”/) = <(¢zl(v), S 7(f)g(v))T’v’) 4+ ¢;i+l(v)
W) = (W), ()T ) + Ut (o)

with polynomial functions ¢}(v), ..., ¢ (v) and $}(v),... ¥t (v).

If V is a stable projection of W, then all the fibers #~!(v) are (non-empty)
relative interiors of polyhedra (i.e., sets that are obtained by intersecting a finite
number of open halfspaces and hyperplanes). In particular, if the sets X and Y are
empty we get W =V x R® If the functionals ¢; and ; are constant and V is the
interior of a convex polytope then W is itself the interior of a polyhedral set, that
projects onto V.

Two basic semialgebraic sets V and W are rationally equivalent if there exists
a homeomorphism f: V — W such that both functions f and f~! are rational
functions (with rational coefficients). We may consider a rational equivalence as a
kind of “reparametrization” of the set.

DEFINITION 1.3. Two basic semialgebraic sets V and W are stably equivalent
if they lie in the equivalence class generated by stable projections and rational
equivalence. We then write V ~ W.

The basic properties of stable equivalence are summarized in the following theorem.

THEOREM 2. Let V C R"™ and W C R™ be a pair of stably equivalent semial-
gebraic sets and let A be a subfield of the algebraic numbers of characteristic zero.
We have

(i) V and W are homotopy equivalent.
(i1) V and W have similar singularity structure.
(i) VNA" =0 = WnA™ =0.
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The situation in Figure 3 serves as a motivating example for the definition of
stable projections. We consider two different configuration spaces:

1
2% o \% %
*6 g z §
3 4
FIGURE 3: The paradigm for stable projections.
Ry = {(Pn ...,ps) ERZP I (py,-..,ps) in this order forms a convex
pentagon},
Ry = {(pu s PsiPe) €ER¥C | (py,...,p5) € Ry and

D¢ is in the central cell of the pentagram }

The space R, is a stable projection of Rs. No matter how we realize the exterior
pentagon, the region in which pg can be properly inserted never vanishes. Moreover
this region is bounded by affine hyperplanes whose parameters depend polynomially
on the parameters of the exterior pentagon (Figure 3 right).

2. Universality for oriented matroids

Here we present a very short sketch of a proof of Mnév’s Universality Theorem
(as stated in Theorem 1.2 version(i)). We will only concentrate on the main ideas
and neglect technical difficulties. For this we follow a beautiful treatment of this
issue that was presented by P. Shor [S].

What is the aim of our proof? We start with a polynomial inequality system €2:

fi@)=0,...,fr(2) =0, frs1(x) > 0,... , fs(x) > 0.

Here fi1,...,fs are polynomials in m variables @ = (z1,...,zn) taken from the
ring Z[z1,...,Zm]. Each of these polynomials can be generated from the vari-
ables z1,...,z, and the unit 1 by a finite sequence of elementary additions and

multiplications. For instance
dzies + 227 = (L) + (L4 1)) - w1) -22) + (L4 1) - 21) - aa).
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We consider the minimal number of such elementary operations that are needed to
represent f as the coding length of f. The sum of the coding lengths of fi,..., f;
is the coding length of .

Now we want to construct an oriented matroid M(£2) that is realizable if and
only if Q has a solution. (To obtain also the topological version of the Universality
Theorem it must be possible to show that the solution space of © and the realization
space of M(Q) are stably equivalent.) The construction mainly consists of two
parts:

o In a first step the system (2 is transferred into an equivalent inequality system
Q' in m/ variables. Q' should have the following properties:
— In the whole solution space of ' the variables z1,...,zms together
with all intermediate results that are needed during the computation
of the polynomials of Q' have a fized linear order.

~ The solution space of €2 is a trivial fibration of the solution space of
Q. (Thus in particular these two spaces are homotopy equivalent.)

e In a second step, the computation of the polynomials of €' is decomposed
into elementary additions and multiplications. These elementary operations
are then geometrically modeled by the classical von Staudt Constructions.

Every realization of the resulting point configuration corresponds to a solution
of ' and thus to a solution of 2. The ”linear order property” of €’ is used to ensure
that the combinatorial type of the corresponding point configuration can be kept
fixed over the whole solution space of €. It can not be overemphasized that the
main difficulty in the proof of the Universality Theorem for oriented matroids does
not lie in the application of the von Staudt Constructions (as falsely mentioned by
several authors). The problem is really to find an algebraic technique that allows
one to get complete control on the ordering of the values of the variables (and the
intermediate results) for every possible solution. There are four approaches known
to solve this problem:

e Mnév’s approach as presented in [M] is based on perturbation techniques
that are applied to the situation around the origin in a homogenized version
of Q. This approach has the disadvantage that it is only applicable to the
case where ) contains only inequalities. The general case was treated by
Mnév’s PhD thesis. There he used substitution techniques similar to the
ones introduced by Shor (see below).

e In Mnév’s treatment of the general case and in Shor’s version of the proof
substitution techniques were used. The idea is to first decompose §2 into
elementary operations. Then one replaces every variable z; by a variable
y; = x; + a. If the new indeterminant a is chosen large enough, then all
variables y; are known to be larger than 1. The validity of the original
equations and inequalities has to be preserved by adding a certain set of
new elementary equations and new variables. In a third step each of the
new variables y; is replaced by a variable z; = y; + b*. If b is large enough
then all variables z; are linearly ordered. Again by adding new equations
and additional variables the validity of the original equations is guaranteed.
One has to be very careful to ensure that a well-ordering holds also among
the newly added variables.



THE UNIVERSALITY THEOREMS FOR ORIENTED MATROIDS AND POLYTOPES 277

o H. Giinzel’s proof of the Universal Partition Theorem (a generalization of the
Universality Theorem that was claimed by Mnév [M2]) bypasses the linear
order problem [G]. He uses (on a geometric level) individual projective scales
for all intermediate results in the computation of the original system .
Thus in a certain sense the necessary geometric dissection of points is done
already geometrically. No algebraic reduction is needed. However, by this
Gunzel cannot completely control the topology of the resulting realization
space. The realization space that is generated by this approach is essentially
N x M, where N is the solution space of Q and M is a non-controllable
smooth manifold.

e An approach that merges the ideas of Shor and Giinzel was given by the
author in [R]. The individual projective scales are all taken on one line.
Separation is obtained geometrically. By this a proof of the Universality
Theorem is given that can be used in a straight-forward way to also prove
the Universal Partition Theorem in its sharpest form.

2.1. Shor’s normal form. We will here use the final result of Shor’s substi-
tution procedure. He reduces the system § to a very simple standard form of a
particular kind: all variables are linearly ordered and only elementary additions and
multiplications occur as equations. The price that has to be paid for this reduction
1s that one has to introduce many new variables. A sketch of a non-constructive
version of the following result is also implicit in Mnév’s original PhD thesis.

DEFINITION 2.1 A Shor normal form is a triple § = (n, A,M) where n € N
and A, M € {1,...,n}3 such that for (i, j, k) € AUM we have i < j < k.

To every Shor normal form § we associate a semialgebraic set V(S) € R" as
the solution of the inequalities

<<z <.. . <ay,
and the equations
z;+z; =z, for (i,j,k) € A and
x;-x; =x,  for (i,j,k) € M.

THEOREM 3. (Shor [S].) Let W C R™ be a primary basic semialgebraic set
defined over Z. Then there exists a Shor normal form S(W) = S = (n, A, M) such
that the semialgebraic set V(S) C R™ is stably equivalent to W. Furthermore,

(i) S can be computed from the defining relations of W in a time that is poly-
nomially bounded in the coding length of the polynomials defining W,

(1) there exists a polynomial function f such that f(V(S(W))) = W.

2.2. Von Staudt constructions. The use of von Staudt Constructions is a
classical method to build a link between algebra and geometry. The idea behind
these constructions is very simple. Consider the drawings in Figure 4. (Lines that
seem to be parallel should really be paralle] in these pictures)
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0 x Y x4y 01 =z Y z-y

FIGURE 4: The classical von Staudt constructions.

The first picture shows how addition can be modeled geometrically. If an ad-
ditive unit 0 is fixed for any two values z and y on the base line one can easily
construct the position of the sum z + y. The second picture shows the corre-
sponding construction for multiplication. We have to fix an additive unit 0 and a
multiplicative unit 1. If z and y are given the construction shows how to obtain
the position of z - y.

00 00
" £ e -—F
o 0 =z 2z o 0 zy Tty
00 00
. VA’ " 14
750 0 1z x? oo 0 1 zy -y

FIGURE 5: Von Staudt constructions in a projective setting.

A projective version of these “geometric calculations” is given in Figure 5. The
line at infinity oo is here taken as a finite line. The parallelity of two lines a, b
translates to the property that a, b, and oo have a point in common. The points
0, 1 and co form a basis of a projective scale on the base line £ of the construction.
The numerical value v(z) of a variable z can be calculated as the cross ratio

[20]|T5¢|
z0||1oc
(-l‘) =

|z0c][10]
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—
Here |ab] is the directed length from a to b. All together we obtain four combi-
natorially different geometric situations for the cases r +z, x +y, ¢ -z, and z - y.
Each of them is given by adding four new points to the points that lie on the base
line. Two of the new points (say p and ¢) lie on the line co. The two other points
lie on lines that connect p or ¢ to points on the base line £. If p and ¢ are chosen
to be “close together” then all four new points are “close together.”

2.3. Combining the pieces. We finally have to combine the concepts of Shor
normal forms and the von Staudt constructions to get the construction that proves
the Universality Theorem for oriented matroids. Again, the idea is very simple:

¢ We start with the defining system of polynomial equations and inequalities

Q.

o Via Theorem 2.2 we translate this into a corresponding Shor normal form
S(2).

e For every element of the linear order 0 < 1 < z; < z9 < ... < z, < 00

of S(?) we take a point on the base line £. We furthermore take a line oo
through the point co on ¢

o For every elementary arithmetic operation of S(Q) (i.e., for #; + 2; = &
or for z; - z; = z) we add successively the corresponding von Staudt Con-
struction from Figure 5. The four points that are added for a particular
elementary operation have to be “farther out” and “much closer together”
than all the previously added points (by this the combinatorial type is sta-
bilized).

This construction can be carried out on a purely combinatorial level. To every
Shor normal form S(£2) the whole procedure determines a unique oriented matroid
M(2) = M(S(Q)). This oriented matroid M(S(£2)) is realizable if and only if the
system of equations and inequalities in S(€2) is solvable. After fixing the points 0,
1, and oo on £ every solution of the system S(£2) corresponds to locations of the
points on ¢ in one possible realization of M(S(€)). Conversely, every realization
of M(5(Q)) corresponds to a solution of S(€2). This proves that the problem of
solving € is polynomial time translatable into the problem of finding a realization of
M(€). A more detailed and technical analysis proves that the resulting realization
space is indeed stably equivalent to the solution space of S {and thus to the solution
space of ). In particular if Q has no solutions at all then M(Q) is not realizable.

8 8 4
0o 0 1 z T o 0 1 zy =2 o 0 1 z3=V2 z,=2

FIGURE 6: A point configuration for z; = v/2.
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Figure 6 illustrates the whole construction for a very simple Shor normal form:
O<l<zi<zg, Ta=1+41, zo=21 2.

This system has the unique (non-rational!) solution z; = V2, £, = 2. In a first
step the linear order is set up. Then a construction for z; = 141 is added. Finally,
a construction for z9 = ; - r; is added. Here the newly added four points are
chosen “far out” along oo and “close together.”

3. Universality for polytopes

After the Universality Theorem for oriented matroids was established in 1986,
one of the big open problems was how to transfer this result also to other struc-
tures in combinatorial geometry. Already in his original paper [M] Mnév gave an
application to the theory of polytopes. He proved that for every basic primary
semialgebraic set V there is a dimension d and a d-polytope with just d + 4 ver-
tices whose realization space is stably equivalent to V. Recently, the author of
the present paper proved a similar theorem for 4-dimensional polytopes. It is the
purpose of this section to sketch the basic techniques that are needed for these
constructions. We will also demonstrate how it is possible to prove a Universal-
ity Theorem for 6-dimensional polytopes using of Mnév’s construction for oriented
matroids.

3.1. Realization spaces of polytopes. A d-dimensional polytope P (d-poly-
tope for short) is the convex hull of a spanning set of points in R A face of P
is the intersection of P with an affine hyperplane that does not meet the interior
of P. Faces of dimension d — 1 are the facets of P. One-dimensional faces are the
edges of P. Zero-dimensional faces are the vertices of P. A polytope is completely
determined by the position of its vertices. Thus we may identify P with the point
configuration given by its vertex set (p,,...,p,). The set of all faces of P ordered
by inclusion is the face lattice of P (here we have to add the empty set and P
itself in order to actually obtain a lattice). The face lattice of P plays the role of
the combinatorial type of P. A realization of P is a polytope Q with the same
(labeled) face lattice as P.

As in the case of oriented matroids it is natural to ask for the realization space
of a given combinatorial type (i.e., for the set of all geometric polytopes of this
combinatorial type). Again we factor out trivial components of the realization
space by fixing a suitable basis. The set b = (0,1,...,d) is an affine basis of P
if the vertex set (0,...,d) is affinely independent in every realization of P. (For
instance, we get a basis of a 3-dimensional polytope by taking a vertex 0 and three
vertices 1, 2, 3 that are adjacent to 0 along edges.) For a d-polytope P with n

vertices and a basis (0, ... ,d) we formally define the realization space as:
{Q = (eo,€1,...,€d,q441,---,4,_1) | Q is a realization of P}.
Here ey is the origin (0,...,0) and ey, ..., eq are the d unit vectors of R4

It is a classical result (but none the less a very remarkable fact) that realization
spaces of 3-dimensional polytopes are trivial topological sets. This follows by careful
inspection into the original proof of Steinitz’s Theorem [St, SR]. Steinitz’s Theo-
rem states that the edge graphs of 3-dimensional polytopes are exactly the simple,
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planar and 3-connected graphs (see Figure 7). The classical proof of Steinitz con-
structs a 3-polytope with prescribed edge graph G by starting with a tetrahedron
and iteratively adding new vertices and facets. The parameters of each newly added
element can always be chosen in an open and contractible region. This implies the
results on realization spaces.

A similarly nice result cannot be expected for polytopes in general dimension.
We already mentioned that Mnév proved a Universality Theorem for d-polytopes
with d + 4 vertices. However, also for small dimensions several sporadic examples
were known that contrast with the nice behavior in the 3-dimensional case. We just
mention the famous example of Bokowski, Ewald and Kleinschmidt: a simplicial
4-polytope with only 10 vertices whose realization space is disconnected [BEK].

FIGURE 7: The essence of Steinitz’s Theorem.

We now will sketch the general constructions that explain all these interest-
ing effects and finally lead to a Universality Theorem already for 4-dimensional
polytopes (and thus for polytopes in all dimensions greater than 3).

3.2. Two fundamental constructions. The construction of all known spo-
radic examples with interesting realization properties, as well as the Universality
Theorem for d-polytopes with d + 4 vertices, as well as the Universality Theorem
for 4-polytopes can be traced back to the application of two innocent looking basic
constructions: Lawrence extensions and connected sums. We here will briefly sketch
these two constructions.

Lawrence extenstons are a tool that transfers incidence information of point
configurations to the face lattices of polytopes (compare [BM]). A basic Lawrence
extension can be described as follows.

e Start with a d-polytope P = conv(py,...,p,)—embedded in an affine hy-
perplane H in R4*!—and with a point ¢ on H outside P.

e Take a line £ that is transversal to H and meets g. On ¢ take new points g
and q.

e The convex hull of §, g, and P is the Lawrence extension A(P,q).
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Every Lawrence extension increases the dimension by one and the number of vertices
by two (compare Figure 8). The main properties of Lawrence extensions can be eas-
ily described in terms of shadow boundaries. The shadow boundary shadow (P, q)
of a polytope P as it is seen from a point g (outside of P) is the set of all faces of
P that contain g in all their supporting hyperplanes. Intuitively speaking, these
are all faces of P that are entirely projected to the boundary of the shadow of P
by a lamp located at g. The corresponding shadow boundary of the polytope in
Figure 8 consists of the two edges supported by [ and l3, and the vertices that
bound these edges. The Lawrence extension A(P, q) has the following properties:

e A(P,q) is a polytope.
o P is a facet of A(P,q).
e (g, q) is an edge of A(P, q).

o For every realization A’ = conv(ﬁ’,g’,P') of A(P,q) there exists a point
q' in the supporting hyperplane of P’ such that shadow(P’, ¢') and
shadow(P, q) are combinatorially isomorphic.

9

FIGURE 8: A Lawrence extension of a pentagon.

Lawrence extensions can be nicely used to generate polytopes with non-prescrib-
able faces. We exemplify this by the well known Kleinschmidt polytope [K]. We
start with an octahedron @. However, we realize O in a way in which the path
that is darkened in Figure 9 (left) forms the shadow boundary that is seen from a
point g at (or close to) infinity. A projection (seen from q) of such a realization is
shown in Figure 9 (right). In particular, such a realization cannot be the regular
octahedron: the four points 1, 2, 3, and 4 are never coplanar—their oriented volume
is always positive. Now we consider the Lawrence extension Pk = A(O,q) (the
Kleinschmidt polytope). This polytope is a 4-polytope with 8 vertices that contains
an octahedral facet. However, no matter how we realize Pk the octahedral facet
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cannot be regular (since we can reconstruct a point for which the shadow boundary
is the darkened path). In particular, again 1, 2, 3, and 4 are never coplanar.

(a) (b)
FIGURE 9: Construction of Kleinschmidt’s polytope.

The second fundamental construction is the connected sum operation. This is
an operation for gluing two polytopes of the same dimension without increasing the
dimension. Such an operation is necessary if we want to stay within the realm of a
fixed dimension. For this we simply start with two polytopes P and @ that contain
facets F'p and Fg which are projectively equivalent. In particular Fp and Fg both
have identical combinatorial type F'. We apply a projective transformation 7 to @
such that P U 7(Q) is a polytope that identifies P and 7(Q) along Fp and Fg.
The resulting polytope is the connected sum R = P#prQ (compare Figure 10).
Observe that the complete operation makes sense also on a purely combinatorial
level. The facets of the connected sum P#rQ are exactly all facets of P and of Q
except Fp and Fg).

P#.Q

FIGURE 10: Connected sum of a cube and a triangular prism.
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It is not always possible to take an arbitrary realization of R and cut it by a
hyperplane into two pieces that are combinatorially isomorphic to P and Q. For
instance, in a realization of the connected sum of Figure 10 the four points of the
quadrangle along which the gluing is performed must not necessarily stay coplanar.
This is only the case if the facet along which the gluing is performed is necessarily
flat. A d-polytope is necessarily flat if every embedding of its (d—1)-skeleton in
R4*! has affine dimension d. For instance triangles are the only necessarily flat
2-polytopes. Prisms and pyramids are necessarily flat in any dimension. Now, the
crucial point for realization spaces is the following: Let P and Q be polytopes
where the shape of the facets Fp ~ F and Fg ~ F cannot be arbitrary (as the
octahedron in Pk) and where these facets are necessarily flat. Every realization of
the sum R can always be dissected into two pieces combinatorially isomorphic to
P and Q. Thus R must at the same time satisfy both requirements on the shape
of F (those coming from P, and those coming from Q). The realization space of
R may be more complicated than those of P and Q. In other words, connected
sums may be used to superpose non-trivial obstructions in a realization space. For
instance the realization spaces of P and @ may be connected, while the realization
space of R is not. In all approaches to a universality theorem for polytopes in
fixed dimension which are known so far, this trick is used to create complicated
realization spaces out of elementary obstructions. (For instance connected sums
are used to superpose the elementary arithmetic operations from Shor’s normal
form.)

As an example for the power of connected sums we now use them to explain
the construction of the famous Bokowski, Ewald, Kleinschmidt polytope Pgex
with disconnected realization space. For this we simply glue the polytope Px
(with the non-prescribable octahedral facet @) and its mirror image —Pg. The
polytope Ppgk is the connected sum of these two polytopes along the facet O. If
the facet @ was necessarily flat (which it isn’t) then Ppgg would not be realizable
at all. This can be seen as follows: if the points of O in a realization P’ of Pggk
lay in an affine 3-space then we could use this 3-space to cut P’ into two pieces
which are realizations of Px and — Py, respectively. However, this would force
the orientation of (1,2,3,4) to be positive and negative at the same time, which is
impossible.

In order to prove the non-connectedness of the realization space of Ppgk take
any realization P’ of Ppgk (it is realizable, and this is a non-trivial fact!). In
this realization {1,2,3,4) has a certain orientation. The mirror image —P’ of
P is a realization of Pggk as well. In —P’ the points (1,2,3,4) have opposite
orientation as in —P’. Thus P’ cannot be continuously deformed into —P’ since
during the deformation the points (1,2,3,4) had to be coplanar at some point,
which is impossible.

In a sense the polytope Ppgk is very similar to the oriented matroid Mg of
Section 2. Both objects have a combinatorial symmetry which cannot be metrically
realized. This is the deep reason for the non-connectedness of their realization
spaces.

3.3. Polytopes with d+4 vertices. Very briefly we sketch the construction
of Mnév for a Universality Theorem for d-polytopes with d + 4 vertices. The con-
struction is based on the fact that, via Lawrence extensions, the structure (and the
realization properties) of point configurations can be completely transferred to the
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world of polytopes of sufficiently high dimension. The idea is to take an arbitrary
set of polynomial equations and inequalities 2. One starts with the corresponding
rank 3 oriented matroid M(Q2), and uses Lawrence extensions to translate M ()
into a polytope with similar realization properties. For this we have to learn what
it means to do a succession of Lawrence extensions. We iteratively define

A(P,}) = P,
A(Pv{qll"' aqn}) A(A(P’{QD"' 1Qn—1})’qn)'

During the iteration step the points {q;,...,q,_1} are canonically embedded into
the next higher dimension.

Let us assume that M(Q) has n points and that it has a realization @ =
(qy,--.,4q,) € R3. Naively, one could transfer M(Q) into a polytope by the fol-
lowing procedure. We assume that (in the affine picture) the points q,,_,,4,,_1, 4,
form a triangle P A whose interior is not crossed by any other hyperplanes spanned
by points in @ (such triangles do always exist and are called mutations). Then we
construct the polytope A(Pa,{q;,.-.;4,_3}). This polytope has the same real-
ization space as M(2). However, the polytope that is generated in this way has
2n — 3 vertices and dimension n — 1. Thus the number of points is approximately
twice the dimension.

We can obtain a better result if we first dualize the oriented matroid M ().
(for an introduction to oriented matroid duality see [BLSWZ].) The dual oriented
matroid M* () has the same realization properties as M(£2). It has also n vertices
but it has rank n — 3. Now we apply the same procedure. We assume that Q* =
(q}....,q,) € R("=3)" is a realization of M*(Q2). We furthermore assume that (in
the affine picture) the points g}, g3, . .. , g5, form a simplex Pa whose interior is not
crossed by any other hyperplanes spanned by points in Q (again, these mutations
do always exist). The simplex P has dimension n — 4 and n — 3 vertices.

Then we construct the polytope A(Pa,{q;,45,45}). This polytope has still
(up to stable equivalence) the same realization space as M(). This polytope has
dimension n — 1 and n 4 3 vertices. After a careful topological analysis we obtain:

il

THEOREM 4. (UNIVERSALITY FOR d-POLYTOPES WITH d + 4 VERTICES) For
every basic primary semialgebraic set V defined over Z there is a dimenston d and
a d-polytope with d + 4 vertices, whose realization space is stably equivalent to V.

3.4. 4-polytopes. The geometric constructions that are needed for a proof of
the Universality Theorem for 4-polytopes are much more elaborate. So far no way
is known to make directly use of Mnév’s result. Since we later on give a complete
description of the constructions for the proof in dimension 6, we will only briefly
sketch the 4-dimensional case. A more detailed sketch is given in the research report
[RZ]. A complete proof (and many ramifications) are given in [R3]. Again the idea
to prove a Universality Theorem is to make use of Shor normal forms. To encode
a Shor normal form we need ...

e ... a way to encode values of variables into realization parameters of a
polytope.
e ... a way to enforce the chain of inequalities 0 < 1 < z; < 22 < ... < z,.

e ... polytopes that enforce geometric relations for addition and multeplica-
tion.

e ... a way to superpose all the different obstructions.
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This is how these different problems are handled in the proof given in [R3].

o The values z,,22,...,2, are encoded as the line slopes of a 2(n+3)-gon.
Each variable corresponds to a pair of parallel opposite sides. Three extra
slopes are added to encode the projective basis 0, 1, co.

o The chain of inequalities 0 < 1 < 21 < 29 < ... < z, Is automatically
enforced by the fact that the slopes of the edges of a convex polygon must
be well ordered.

e Von Staudt constructions have no direct analogue in terms of 4-polytopes.
Thus we have to construct 4-polytopes that encode addition and multiplica-
tion “from scratch.” This i1s done as follows: Lawrence extensions are used
to generate 4-polytopes (so called basic building blocks) that have small but
useful realization properties. One of them has a hexagon whose shape is
not arbitrarily prescribable. Other basic building blocks have the ability to
produce copies of an n-gon and to transfer information. Via connected sums
these basic building blocks are composed in order to get polytopes P*tY
and P®Y that serve as analogues to the von Staudt Constructions: In every
realization of P**Y (of P®Y) the edge slopes of a 2-face are such that they
encode additive (resp. multiplicative) relations.

e Again using connected sums these polytopes for addition and for multipli-
cation are combined to a large polytope P(S) that encodes the Shor normal
form S.

It is a remarkable fact that the whole construction of P(S) can be expressed
exclusively in terms of connected sums and Lawrence extensions. The realization
space of P(S) is stably equivalent to the solution space of S. For every realization of
P(S) the slopes of the decisive 2(n+ 3)-gon are (up to a projective transformation)
a solution of S. Conversely, to every solution of S there exists a (contractible) set
of realizations of P(S). Again, after a careful topological analysis we obtain:

THEOREM 5. (UNIVERSALITY FOR 4-POLYTOPES) For every basic primary
semzalgebraic set V' defined over Z there is a dimension 4-polytope, whose realization
space s stably equivalent to V.

4. From oriented matroids to 6-polytopes

For a long time it was believed that there must be a way to derive the Universal-
ity Theorem for polytopes in fixed dimension as a consequence of the Universality
Theorem for oriented matroids. It is still an open problem whether this is possible
for the case of 4-polytopes. We here present a proof for the Universality Theo-
rem in dimension 6 (this is obviously a weaker result than the 4-dimensional case)
that follows these lines. Again a central role is played by Lawrence extensions and
connected sums. Zonotopes are used as the link between oriented matroids and
polytopes. We follow the treatment in [R3].

4.1. Zonotopes. In the first section we have learned how an oriented matroid
My is associated to a vector configuration V. We now associate to V a second
object, the zonotope Zy,. A zonotope is a special type of polytope that is generated
as the Minkowski sum of finitely many line segments. Equivalently, one can charac-
terize zonotopes by the property that all 2-faces are centrally symmetric. The last
characterization implies that for each edge on a zonotope there is a complete “belt”
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of edges of equal lengths and directions. These are all translates of a corresponding
generating line segment in the Minkowski sum representation. The zonotope of a
vector configuration V' € R4" is defined by

n
Zvy = Z[—vi,+vi].
i=1
Here [—v;, +v;] is the line segment between —v; and +v; in R%, and the sum is
interpreted as the Minkowski sum. The set of edges of Zy that are parallel to the
generating vector v; is called the i-th belt.

To avoid unnecessary technicalities caused by degenerate situations, from now
on we assume that our vector configurations contain no loops (i.e., vectors v =
(0,...,0)) and contain no pairs of parallel elements (i.e., vectors v; = Av; with
i # j). There is a close relationship between the oriented matroid My, and the
face lattice of Zy . For a sign-vector o € {—,0,+}" we define

(Zv)e = Z v — Z v; + Z[_”ia"f"”i]-
o=+ o, =— o;=0
In particular, (ZV)(O,..A 0 =2v. The following theorem is the well known stan-

dard connection between zonotopes and oriented matroids. A Proof can be found
for instance in [R3].

THEOREM 6. The faces of Zy are exactly the sets (Zvy ), with o € Ly .

0+++

FIGURE 11: A vector configuration and its zonotope.

The last theorem shows that it is natural to label the faces of Zy by the
covectors of My. The face lattice of Zy  is therefore isomorphic to the lattice
(L,<). A face (Zy)o, is contained in (Zvy), if and only if o1 < 03. The vertices
of Zy correspond to the sign vectors ¢ € Ly N {—,+}" (the atoms of (£, <)).
The facets of Zv correspond to the cocircuits in Ly (the coatoms of (£, <)). Up
to translation any zonotope is of the form Zy . Thus also for a general zonotope
it is natural to label the faces by the covectors of V. Figure 11 demonstrates the
connection between the vector configuration, its covectors and the corresponding
zonotope. Here the vector configuration consists of 4 non-parallel vectors in R2.
The corresponding zonotope Z turns out to be an 8-gon. The faces of Z are labeled
by the covectors. The entire zonotope gets a label (0000).
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Closely related to zonotopes is the concept of planets. Planets arise from zono-
topes by those parallel displacements of the facets that do not alter the combina-
torial type. Thus the face lattices of planets are identical to the face lattices of
zonotopes. In a natural way we label the faces of a planet that comes from Z+v, by
the covectors £ = Ly . Planets as well as zonotopes have belts of parallel edges.
However, in comparison to zonotopes, it is not required that the edges in a belt
have equal lengths.

R

FIGURE 12: The permutahedron and a corresponding planet.

Figure 12 shows a zonotope (the permutahedron) and a planet whose face
lattice is isomorphic to the face lattice of the permutahedron. The corresponding
vector configuration that generates this zonotope is the one given in Figure 1.
Properties of the oriented matroid have their direct counterpart in the face lattice
of the corresponding zonotope. For instance the fact that three points are collinear
translates to the fact that there exists a hexagonal facet with the corresponding
edges.

A three dimensional zonotope considered as a polytope has a trivial realization
space (as a consequence of Steinitz’s Theorem). The polytope setting does not
require that the edge belts of the zonotope stay parallel. However, if we restrict
ourselves to the category of planets and consider all realizations of Zy that are
indeed planets, then this realization space is stably equivalent to the realization
space of My . More formally we define the planet realization space as follows. Let
Z be a zonotope and B be a (polytope) basis of Z. The planet realization space
P(Z,B) CR(Z, B) is the space of all planets in R(Z, B).

P(2,B) ={P € R(Z,B) | P is a planet .

From every planet realization in P(Zy, B) we can easily derive a realization of
the corresponding oriented matroid My,. Let P be a planet that is combinatorially
equivalent to Zy-, with V' = (v1,...,v,). Recall that the faces of P are labeled by
sign vectors of length n. The labels of vertices have no zero-entry at all, the labels
of edges have exactly one zero entry. The labels o1, 0~ of the endpoints of an
edge o that is in the ¢-th belt of P differ in exactly one entry (namely the entry at
position ). Assume o = + and 0] = —. To the edge ¢ we associate the difference
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vector of its endpoints w, = p,+ — p,+. If two edges ¢ and 7 belong to the same
belt, then the corresponding vectors w, and w, differ only by a positive scalar
multiple. Thus up to a positive factor all edges that belong to one belt (i.e., all
edges for which, say, the i-th entry is zero) produce identical vectors. If we take one
such vector w; from each belt 7, then we obtain a realization W = (w1, ..., wy)
of Mvy/.

A more careful analysis of the situation proves the following fact. A proof can
be found in [R3].

THEOREM 7. Let V. € R3" be a vector configuration without loops or parallel
elements. Let b be a basis of V and B be a (polytope) basis of Zv. Then

R(Mv, b) ~ P(Zv, B).

4.2. The construction. Having established the last theorem, the construc-
tion that transfers universality results from oriented matroids to polytopes is not
too complicated. The problem is that in general there are realizations of Zy as
polytopes that are not planets. This implies that the corresponding spaces R(Z, B)
and P(Z, B) are not at all stably equivalent. For instance, an oriented matroid
My that comes from our construction in Section 2 has rank 3. The corresponding
zonotope Zy has dimension 3. Thus the space P(Z+v, B) may be arbitrary com-
plicated, while the space R{(Zv, B) is trivial (since it is the realization space of a
3-polytope).

We will construct a 6-polytope P(My/) that contains Zy as 3-face F'. The
structure of P(My) will force that in every realization of P(My) the face F' is
(up to projective equivalence) indeed a planet. The construction again goes via
Lawrence extensions and connected sums.

The idea is the following. For i = 1,...,n let g; be the point at infinity in
which the edges of the i-th belt meet. The Lawrence extension A(Zv,q;) is a
4-polytope, which contains Zy as a 3-face. In every realization of A(Zv, q;) the
supporting lines of the i-th belt of this 3-face meet in a point (Figure 13 right).

If (4,7, k) is a non-basis of My, then the points g;, g, g, are collinear. Thus
the iterated Lawrence extension P(; jx) = A(Zv,{q;,q;,qx}) is a 6-polytope that
has the following properties (compare Figure 13 left):

o Zvy is a 3-face of Py ;1.
e In every realization of P(; ;) the supporting lines of the belts 7, j and k
meet in three points q;, qj, and gj,.

* q;, q}, and q;, are collinear.

Let by, ..., bm be the non-bases of My = M(Q), where V is now a configu-
ration that comes from the constructions of Section 2. By performing connected
sums that identify the polytopes Py, , ..., P  along the common 3-face Zy (this
is technically a bit difficult) we obtain our desired 6-polytope P(£2). This polytope
P(Q) has the following properties.

o Zvy is a 3-face of P(Q).

e In every realization of P(§2) and for every 7 € {1,...,n} the supporting

lines of edges of the i-th belt meet in a point g;.

e For every non-basis (¢, j, k) if M(Q) the points q;, ¢}, and g}, are collinear.



290 JURGEN RICHTER-GEBERT

y i

FIGURE 13: Lawrence extensions of a zonotope.

Furthermore we need the following decisive property of our construction of
M(Q): Let q4,...,q, be n points in R% d > 2 such that g;, q;, g, are collinear
whenever (i, j, k) is a non-basis of M(), then all points g, ..., g, are coplanar.

Combining this fact with the properties of P(Q2) shows that for an arbitrary
realization P’ of P(Q) the points ¢, ..., g} lie in a plane H (see Figure 14). If we
apply a projective transformation that maps H to the plane at infinity, then the
3-face that corresponds to Zy becomes indeed a planet. This planet can be used
to derive a realization of M(f2). (Indeed already ¢, ... ,q,, form a realization of

M(Q).)

FIGURE 14: The entire construction applied to the permutahedron.
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In conclusion the construction has the following crucial two properties: From
every realization of P(2) we can derive a solution of . Conversely, to every
solution of Q (after fixing an affine basis of P(£2)) there exist a contractible set
of realizations of P(f2} that corresponds to the solution. Again a more detailed
analysis shows:

THEOREM 8. (UNIVERSALITY FOR 6-POLYTOPES) For every basic primary
semialgebraic set V defined over Z there is a dimension 6-polytope, whose realization
space s stably equivalent to V.
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