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Testing Polynomials
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Lei S < N” be a finite set («, .. ., a,) of exponents. We construct explicitly a testing set Ty < N*
with k elements 1,,. .., ¢, (namely ¢, = (2%, . ., 2°7)), such that if

P=Y a,X%e€Q[X,...X,],

2e$§

then there exists i (1 <i < k) such that P(t;) #0.

1. Introduction
We thank the referee for suggesting to us the following introductory comment:

“Many aigorithms in computer algebra which deal with sparse polynomials make the
assumption that a polynomial which evaluates to zero is identically zero. The purpose of
this paper is to explore the question: How do we guarantee that a polynomial is zero? We
show that any set of evaluations (a testing set) for a polynomial with k terms has to contain
at least k members, and we construct such a set with precisely k¥ members. This
construction relies on knowing the exponents, but not the coefficients, of the polynomial
being tested. We leave to others the task of converting this theorem into algorithms.”

More precisely, let S be a finite subset of N", i.e. § is a finite collection {a,, ..., o} of
distinct multi-indices a; = (a], . . ., 2}), where af is a non-negative integer. Let I be a field of
zero characteristic (e.g. K = Q. R or C) and denote by P the vector space of polynomials
of type S, that is the set of polynomials of the form

Y a,X® ;
26§ DM i}. {av x._ﬂ\, ,,M,,,www .}(G«
with a,e €, where X =(X,,..., X,)and X*=X¥ . . X* k o B ,S,,m: “Foarien

DEFINITION. A set of points Ty of K" is said to be a testing set for § if for any Pe P,
P|T; =0 implies that P =0.

To our knowledge, the question of finding testing sets has been raised by J. H.
Davenport and B. Trager. We will prove the following:

THEOREM [.1. Let S = {«,,.... %,} be a finite subset of N" and set T,=(2%, ..., 2*")e K" and
Ts={T,,..., T,} < K" Then Ty is a testing set for S. Any testing set must contain at least k
elements.
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In other words, if P is not identically zero, then P(T}) # 0 for some i, and T is optimal in
the sense that it could not contain less points. As we shall see, in the definition of T the
number 2 can be replaced by any rational number (or real number if i — R) greater
than 1.

DEFINITION. Let & be a direction in K" and let H be an affine hyperplane in K" not parailel
to &; denote by m,: <" — H the projection parallel to 6. We shall say that  is generic with
respect to the hypersurface V(P)= {xeK"P(x)=0}, where P is some polynomial, if
ns/V(P) is a finite map. This amounts to say that for any line ! parallel to é, InV(P)is a
finite set.

The following is an easy consequence of the theorem:

COROLLARY. Let P=Y,.5a,X* be a polynomial and set d,=sup{|al, a, 0}, where
lof =0y +...+a,, and S, = {aeS||a| =d,}. Then among the directions of the vectors of Ts,
there is one that is generic for P.

Note that every element of a Ty is non-zero and therefore defines a direction in K™
We are grateful to Pierre de la Harpe for helpful conversations on the Schur product.

2. Proof of the Theorem

Let P=Y,.sa,X" be a polynomial of type S and let Ys={Y,,... Y.}, where
Y,=(Y!,..., Y, be a set of k points in K". Consider the system of equations:

Y a Y =0, i=1,...k

aeS

We can view them as a system of k linear equations with k unknowns a,, 2€S, and
therefore our theorem will be a consequence of the following proposition:

PROPOSITION 2.1. Let aeR,a>1 and S={a,,..., o} < N" satisfy a; # o; for i #j and set
T, =(a*, ..., a%). Then the determinant of the matrix (T*)i.y.. x j-1...x is different from
zero.

The proof will be split into several lemmas. For X and Y in R" we shall write
X,y = Y x-vr

i=1l...n

and so T,% = a**%”, The matrix

M=Ma,a,..,0)= ??.EJ?T..»L.l:.w
IS s\mmetric.

LiMMA 2.2 Let S = {ay,.. ., 2,} < R" be a set of k distinct points. Then there is an orthogonal
tramstormation A : R" — R" arbitrarily close to the identity map such that if we set ;= A(a,),
tnen * 2 " forany h=1,..,nand i,j=1,..,k i#j.

Proot. Ut { = R" is an affine line and H a hyperplane in R", then A(!) will not be contained
1 H for simost all orthogonal 4: R" — R”. Let L = {lines joining pairs of distinct vector of
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S}, a fini‘e set of lines, and set H;={X;=0}, i:=1,..., n. Then for almost all A we will
:u,é Ah¢# H, forany leLand i=1,....n Such an A4 has exactly the propertics we are

looking for.
DEFINITION. Let 4 = (a; ;) and B=(b; ) be two matrices of the same size with coefficients in
any ring. The Schur product A * B of A and B is the matrix defined by:

(A= 5..;. = a_.L..FL..

Note that we will write A- B for the ordinary matrix product. Recall that a symmetric
matrix with real coefficients is said to be positive if (A(v), v) = Oforallvin R™ It is mmﬂ n.o
be positive-definite if in addition (A(v), v> =0 implies v =0. Qo.u_._w_ if Ais _..Em:?o, it is
positive-definite if and only if det(4) # 0. Also, if 4 and B are positive then so is 4+ B, and
if one of the two is definite then so also is 4+ B.

LemMA 2.3 (cf. Schur, 1911, section VII). Let A and B be two k x k symmetric matrices.

(i) If A and B are positive then so is A + B.
(ii) If A and B are positive-definite then so is A * B.

PROOF. Since B is positive, there exists a symmetric k x k matrix C =(c;,;) such that
B=C-C (ordinary matrix product here!). Therefore

F.L. = Mm_.;_.n..;.
h

and so
(A * B(v), v)

Y Gy biyvto = M.af..s;_.n.....cri.

h,i.j

iJ
= M a; ;i i. E“.. = M (A(wy), wy),
i j h

where w,, = (c; " v');a1 .. & Since A4 is positive, the last expression is non-negative. If A and
B are definite, then so is C because det(B) = det(C)"; therefore A * B(v), v) =0 implies
A(w) =0, forall h=1...k, which implies w,=0and so ¢, V=0 for all h, i. But for each
i there must be an h such that ¢; , # 0, otherwise det(C) =0, and so v' =0 for alli=1...k

DerINITION. The Schur exponential of the k x k symmetric matrix 4 is defined by:
e*t= Y (i/nl)-A*

n=0...0

where A*" = A * -+ 4, n times.

In other words, (e*); ;= e Since e** is a linear combination of Schur products oﬂ A
with positive coefficients, it follows from Lemma 2.3 that it is positive (or positive-definite)
f A is. Note that e*° is the matrix with ail entries equal to 1.

LEMMA 24. Let by, .. ., b, be distinct real numbers and set B=(y-b;-b); ;.1 .. 4 where pis a
strictly positive real number. Then e*®? is positive-definite.

PROOF. Let b= /\m.::, ... b); then B="b-b (ordinary matrix product) and so
. {B(v), v> = {'b-b(v), v) = {blv), blv)) = 0.
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Therefore, by Lemma 2.3, B*" is positive for all h >0 and it is enough to prove that
Mfo:.rlmt. is positive-definite. If, indeed, reR" is such that B*"v)=0 for
h=0...k~1, then (b*(v), b**(v)> =0 and hence b*(v)=0, h=0...k—1. Written in
matrix notation: :

1o
b, ... b

k-1 k-1
“pE-t . b

and the determinant of the matrix on the left is the well-known Van der Monde

determinant, and equals [], c;;<a(b;—b); it is therefore different from zero, and hence
v=0.

PROOF OF THE PROPOSITION. By Lemma 2.2 there is an orthogonal transformation
A:R"— R" such that all the co-ordinates of the vectors A(«,), . . ., A{a,) are different. Now

hAE.n.‘v —_ NF.A.:.AB_.EV
and therefore
— p¥(ln@)-<ainap) — ,s(ln@) (Alai), Ala;)})
M(a, a, o) =e =e
Y ARt ] .

Set B, = A(a;). We have

L@ (5,081 — : elnta)- 878}
h=1,....n
and so
1 "
M, ay,. .. 0)=eM s . v M
where

M= Finv.mw.&r;ur:».

By Lemma 2.4, e*1*@ M" s positive-definite for h=1,.. ., n and therefore M(a, 2,,.. ., %)
also, by Lemma 2.3.

PROOF OF THE COROLLARY. Let P, =Y, s a,X“ be the homogeneous part of highest
degree of P. If I={r-v+w|teK} is a line on which P vanishes, then the polynomial
(1) = 1% P(v/t + w) is identically zero, and ¢(0) = P_(v). The coroliary follows now from
the theorem.
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3. Some Remarks and Comments
(a) In the case of polynomials in one variable, say with real or complex coefficients,

Theorem 1.1 is a consequence of the Descartes’ well-known lemma, which implies that for
any sequence ()., (< R,,a, < <@, if Ple)=0fori=1..k, then P=0:

Drscartrs’ LEMMA. Let PeR[X] be a polynomial in one variable with k non-zero
coetnictents; then P has at most k—1 strictly positive real roots.

The proof is easy: use induction on k and Rolle’s theorem.

-») In our first attempt to construct a testing set for a given S = {«,,..., x,] we took
simpiy 1, = ;. In view of Proposition 2.1, this is a testing set if and only if det(a{’) #0,
anere tor x and #in N" we set of = (a!)?' - ... («,)" and 0° = 1.
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CONJECTURE. If «,,...,4€N" are distinct sequences of non-negative integers, then
det(a?’) #0.
REMARKS.

(1) It follows from Descartes’ lemma that for n=1 the conjecture is true.
(2) The conjecture is true for k = 2: det(a}’) = 0 implies

ARU., e ARS.._..ARWV& “lle Agmv&IARU& . ?3&.?&1 . Anmv% =0.

But if a and b are non-negative reals, then a*-b*—a"-b°> 0 and equality holds exactly
when a = b. From this and the above equation it follows easily that oy = a,.

{c) Theorem 1.1 asserts that for a set S of k multi-indices any testing set must contain at
least k points. One may ask for analogous bounds for the number of tests in other settings.
For instance, let C, be the set of polynomials PeR[X,, ..., X,] of additive complexity
C% <k (see Risler (1985) for details on the additive complexity).

It is proved in Risler (1985) that if Pe R[X] and PeC,, then the number of real roots of
P does not exceed 5*’. This implies that for a polynomial PeC,,if¢;eR,i=1...N, are
such that a, <- -+ <ay and N = 5¥ 41, then there exists i such that P(a;) # 0. This can be
easily generalised to polynomials in n variables.

ProBLEM. Find an explicit testing set for C,.
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This paper is devoted to a precise algorithmical and complexity study of a new polynomial time
method for formal computations with polynomial inequalities and real algebraic numbers.

1. Introduction

A new method for coding the real algebraic numbers, based on the use of Thom’s lemma
and the study of simultaneous inequalities from Ben-Or, Kozen & Reif (1986), has been
introduced by Coste & Roy (1988). This leads to various applications in the field of
computational real algebraic geometry: study of the topology of a real algebraic curve
(Roy, 1987), or of the analytic branches of a real algebraic curve (Cucker et al., 1987).

In this paper, we give improved versions of the algorithms in Coste & Roy (1988) and we
study their complexity.

In the second section we introduce some basic tools, based on the techniques of
computer algebra (mainly results on subresultants). In the third section, we study
simultaneous inequalities at the real roots of a polynomial and in the fourth section, we
consider the coding of real algebraic numbers.

2. Basic Tools and Notations

In the paper, for P = agX?+ ... +a,, a polynomial with integer coeflicients, we define
the norm of P, N(P), by N(P) = (ao+ ... +a?)"% The size of P is the log of N(P). The
length of an integer is the log of the integer. The degree of P is denoted by deg(P).

Our algorithms are based on a generalization of Sturm theorem, hence on divisions of
polynomials, taking care of signs. We therefore require various notations for the signed
remainders.

In this section P denotes a polynomial with integer coefficients of degree p and Q
denotes a polynomial with integer coefficients of degree ¢ with leading coefficient by # 0,

qsp
2.1. SIGNED PSEUDO-REMAINDERS

We denote by rem(P, Q), the remainder of P and Q in the Euclidian division process: so
rem(P, Q) has rational coefficients.
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