Finding Small Triangulations

of Polytope Boundaries is Hard

Jirgen Richter-Gebert
February 17, 1999

Abstract

We prove that it is NP-hard to decide whether a polyhedral 3-ball can be tri-
angulated with & simplices. The construction also implies that it is difficult to find
the minimal triangulation of such a 3-ball. A lifting argument is used to transfer
the result also to triangulations of boundaries of 4-polytopes.

The proof is constructive and translates a variant of the 3-SAT problem into an
instance of a concrete polyhedral 3-ball for which it is difficult to find a minimal
triangulation.

1 Introduction

Polytopal complexes are objects that arise from joining polytopes in a face-to-face manner.
We here study triangulations of polytopal complexes. We will prove that in general it
is computationally hard to calculate a triangulation of a complex that uses a minimal
number of simplices. Formally, a polytopal complex C is a finite collectlon of polytopes
such that
(i) the empty polytope is in C,
(i) if P € C, then all faces of P are also in C
(iii) the intersection P N @ of two polytopes P,Q € C, is a face of both P and Q.
The dimension of C is the largest dimension of a polytope in C. A triangulation of C is a
polytopal complex 7 that has the following properties:
(i) The vertices (i.e. 0-faces), of C are the vertices of T,
(ii) ‘all polytopes in T are simplices,

(iii) the intersection PN Q of a polytope P € C and a polytope Q € T, is a face of Q
(i.e. T is a refinement of C).

Keywords: Polytopes, polyhedral complexes, NP hardness

1



This paper investigates the algorithmic complexity of finding triangulations of 3-
dimensional polyhedral complexes that use a minimal number of tetrahedra. Besides
its intrinsic interest this problem is relevant for questions in optimization (where one is
interested in triangulations that minimize a certain properties), in computational geom-
etry (for instance for mesh generation and finite elements methods), or even in algebraic
geometry (where polytopes and subdivision arise from exponent vectors of polynomials).
Originally, the research that lead to the result presented in this paper was motivated by
a different but related problem: How difficult is it to calculate a minimal triangulation of
a polytope. For recent progress in this area consider the paper of de Loera [1]. So far it is
still open whether the results of this paper can be used to settle the above problem.

Here we study two classes of polyhedral complexes of particular interest: polytopal 3-
balls (these are polytopal complexes that arise as subdivisions of convex 3-polytopes) and
boundaries of 4-polytopes. In both cases we prove that it is NP-hard to decide whether a
given polyhedral complex can be triangulated using a fixed number k of tetrahedra. The
number k that occurs in our proof is k = Y[, (mintriang(P;)), where Py, ..., P, are the -
3-polytopes (cells) in C and mintriang(FP;) is the minimal number of tetrahedra needed
for a triangulation of P;. This number k is the simplest lower bound on the number of
tetrahedra needed for a triangulation of C. Thus we can sharpen our main results to the
following form:

It is NP-hard to decide whether a polytopal 3-ball (resp. the boundary of
a 4-polytope) can be triangulated by using the minimal possible number of
tetrahedra for each cell.

It is obvious that a similar statement about triangulations of 2-balls (resp. the bound-
ary of 3-polytopes) does not hold. This is the case since here every triangulation of the
maximal (i.e. 2-dimensional) cells is already a triangulation of the entire polytopal com-
plex. The reason for this is that in 2-dimensional polyhedral complexes the triangulations
of the individual cells do not interfere with each other.

For 3-dimensional polyhedral complexes the situation is different. The triangulations
of two adjacent cells that share a 2-face F', must be compatible: They must induce identical
triangulations on F. This “flow of information” is strong enough that we can embed a
certain variant of the 3-SAT problem (that is known to be NP-hard) in a triangulation
problem of 3-dimensional complexes. As usual in cases of embedding a variant of 3-SAT
into a geometric problem, this “implementation process” can be subdivided into several
distinct (more or less standard) tasks (see for instance [3, 4, 5, 6]):

e construct a frame, i.e. a suitably rigid geometric (sub-)structure that serves as a
frame of reference for the rest of the construction.

e find switches, these are small building blocks that realize a certain geometric prop-
erty in two (or more) different ways.

e find a method to produce negated copies of the switches.

e find gates, these are small building blocks that provide some kind of logical connec-
tion between “input-stages”.



e find a way to connect switches and gates.

Our proof follows these five steps. We will consider cell complexes that arise in poly-
topal 3-balls. All essential constructions are carried out on that level. Later on we will
identify these cell complexes as sub-complexes of the boundary of a suitable four-polytope.

2 Thé construction

2.1 A variant of 3-SA’I‘

Let X = (x1,%2,...,%,) be boolean variables. The literals over X are the variables in
X together with their negations -z, ~zs, ..., z,. A three-clause is a triple of literals
over X. Our construction is based on the following variant of the 3-SAT problem which
is known to be NP-complete (compare [2}).

PrOBLEM 2.1. (NOT-ALL-EQUAL-3SAT) Given boolean variables z, ..., , and a set
S of m three-clauses. Is there an assignment of boolean values for the elements of X such
that each clause contains at least one false and one true literal? Such an assignment will
be called admissible.

We will describe a procedure that associates to each instance S of the above problem a
3-ball K(S) and a number k(S) such that K(S) can be triangulated with £(S) tetrahedra
if and only if there is an admissible assignment for S.

2.2 'Triangulations of 3-polytopes

The idea of our construction is based on the following simple observation on 3-polytopes.

LEMMA 2.1. Let P be a 3-polytope with v vertices and let T be a triangulation of P
that has €' edges in the interior of P. Then the number of tetrahedra in T is v + €' — 3.

PROOF. The proof follows from a simple (and standard) application of the Euler formula
for polytopes. Let t be the number of tetrahedra in T, let €® be the number of edges T
that lie on the boundary of P, and let f¢ and f° be the number of 2-faces of T that lie in
the interior, resp. on the boundary of P. Since every tetrahedron has four faces and the
interior faces of the triangulation are adjacent to two tetrahedra we have 4t = f° + 2f°.
On the other hand T induces a triangulation on the boundary and we get f® = 2v — 4.
Merging the last two equations we get f! = 2¢ — v + 2. Euler’s Formula for 3-polytopes
applied to the boundary of P states v —e® + f® = 2. Plugging in the last two equations in
Euler’s formula for 3-balls (i.e. v — e® — €' + f° + f* =t + 1) directly implies the desired
result v+ e — 3 = ¢. ]

In particular this implies that any triangulation of a 3-polytope with v vertices needs at
least v — 3 tetrahedra. If we are interested in a triangulation of a 3-dimensional polytopal
complex formed by 3-polytopes P, P, ..., P,, then the number of tetrahedra needed’for

this triangulation is at least
n
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where v; is the number of vertices of P;.

We will construct classes of such polytopal complexes where it is NP-hard to decide
whether there is a triangulation that actually achieves this bound. The crucial obstruc-
tion that we use comes from the following fact: Triangulations of 3-polytopes P and @
that are adjacent along a 2-face F', are not independent from each other. They have to
induce identical triangulations on F. Later on we will show that our construction can be
embedded as a substructure of a suitable 3-ball and also as a substructure of the boundary -
of a suitable 4-polytope.

The only 3-polytopes that are used (as cells) in our construction are pyramids over
4-gons, triangular prisms, and cubes. The following lemma summarizes the necessary
facts concerning triangulations of these polytopes.

LEMMA 2.2.

(i) Let P be a pyramid over an n-gon G. Every triangulation of G induces a unique
triangulation of P without interior edges.

(ii) The triangular prism has an (up to symmetry) unique triangulation. In this trian-
gulation the three newly added edges on the boundary are connected.

(iii) The cube has two minimal triangulations (both of which have no interior 4edges and
hence exactly five tetrahedra). In these triangulations the six newly added edges on
the boundary form the edge-skeleton of a tetrahedron.

possible impossible

Figure 1: Possible and impossible edge pattern in the boundary of the prism

Proor. (i): If a triangulation T of the n-gon G is given the only way to extend a triangle
of T to a tetrahedron of a triangulation of P is to form the convex hull with the apex of
the pyramid. This uniquely determines the triangulation of P.

(ii): Any segment that joins two vertices of the triangular prism P lies on the bound-
ary of P. Thus the triangulation has to arise by first truncating a vertex and then by
truncating a 3-valent vertex of the remaining bipyramid over a triangle. It is easy to
check, that in this case the newly added edges always form a chain.
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(iii): A complete classification of the triangulations of a cube can be found for instance
in [1]. The unique minimal triangulation can be obtained by truncating every second
vertex of the cube. After these truncations a central tetrahedron remains. The two
possible triangulations arise from the two possibilities of choosing the central tetrahedron.

- a

X ‘ \/

Figure 2: There are two minimal triangulations of a cube

Figure 1 shows a possible and an impossible pattern of boundary edges for the tri-
angulations of the triangular prism. Figure 2 shows the two minimal triangulations of a
cube. All three types of polytopes mentioned in the above lemma will play crucial roles
in our construction. :

The two ways in which the cubes can be triangulated are used to mimic the switches.
Chains of cubes will be used as a kind of wires to transport information. The fact that
not all newly added edges on the boundary of a triangular prism can have the same
“orientation” is used to mimic the logical connection for the NOT-ALL-EQUAL-3SAT.
The fact that pyramids form no obstruction at all for triangulations is used to prevent
the flow of information, whenever necessary. Such pyramids serve as a kind of isolation
between different wires. ' :

2.3 Transporting information.

Consider a 3-dimensional polytopal complex that is exclusively formed by cubes. We are
interested in the minimal triangulations of such a complex. For each cube in the complex
there are by Lemma 2.1 exactly two ways to form a minimal triangulation. However
the choices for the individual cubes are not independent from each other. Whenever two
cubes are adjacent along a 4-gon F, they have to induce the same diagonal on F. This
implies that adjacent cubes have to use “opposite” triangulations (similar to the situation
in Figure 2 if we glue the two cubes together). Hence, a chain Cy,Cs, ..., Cy, of adjacent
cubes in which C; is adjacent to C;;; and no other adjacencies occur has only two ways
of being minimally triangulated. Figure 3 shows such a chain. In a sense such chains are
devices for transporting information: the last cube of the chain “knows” how the first
cube was triangulated.



Figure 3: Minimal triangulation of a chain of cubes

It is even possible to form loops of n cubes such that there is no triangulation of the
corresponding polytopal complex that achieves the lower bound of 5n tetrahedra. For
this consider the complex K shown in Figure 4 on the left. It consists of six cubes (the
central triangular prism is not part of the complex. There is no triangulation of K that
uses the minimal number of 5 tetrahedra for every cube of K. To see this consider the .
diagram drawn in Figure 4 on the right. There the situation of the complex K is shown
by looking only at the “top”. In a triangulation that uses only 5 tetrahedra for each cube
the diagonals of adjacent quadrangles have to form a “zig-zag” pattern. It is easy to check
that no matter how we start, there is no consistent way to close the cycle.

<7
<

Figure 4: No triangulation with 6 -5 = 30 tetrahedra

2.4 Isolating the wires

Consider a cube with one additional point in the interior (see Figure 5). We consider the
six pyramids that can be formed by this point and a face of the cube. The polytopal
complex formed by these six pyramids has a boundary similar to the cube. However
if we are looking for a minimal triangulation of this polytopal complex it induces no
obstructions on the boundary. This is an immediate consequence of Lemma 2.1 (i).
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Figure 5: Polytopal complex formed by six square pyramids

Consider a polytopal complex K that contains some cubes. If we repla;ce any cube C
in K by the complex shown in Figure 5, we “destroy” the obstructions that come from
minimal triangulations of this cube.

2.5 The main construction

We now describe the frame of reference in which the whole construction is embedded.
Consider a prism P over a regular triangle. We first slice this prism P into small polytopes
by cutting it with hyperplanes that are parallel to its facets. For this let the height of the
base triangle be equal to 1. For given n > 1 and a quadrangular face F' of P we introduce

n cutting hyperplanes parallel to F' at distances ——; ¢ = 1,...,n to F. Let h be the

height of the prism. For m > 1 we introduce m jnfzc’utting hyperplanes parallel to the
base triangle at a distance of %, ; = 1,...,n— 1. Figure 6 shows the situation for n = 2
and m = 4.

™

\\\

\\\\\ /

\\\ /
~V

Figure 6: A polytopal complex consisting of cubes an triangular prisms

The cutting hyperplanes chop the original prism P into small polytopal pieces that
from a polytopal complex K, . All cells of K, ,, are either combinatorial cubes or
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triangular prisms (all prisms meet the central axis of the figure). There are 3m(n® + n)
cubical cells and m prisms. So every triangulation of K, ,, requires at least 5 - (3m(n? +
n))+3-m tetrahedra. However for n > 1 there is clearly no triangulation of K, ,, that uses
only that many tetrahedra, since K, ,, contains many substructures of the type shown in
Figure 4 and hence it impossible to use 5 tetrahedra for each of the cubes.

Now, we are ready for the main construction. We start with an instance of a NOT-
ALL-EQUAL-3SAT problem S on n variables and m clauses. The polyhedral complex
Kyn 2m+1 will serve as a frame of reference for our construction. In this complex we will
“destroy” most of the cubes by substituting them with the complex shown in Figure 5
(containing 6 quadrangular pyramids). Cubes that are not destroyed by our construction
will be called “active”. The resulting polytopal complex will consist of a cubes b prisms
and ¢ quadrangular pyramids. It will have the property that one can triangulate it with
5a + 3b + 2b tetrahedra if and only if the original NOT-ALL-EQUAL-3SAT problem S
had a solution. The only information that we have to give is which cubes have to be
destroyed.

/0,2,1)/(0,1,1/ (0,0,1) \1 .0.1)\2,0.1)\
/(0,2-2)/@1 .2)/ 0.02) \1 ,0,2)\2,0,2)\

Figure 7: Labels of the cubes

In order to be able to refer to a particular 3-cell of our polyhedral complex we assign
labels to them by the following rule. We orient our cutting hyperplanes in a way such
that the planes parallel to the base triangle all point upwards. The remaining cells are
oriented such that they all point away from the center. To each cell we assign a quadruple
(1,7, k,1) of integers that indicates how many planes of the different parallel classes point
towards the cell. The first three numbers ¢, j, k refer to the three quadrangular faces of
the original prism. The last number [ indicates the layer of the cell. Figure 7 shows the
numbers i, j, k for the case n = 2 (in any layer). If the cubes (41, j1, k1,{1) and (32, ja, k2, 2)
share four supporting hyperplanes, we denote by [(i1, j1, k1, 11), (32, Jo, k2, I2)] the set of all
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cubes in the convex hull of (i1, j1, k1,01) and (42, j2, k2,l2). We call such a set an interval
of cubes. The number of cubes in an interval is the length of the interval.

Each clause of S will be associated with a specific layer. The triangular prism in this
layer will serve as logical gate. The variables will correspond to belts of cubes around
the center of the construction. In addition the layer 1 will be used to produce copies and
negations of each variable. All cubes of K4, 2m+1 Will be destroyed except of those given
in a set

~aynBa)c)

i=1 i=1
described below. The full information of our construction is carried by the description of
this set. We first consider the lowest layer. For : = 1,...,n we set

A = (0,45 — 2,4i — 2,1), (4i — 2,4i — 2,0,1)]
(4i — 2,44 — 2,0, 1), (4i — 2,0, 4i,1)]

(4i — 2,0,44,1), (0, 44, 4, 1)]

(0, 4, 4i, 1), (43, 43,0, 1)]
(

U
U
U
U [(43,0,4i,1), (0,4, 4i, 1))

[
[
|
[
[

.././././ \.\.\.\..

Figure 8: The first belt in the base layer

In the lowest layer only those cubes that appear in one of the A; remain active in our
construction. The cubes of each A; form a spiral chain that cycles 1% times around the
center. Figure 8 shows the situation in the top of the lowest layer for A;. Cubes that are
destroyed are marked by a dot. Now assume that we have a triangulation of the lowest
layer that uses only 5 tetrahedra for each active cube. Under this assumption for each i
there are only two possibilities to triangulate the cubes in A; (the choice of one cube in A;
determines the triangulations of all other cubes in A;). In Figure 8 the diagonals drawn
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in top faces of the active cubes indicate one possibility for the minimal triangulation.
Switching all these diagonals describes the other possibility. Now consider the cubes with
indices: \

(0,45 — 2,41 — 2,1), (41 —2,4i —2,0,1), (4 —2,0,45 —2,1),

(0,4i,43,1), (4i,4,0,1), (44,0,4i,1)

We associate each of these cubes with a literal in our 3-SAT problem. The diagonals
of the top faces of these cubes are darkened in Figure 8. Either these diagonals point
to the nearby vertex of the central triangle (state T) or they are parallel to the opposite
side of the central triangle (state F'). We associate state T with the corresponding literal
being true, and state F' with the corresponding literal being false. By our construction
the cubes

pos; = {(0,4i — 2,41 — 2,1), (44,44,0,1), (4¢ —2,0,4i — 2,1)},
are always in the same state, and the cubes
neg; = {(0,44,44,1), (4i — 2,47 —2,0,1), (44,0,44,1)}

are always in the opposite state of the cubes in pos;. We associate each of the cubes in
pos; with the literal x; of our 3-SAT problem and the cubes in neg; with the literal —z;.

This finishes the construction in the bottom layer. Now we provide each layer with
“copies” of each variable. For this we make sure that the following cubes in the set B are
not destroyed.

B=Um(  [(26,2,0,1),(2i,2i,0,2m +1)]
U [(24,0,2,1),(2,0,2i,2m + 1)]
U [(0,2i,2i,1), (0,2, 24, 2m + 1)])

Each of the intervals in B forms a pile of cubes over one of the cubes in the lowest
layer, which represent the literals. Thus every layer in our construction is supplied with
three copies of each literal. In particular among all cubes of the form (¢,4,0,!) for fixed [
and 7 € 1,...,4n we find copies of each literal. A similar statement holds for the cubes of
the form (i,0,4,1) and (0,%,%,1). One has to be a bit careful, since the role of the negated
and the original literals changes with the parity of the layer. In layers with even [ the
cubes from B will be the only active cubes in our construction. The destroyed cubes in
the even layers serve as in isolation between the layers with odd index.

We finally come to the encoding of a particular clause of our 3-SAT. We have altogether
m clauses. The construction for a specific clause G; will be realized in the layer 25 + 1
and is as follows. Let G; = (a, b, ¢) be the clause, where a, b, and c are literals taken from
the set {z1,...,%p, ,Z1,..., 2%, }. We set

[(0,4i— 2,45 —2,2j+1),(0,4i—2,0,2 +1)] .. _

o] U 10.40-2,0,2j+1),(0,1,0,2) + 1) 1A=
P = [(0, 44, 44, 25 + 1), (0, 45, 0, 25 + 1)] O
U [(0,4i,0,25 + 1), (0,1,0,2; + 1)] ) 1 a=
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4i —2,0,4i — 2,25 + 1), (0,0,4i — 2,25 + 1)]

[( if b = ;

o2 ) Y 1(0,0,48-2,2j+1),(0,0,1,2) + 1)) =
i< (41,0, 41,25 + 1), (0,0, 44,25 + 1)] i b= —z;
| U [(0,0,4i,25 +1),(0,0,1,25 + 1)] T

[ [(44,4i,0,25 + 1), (44,0,0,25 + 1)] P

co_ ] U 1(4,0,0,2+1),(1,0,0,2+ 1) I
P (40 —2,4i - 2,0,2j+1),(4i - 2,0,0,2j+ 1)) .. _ _
| U [(4i—2,0,0,25 +1),(1,0,0,2; + 1)] o

The cubes in C; = C}UC?UC? are the only active cubes in layer 25+ 1. They connect
- representants of the literals in the clause G; to the cubes (0,1,0,2j5 + 1), (0,0,1,25 + 1),
and (1,0,0,2;5 + 1), which are next to the central triangular prism of this layer. Figure
9 shows the situation for a (slightly artificial) clause (—z;, -2, —z2). Again this picture
represents the top faces of this layer. The active cubes in the construction are marked
by a consistent choice for the diagonals in a triangulation that uses 5 tetrahedra for each
cube. The picture shows the situation z; = true, o = false.

GO
B
KB
s
B

A
(L L LS """ NN SN AN\
\/ B W VAN A
e VA W W WA M WL W
IWWAN\VANVARVANN

Figure 9: Connecting the literals to a clause

Our construction is such that we can now read off the logical state of the literals a,
b and c from the triangulation induced in the cubes (0,1,0,2j5 + 1), (0,0,1,25 + 1), and
(1,0,0,25 +1) (these are the cubes adjacent to the quadrangles of the central prism). We
orient the diagonal on their top face towards the face where it meets the central triangle.
For each of these cubes we say that its state is true if the diagonal is oriented clockwise
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with respect to the central axis of our construction. Otherwise we say it is in state false.
Under our general assumption that we use 5 tetrahedra for the triangulation of each cube,
the state of the cubes (0,1,0,25 + 1), (0,0,1,25 + 1), and (1,0,0,25 + 1) is true if and
only if the corresponding literal is true. The crucial lemma that makes the construction
work can be stated as follows.

LEMMA 2.3. A triangulation of X = {(0,1,0,2j+1), (0,0,1,25+1), and (1,0,0,25+1)}
in which 5 tetrahedra are used for each cube is compatible with a triangulation of the
central prism (0,0,0,2j + 1) if and only if at least one cube in X is in state true and at
least one cube in X is in state false.

PRrOOF. If all diagonals of the cubes are oriented clockwise (counterclockwise) then the
diagonals of the quadrangular faces of (0,0,0,2j + 1) correspond to the “impossible”
situation in Figure 1. By Lemma 2.1 this cannot be extended to a triangulation of
(0,0,0,25 + 1). o

We obtain immediately

LEMMA 2.4. Let S be an instance of a NOT-ALL-EQUAL-3SAT Problem. Let A;, B,
and C; be defined as described by the above construction, and let K(S) be a polytopal
complex that arises from Ky, ony1 by destroying all cubes except of those in

n m

A=(JA)uBuU(|JC).

Then K can be triangulated with exactly 5 tetrahedra for every active cube if and only
if S had an admissible assignment.

PROOF. Assume that there is an assignment to the variables z;, ..., z, such that in each
clause of S there is at least one true and one false literal. In this case we choose the
triangulation that corresponds to this choice of truth values. In the layers in which the
clauses are encoded the cubes adjacent to the triangles are by construction in the same
state as the corresponding literals. By Lemma 2.3. the corresponding prism can be
triangulated consistently. Conversely, if there is a triangulation of K(S) that uses exactly
5 tetrahedra in each active cube, then by Lemma 2.3 it cannot be possible that all cubes
around a prism are in the same state. Hence from the triangulation one can read off an
admissible assignment of variables for S O

It is easy to check, that one can derive coordinates for the vertices of K(S) together
with a combinatorial description of the face lattice in polynomial time from the data of
S. Thus we obtain: '

THEOREM 2.5. The problem of determining whether a polytopal 3-ball (given by coor-
dinates of the vertices and a description of the face lattice) can be triangulated using k
tetrahedra is NP-complete. '

ProoF. Our above translation of NOT-ALL-EQUAL-3SAT to a triangulation problem
for K(S) proves that K(S) can be triangulated with 3p+ 5a + 12d tetrahedra if and only

12



if S had an admissible assignment. Here ¢, a, and d are the number of prisms, alive cubes,
and destroyed cubes in K(S), respectively. This proves the NP-hardness part. To see
that the problem is NP-complete we just observe that it can be checked in polynomial
time whether a given cell decomposition of K(S) into tetrahedra is indeed a polytopal
complex. ‘ _ a

3 Boundaries of 4-polytopes

Now we prove that our construction can also be applied to the cell complexes that appear
as boundaries of 4-polytopes. We first show how one can lift the original complex K4, 2m+1
(without any destroyed cubes) to a substructure of the boundary of a suitable 4-polytope.
This can be easily done since K4y, 2m1 arises as substructure of a arrangement of hyper-
planes Hyp 2m41 (the cutting hyperplanes together with the supporting hyperplanes of the
original prism). The lifting process can be performed by assigning to each hyperplane
a canonical piecewise linear convex function. The sum of all these functions describe a
convex function whose graph has the desired properties.

LEMMA 3.1. There is a 4-polytope Py, am+1 that contains a cell complex (combinatori-

ally) isomorphic to Ky 2m+1 in its boundary.

'PROOF. Assume the hyperplane arrangement Hyy, 2,41 consists of k hyperplanes h;, . . ., hy.
 Each of these hyperplanes is given as the zero set of an affine functional f;(z,y,2) = 0.
W.lo.g. we may assume that f;(0,0,0) <0fori=1,...,k. Let

é(z) ::{x ifx>Q

0 otherwise.

Then ¢(f;(z,y, 2)) is a convex piecewise linear function. It has exactly two linear compo-
nents. These components are divided by h;. The sum

flz,y,2) = Z¢ fi(z,y,2))

is still a piecewise linear convex function. Over each cell of Ky, 241 this function is linear.
The set

{(1"’yazaw) I (:anvz) € K4n,2m+1; w > f(x’yv Z)}

is an (unbounded) convex four-dimensional polyhedron. Intersecting it with halfspace

{(:L‘, Y, z, h’) € ]R'4 I h < MaX(z,y,z)€ Kan,2m+1 (f(ma Y, z))}

produces a convex 4-polytope that contains a structure combinatorially isomorphic to
K4y 2m+1 in its boundary. m]

Figure 10 shows a corresponding picture for one dimension less. it represents a lifting

of a hyperplane arrangement in the plane to a 3-polytope. Actually the arrangement
shown in this figure corresponds to a 2-dimensional sub-configuration of our construction.
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What remains is to provide a method that models the process of “destroying cubes”
in our main construction from Section 2. We will do this by stellating the facets of the
polytope Pi, 2m+1.-

Assume Py 241 has altogether ! facets F = {Fi,..., Fi}. For each facet F; € F we
choose a point p; € int(F;) C R* in its interior (for instance its center of gravity). Let n;
be an outer normal vector of F;. For sufficiently small ¢ > 0 the points ¢; = £ n; + p; with
i =1,...,1stellate the polytope, i.e. the polytope Qan2m+1 = cOnV(Pip om+1U{¢q1,- .., q})
has as vertex set all vertices of Py, om+1 together with all points ¢i,...,q. All faces of
Q4n 2m+1 are pyramids over n-gons (the apex of such a pyramid is a point ¢; he base face
corresponds to a 2-face of F;). It is easy to check that one can calculate concrete rational
coordinates for the points ¢; in polynomial time from the data of Py, 2rm41.

Figure 10: Lifting hyperplane arrangements to polytopes

Since all facets of Q4p 2m+1 are pyramids Lemma 2.2.(i) tells us that every triangulation
of the 2-faces of Q4n,2m+1 is compatible with a suitable triangulation of the boundary of
Qan2m+1- Now let S be a concrete instance of a NOT-ALL-EQUAL-3SAT problem and
K(S) be the corresponding 3-ball of our construction. Let F’ be the set of facets of
Py, 2m+1 that correspond to active cubes of K(S) or that correspond to triangular prisms
of K(S). Let Z(S) = {i | 0 < ¢ < I; f; & F'} be the index set of all other faces. We
consider the polytope

Q(S) = conv(Pyp 2m41 U U qi)
o ex(S)

LEMMA 3.1. Let Fy, F;,..., F, be the facets of Q(S) and assume that fori =1,...,r
the facet F; has v; vertices. The boundary of the polytope Q(S) can be triangulated with

exactly ) v; — 3r tetrahedra if and only if S was had an admissible assignment.
i=1

PROOF. By construction the boundary of the polytope Q(S) contains a polytopal sub-
complex that is combinatorially equivalent to K(S). This part of the boundary of Q(S)
has a triangulation that uses only 5 tetrahedra for each cube if and only if K(S) had such

14



a triangulation. The remaining facets of Q(S) are pyramids over n-gons and introduce
no additional obstructions. Hence Lemma 2.4 implies the desired result. ]

As an immediate consequence we obtain the polytopal couhterpart of Theorem 2.5.

THEOREM 2.5. The problem of determining whether a the boundary of a 4-polytope
(given by coordinates of the vertices of the polytope) can be triangulated using k tetra-
hedra is NP-complete.

PROOF. The proof is analogous to the proof of Theorem 2.5. O
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