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1 Introduction

In the computation of the Hilbert-Poincaré series of homogeneous ideals,
the known algorithms, [MM], [KP], [BS], [BCR] have a first algebraic step
coinciding with the computation of the associated Grobner basis w.r.t. any
ordering and the corresponding initial ideal (the associated staircase), and
a second combinatorial step that from the staircase computes the Hilbert-
Poincaré series.

A well-known classical algorithm computes the Hilbert-Poincaré series
from a free resolution, but is practically infeasible because of its complexity.
The algorithms of [MM)] use an inclusion-exclusion counting technique; the
algorithms of [KP] and [BCR] proceed by induction on the dimension; the
algorithm of [BS] proceeds by induction on the number of generators of the
initial ideal (the cogenerators of the staircase).

Usually, combinatorial algorithms can be speeded up by a “Divide and
Conquer” approach: splitting the problem into two smaller problems of ap-
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proximately the same size. In successful cases this trades a linear step for a
logarithmic step, and can reduce from exponential to polynomial complexity.

Our approach explains how to split a staircase through the choice of a
monomial (the pivot), then we discuss how to design a strategy for the choice
of the pivot. The worst case complexity is not improved, since in some ex-
treme cases every splitting is bad, (the computation of Hilbert-Poincaré series
is at least as difficult as a NP-complete problem in the number of variables,
see [BS]) but in several practical cases the situation is much better; in par-
ticular, our algorithm in the best case has a complexity that is a linear factor
better than the best case of [BS], and can be specialized, with a choice of the
splitting strategy, to the algorithm of [BCR]. In practice, a simple random
strategy is quite good, avoids the costly computations involved in choice of
an optimal variable of [BCR], and marginally improves the performance even
in the optimal Borel-normed case.

The same approach allows to compute the dimension and the multiplic-
ity. If only the dimension is needed, a standard improvement (computing
the radical) allows a speeding of the algorithm, and the knowledge of the
dimension allows to simplify the finding of the multiplicity.

The algorithms have been implemented, both in CoCoA, [GN] and AlPi,
[TD]. Some test cases are given.

2 Staircases

A staircase S (also called Ferrer diagram or order ideal of monomials) is
a set of elements of N™ such that if (aq,...,a,) € S and b; < a; then
(by,...,b,) € S.

On N™ there is a partial ordering (ay,...,a,) < (by,...,b,) iff a; <
b; for each i. The corresponding lattice operations a A 3, a V 3 are the
componentwise min and max.

Elements of N™ correspond to power products (terms, monic monomials)
of k[zy,...,z,]; the partial ordering corresponds to divisibility (o < f <—
X | XP). We often identify a with X, and use notations referring to both
indifferently. In particular, if @ = (a4,...,a,) € N, |a| = X a; will be called
the degree of a. The operations A and V correspond to GCD and lcm.

We say that an element of N” is a pure power if it has only one coordinate
that is non zero. Otherwise it is called mized.



IfI C k[zy,...,z,)is an ideal, and we have an ordering, then the staircase
associated to I is the set of exponents a = (ay, . .., a,) such that no element of
I has leading power product equal to X®. The staircase associated to I can be
computed through a Grobner basis, taking all exponents such that no leading
power product of the Grobner basis divides them, and the X* constitute a
linear basis of k[X]/I. Conversely, from the staircase we can recover the
leading power products of the reduced Grébner basis, corresponding to the
minimal elements of the complement of the staircase.

The staircase is usually given through these minimal elements, that are
called the minimal cogenerators of the staircase. Given a set G of elements of
N", there is a maximal staircase disjoint from G, and it is called the staircase
cogenerated by G. It is the complementary of the monoideal generated by G.

We denote with [ay, ..., @] the staircase cogenerated by oy,...,ay; if
S is a staircase, denote with [S] the minimal set of cogenerators of S. In
particular, [[oq,...,an]] is obtained deleting from {ay,...,an,} all the ele-
ments that are multiple of another element (the notation implicitly assumes
that no duplications appear in {aq,...,®,}). The algorithm for operating
such deletions is an essential tool, and its efficient implementation is very
important. The issue is discussed in section 6.

Given two staircases S7, Sz, we say that Sy is strictly smaller than S, if
51 is a proper subset of S, and moreover an injective map ¢ exists from [S1]
to [S3] such that ¢(a) > a. Given a staircase, only a finite number of strictly
smaller staircases exists.

A T-staircase is a translate of a staircase; all that is said for staircases
applies, with minor modifications, to T-staircases. Most of what we will
prove will be applicable to T-staircases without modifications, and we will
not even quote it.



Given a staircase (or a T-staircase) S one defines its Hilbert-Poincaré se-
ries being the formal power series in the indeterminate T' defined by %2, d;T"
where d; is the number of elements of S of degree i, and is denoted by Hg
(of course, this being an infinite formula, it is not an algorithm). Clearly, if
S'"=a+ S, then Hg = T*l Hy.

If I is a homogeneous ideal of k[X], the Hilbert-Poincaré series of k[X]/I
is defined, and coincides with the Hilbert-Poincaré series of the associated
staircase. This is the motivation of the interest in computing the Hilbert-
Poincaré series of staircases.

Sometimes, one is not interested in the Hilbert-Poincaré series, but only
in the dimension and the multiplicity of the staircase. These are defined
as follows. Consider a staircase S, and let $°0° d;T" be its Hilbert-Poincaré
series. Define ¢(r) = 3_(d;. Then a well-known theorem states that ¢(r) =
£r? + O(r*1), for suitable integers e > 0, d > 0. Then e is the multiplicity
and d is the dimension, and the dimension is smaller than or equal to the
number n of variables. The difference n —d is called codimension. We denote
by es, és, cs the multiplicity, dimension and codimension of S.

Moreover, Hs = p(T)/(1 — T)¢, where p(T) is a polynomial such that
p(1) = es, d = és. We denote by (S) the polynomial (1 — T)*Hg, where n is

)

the number of variables; it has a zero in 1 of order n—d. We write (ay, ..., am)
for ([a1,...,an]); the aim of the algorithms is to compute (a1, ..., ay,) from
(al, ey am).

The description of the algorithm and its correctness do not depend on
the unproved assertions stated above, and the algorithm itself is a proof of
them.

Everything that will be proved in this paper applies to staircases of mod-
ules without changes; a staircase associated to a submodule of a free module
is a disjoint union of T-staircases, hence the Hilbert-Poincaré series is the sum
of separately computable Hilbert-Poincaré series of T-staircases. Of course,
some information can be present relying the different T-staircases, and this
could be used to speed up the algorithms, but in general this information is
not available. This issue needs further study and experimenting.



3 Splitting a Staircase

We will consider two types of splitting of staircases: as a product of staircases
(a vertical splitting), and as disjoint union of a staircase and a T-staircase (a
horizontal splitting).

A vertical splitting is possible if and only if we can identify two disjoint
subsets X; and X, of the variables such that any minimal cogenerator is a
power product in either the variables X; or X;. In that case, S is a product
of two staircases S; and S, in X; and X,, each one cogenerated by the
corresponding cogenerators of S. We have Hs = Hg Hs,, (S) = (S1)(S2),
since the elements of S of degree d correspond to pairs (o, 3), |a| = di,
18| = d3, d = dy + ds.

Moreover es = eg,es,, s = s, + bs,, ¢s = cs; + ¢s, (just apply the
definition of multiplicity and dimension).

A horizontal splitting is always possible, unless S is reduced to {0}: if
a # 0 is an element of the staircase, let S’ = {8 € § | a < B}, and
S1 =8\ 5 then S is a staircase, and S’ is a translate of a staircase Sy by
a, 8’ = a + Sz2. The cogenerators of S; are obtained by deleting from the
cogenerators of S all the multiples of a and adding . The cogenerators of
S, are obtained as follows: let {f;} be a set of cogenerators of S; then a set
of cogenerators of S, is given by f§; : a, where the operation : is defined as
follows: (by,...,bm) : (a1,...,am) = (c1,...,¢n), where ¢; = max(b; — a;,0).
The operation corresponds to the operation I : J between ideals.

In this case H¢ = Hg, + Hs = Hg, + T|O‘|H52, by the definition of the
Hilbert-Poincaré series; moreover (S) = (S;) + T1°U(S,), ds = max(dg,,ds,),
Cs = min(Cgl,ng), eg = €g, +ég, if dgl = ng, €s = eg, if dsl > dgz, es = €g,
if d5'1 < d52 .

The element « is uniquely identified by the splitting, (it is the minimal
element of S’) and is called the pivot of the splitting.

In our applications, we assume that « is smaller than one of the cogener-
ators of S’ (in multiplicative notation, properly divides it), and different from
0; this is possible unless the staircase has no cogenerators or all cogenerators
are of degree one. In that case, both S} and S, are strictly smaller than 5.
This implies that any chain of such splittings must terminate.



Dimension and Multiplicity

A computation of the same type is possible when we do not need the whole
Hilbert-Poincaré series, but only the codimension (or the dimension), or the
codimension and the multiplicity.

In the case of the codimension, it is sufficient to remark that in a vertical
splitting the codimension is the sum of the codimensions of the pieces, in a
horizontal splitting the codimension of the staircase is the minimum of the
codimensions of the pieces. The algorithm is simplified remarking that when
we have found one branch of the computation that gives codimension ¢, we
can abandon all the other branches that give higher codimension, and this can
often be checked at an early stage. Moreover, instead of the original staircase,
we can take its radical: a staircase that has as generators (non minimal) the
same elements in which every positive element of N is substituted by 1.

The multiplicity in general can be computed together with the codimen-
sion remarking that for vertical splittings the multiplicity is the product of
the multiplicities, and for horizontal splittings the multiplicity is equal to the
sum of the multiplicities if the codimension of the two parts is the same, and
it is the multiplicity of the part of lower codimension if the two codimensions
are different.

The preliminary computation of the codimension (often simpler, since
one can take the radical at once) allows to abandon earlier the branches with
higher codimension. This has never been tested, but will be implemented in
a short time.

4 Terminating the Algorithm

We can proceed in splitting the staircase until each piece is cogenerated by
one element of degree 1, or by no element, but this is impractical. We ter-
minate the splitting when we are reduced to a set of cogenerators consisting
of some pure powers and a few elements, pairwise coprime, that are not pure
powers.

The following theorem holds:

THEOREM 1. Assume that a staircase S has a minimal set of cogen-
erators {my,...,Mr, ft1,. .., fts}, Such that the m; are pure powers, and the
p; are mixed and pairwise coprime. Consider the partition of the variables



{HUo,...,1I,}, where 11, is the set of the variables not appearing in the p;,
and Il; is the set of the variables appearing in y;.

Then S is split vertically according to {Ilo,...,Il;} into s + 1 staircases
So,-..,Ss, and every [S;] contains at most one mixed power.

The proof is immediate. Of course, the degenerate case that Iy is empty
is possible. '

The computation of the Hilbert-Poincaré series of these simple staircases
is shown in the two following theorem:

THEOREM 2. Let S be a staircase in N such that [S] = {m1,...,7%n},
T, = CIT:'

Then Hs =TI(1 —-T%)/(1 =T)*

The proof is obtained through a further vertical splitting in staircases in
N, that have either no cogenerators (they coincide with IN) or one cogenerator
7; (they coincide with {0,1,...,¢; — 1}).

In the first case Hs = L + T + T2+ ...+ T+ ... = (1 = T)7}; in the
second case Hs=14+T+ ...+ T 1= (1-T)"Y1-T%).

THEOREM 3. Let S be a staircase in N™t" and assume [S] = {m1,...,%m, T},

[ b r
m=al, T=a - abrylt oy a; > b, >0, ¢ > 0.

Then
Hg = (H(l —T*)— lel H(Tbe _ Ta.')) /(1 _ T)m-{-’r
where |c| = Y ¢;.

The proof is done by considering two special subcases.

If r = 0 consider the staircase S’ cogenerated by zy?,...,z%" and split it
with pivot o = 28 ... zbm: then §’ is disjoint union of S and a + (5’ : @),
and S’ : «a is cogenerated by 317 .. .,z b hence Hg is computed by
difference.

If m = 0 then consider the staircase S’ = N" and split it with pivot
f=yi*---yer. Then S’ is disjoint union of S and S+ 5, and Hg is computed
by difference.

In the general case, split S with pivot y{* - - - yor; then S = S; U (v + Ss),
v =y - ylr, 51 cogenerated by z71',...,z%" yit - ysr, Sp cogenerated by

b .
xPt, ..., xim zit - zbm and we are reduced to the two previous subcases.



Dimension and Multiplicity

If one is interested only in the dimension or in the multiplicity, these can be
computed directly.

In the case of Theorem 2, the dimension is n — m and the multiplicity is
H C;.

In the case of Theorem 3, we have two subcases:

— if m = 0 then the dimension is 7 — 1 and the multiplicity is [c|;

—if m > 0 then the dimension is r and the multiplicity is [T a;—[1(a; —b;).

The proof is immediate by inspection of the formulae given in theorems
2 and 3.

5 The Choice of a Splitting

The vertical splittings appear occasionally, but when they are possible in an
early stage of the algorithm their importance is dramatic. They are not so
easy to discover, so it is wise to search for them when we have a hint that one
might exist. We will see an example in which the algorithm is exponential
without vertical splittings, but becomes very simple if we look for them.
With this example the other known algorithms perform badly.

5.1 Vertical Splittings

The search for the most general vertical splitting is easy, but often useless;
probably it is useful only when the sum of the degrees of the non-pure powers
is not much larger than the number of variables.

Here is an algorithm for finding the vertical splittings, S being the set of
cogenerators of the staircase.

P=empty
REPEAT for T in S
REPEAT for U in P
IF GCD(T,U) /= 1 THEN
T=1lcm(T,U)
delete U from P
ADD T to P



At the end of the algorithm, P is a set of coprime power products; if P
contains only one element, then no vertical splitting is possible; otherwise P
describes the partition of the variables defining the splitting.

In practice, if in the course of the algorithm T contains all the variables,
then we can directly exit the algorithm declaring that no vertical splitting is
possible.

Since the set P has never more elements than the set of variables, the
complexity cannot exceed O(n?m), where n is the number of variables and
m the number of cogenerators, since the cost of a GCD or a lcm is at most
n arithmetic comparisons.

The only type of vertical splitting that is always useful to look for, is when
a variable does not appear in the mixed power products. This is recognizable
if the lem of the radical of all the mixed power products does not contain one
of the variables, and this only costs nm. These splittings appear frequently,
and considerably simplify the algorithm: they do not have influence on the
combinatorial part, but the product of a sum of univariate polynomials is
simpler to compute than the sum of the products, and the effect of an early
splitting is precisely to allow to perform the former instead of the latter.

5.2 Horizontal Splittings: Choice of the Pivot

The horizontal splittings can always be found; an optimal strategy would be
to find every time a splitting such that the two pieces have sets of cogener-
ators that have one half of the cogenerators of the original staircase. This
1s possible (and easy, see below) when there are two variables, but is impos- -
sible in general. A strategy that allows splittings as balanced as possible is
very useful. The reason for looking for such a strategy is the following: the
algorithm for one splitting is of quadratic complexity (the interreduction of
S : a); splitting the cost in two at every step is as good as possible.
Consider the case of two variables; then we have a set of cogenerators
7, = x™y™ 1 =1,...,d, and we assume that the n; are in ascending order
(and hence the m; are in descending order). Then if we take z"4/2 as pivot,
we split the staircase into two staircases with half as many cogenerators.
There are several possible heuristics for the choice of the pivot. The
choice that has appeared to be the best is the following: choose a variable
that appears in at least two mixed power products, and some power products
in which the variable appears. Then choose as pivot the GCD of these power



products. In particular, choosing a random variable among those that ap-
pears in most mixed power products, and three random power products (or
two if only two exist) among those that contain this variable, the practical
performance is often quite satisfying. (In some special cases it seems use-
ful not to choose the three power products at random, but to choose them
in a way to have a larger GCD; this heuristics has however not yet been
implemented.)

If no variable appears in more than one mixed power product, these are
all coprime, and we can terminate the algorithm as described in the previous
section.

Probably an uniform strategy like this one is not good in every case, or
at every point of the algorithm, and the issue of good heuristics is widely
open. However the results even with this rough strategy are quite good.

6 Interreducing a Staircase

The interreduction of a non-minimal set of cogenerators A = {ay, ..., a,} of
a staircase S is the costliest part of each step of the algorithm; considerably
improved performances can hence be obtained by optimizing this step.

10



The simplest interreduction algorithm is a double loop:

FOR T1 in A DO
FOR T2 in A-{T1} DO
IF T1 divides T2 THEN delete T2 from A

The cost of this algorithm is m? divisibility tests (m being the number of
A).
The double loop can be cut in two, if we preliminarly sort A in a way
that 77 can divide T only if T7 precedes T5; hence, if for example A is
sorted in increasing degree, one half of the comparisons can be avoided.
The preliminary sorting is not costly anyway, but we can even arrange the
algorithm in such a way that the staircases that are generated are already
correctly sorted. In this case the cost is m?/2 divisibility tests.

In the more general situation, this algorithm is probably the best one,
but often better algorithms can be obtained using some existing information
on the staircase. :

If A is obtained from A’ = [S] adding one cogenerator T, then one can
simply delete from A’ all the multiples of T and adding T to the result; one
can insert the new element in the correct order, and check only the elements
that follow it for divisibility. In this case, the cost is m divisibility tests.

We discuss now the case where a staircase S is obtained from another
staircase S’ dividing by a power product a. We discuss separately three
cases: « is a variable, a is a pure power, « is generic. The more special cases
allow more efficient algorithms. :

Assume that we have [S] = {ay,...,an}, (this implying that no «; di-
vides another «;) and that the « are already correctly sorted.

In the first case, o = z;, we split Aintwo, B = F1,...,8:, C =71,y %5
the §; not divisible by z;, the v; divisible by z;; define v; = v;/z;; then the
B; do not divide any of the 4, (they do not divide the v, = z;4;), and do not
divide each other; the 4] may divide some of the 3; but do not divide each
other. Moreover, the 4 are in correct degree order. Hence it is sufficient to
delete from the f§; those elements that are multiple of some 4], and merge
the resulting §; with the ;. If B, C have m;, m, elements respectively,
(m = my + my) the cost is at most mym, divisibility tests (and the cost of
merging is at most m).

In the second case, a = 2], divide ey, . .., @, into r+1 subsets Ao, ..., A,
according to the divisibility by z! (elements of A; being divisible by z7).

11



Divide the elements of A; by z, obtaining A’. Then elements of A’ are not
divisible by elements of A} if k¥ < j. Hence one can obtain the result as
follows:

FOR i= r down to 1
delete from A’(i-1) the multiples of elements of A’ (i)
merge in A’(i-1) the elements of A’ (i)

and at the end A’(0) is a minimal set of cogenerators.

Let a; be the cardinality od A;; then the cost of the algorithm is

720 @i Cj—iy1 @;, that is smaller than ao(3); a;)?/2.

In the third general case, we split aq,...,a, in two, B = B4,..., 5,
C = m,...,7s, the B; coprime with «, the v; not coprime with «; define
C' = {v} = v; : a}; then the elements of B do not divide any of the elements
of C’. Sort and interreduce C’ with the general algorithm, delete from B the
elements mutiple of some element of C’, then merge B and C’: this is the
result. If B, C' have m;, m, elements respectively, the cost is m;my + m2/2.

We have never accounted for the cost of merging, or of splitting, that
is linear. The overall cost of the algorithm, even in the third case, is very
small when the splitting is uneven (many elements coprime with the pivot),
and this happens quite frequently in the hardest computations; the fact that
the pivots are bad is indeed the reason why the overall algorithm is hard.
Hence the improvement is essential for these hard examples. This happens
when the cogenerators are easily coprime, for example when the degree of
the cogenerators are low compared with the number of variables. This is
precisely the case in which the computation of the Hilbert-Poincaré series is
especially difficult with all the known algorithms.

7 Comparison with the Other Known Algo-
rithms

The algorithms of [KP] and [Ho] coincide with the present algorithm when
the pivot is chosen to be a variable.

The algorithm of [BCR] coincides with the present algorithm, in the fol-
lowing variant: choose one variable z;, and take as pivot z?, where n is
the minimum degree in which z; appears. The algorithm requires the com-
putation of several splittings for choosing the best variable; the overhead

12



can be frequently reduced by special considerations. When there are several
variables and none is especially good, and we have to consider them all, it
seems that the cost of computing several splittings is difficult to recover by
discovering a relatively better variable.

The algorithm of [BS] is related to ours, with a difference. A staircase
S is represented as the difference set S; \ S;, S; obtained removing one of
the cogenerators of S, and the S; = S\ S, the T-staircase contained in S;
composed of the multiples of this cogenerator. Both staircases are simpler
(in a different sense than ours) and the termination can be done as in our
algorithm. The choice of the cogenerator to remove is guided by heuristics
dependent on the ordering.

The “Quick and dirty dimension algorithm” of [BS] coincides with our
dimension algorithm if the choice of the pivot is made choosing the first
variable of the smallest power product (in a suitable ordering).

These remarks show that our algorithm is “potentially better” than the
algorithms of [KP], [Ho] and [BCR] that are a particular case (and indeed
the experiments confirm this remark).

- For the comparison with the algorithm of [BS], we remark that with our
interpretation their dimension algorithm is just a special case of our Hilbert-
Poincaré series algorithm. For many examples we remark that their algorithm
produces badly balanced splittings, hence it is expected to be worse. The
experiments confirm this feeling. The algorithm seems to be superior only
when there are few cogenerators of high degree in several variables.

The algorithm of [MM] has mainly theoretical interest and it is known to
be practically inefficient.

13



8 Practical Performance

The algorithm as explained above was implemented in COMMON-LISP and
included in AlPi, and in Pascal and included in CoCoA.

The practical comparison of algorithms implemented in a heterogeneous
way is hard, since it is difficult to separate the effect of the algorithm and the
effect of the clever implementation; moreover some tricks can considerably
speed the algorithms, and sometimes a trick can be applied to an algorithm
and not to another. _

To allow a fair evaluation of the algorithm, in the COMMON-LISP im-
plementation we have included an approximate measure of the complexity.
We consider as unit of complexity an operation on power products, such as
GCD or lcm.

The interreduction of [S]U {7} requires m operations, if S has m cogen-
erators (we have to test which power products are multiple of 7 and delete
them). The interreduction of the staircase S : 7 costs m? operations, as we
have seen in section 6. The interreduction of pure powers is simpler, and is
made separately, so we can take m being the number of mixed cogenerators
of S. Hence a rough estimate of the complexity of a single step is m?.

In our implementation we have put a counter that accumulates m?, and
at the end of the algorithm we can know the number of steps, the maximum
recursion depth and the sum of m2. These data are reported in the tables of
the examples.

The algorithm of [BCR] is implemented in CoCoA; an experimental im-
plementation of the present algorithm in CoCoA allows some comparisons.
Unfortunately, the limited number of variables allowed in CoCoA does not
allow the comparison with the more difficult examples, and moreover the
implementation of the algorithm of [BCR] in CoCoA is a highly optimized
version, while the implementation of the present algorithm is only experi-
mental. Anyway the behaviour is quite good, and the performance of the
new algorithm is worse only in some highly stuctured cases.

A simple modification of the COMMON-LISP implementation could be
used to perform the algorithm of [BCR], but the comparison would be unfair
since the special structure of the pivots allows many improvements that are
impossible in the general algorithm.

A very small modification of the implementation in COMMON-LISP
(only a few lines of code) implements the algorithm of [BS]. The perfor-

14



mance of this rough implementation is not good, compared with the timings
given in [BS], and it is not clear if this is due to an optimization of the im-
plementation or to improvements to the algorithm; one can compare anyway
the experimental complexity data (the number of steps, the sum of the m?)
and the algorithm of [BS] appears to be inferior (sometimes dramatically
inferior) in all but some special cases with very few cogenerators.

The COMMON-LISP sources are available by anonymous FTP at the ad-
dress gauss.dm.unipi.it (131.114.6.55), in the directory pub/alpi-cocoa/hilbert,
together with documentation and some files of examples.

We report some data about the computation of some examples. These
are some staircases associated to Grobner bases, and some random examples.
With R, ,, . we denote a set of m random power products of degree d in n
variables (a random power product being a random product of powers of
random degree of a random variable, everything with uniform distribution).

The non-random examples are the Grobner bases of the following ideals:

1) Gonnet example, [BGK], homogenized, with DegRevLex ordering;

2) Valla example (see [TD]), DegRevLex ordering;

)
)
3) [BS], n.4.1
4) [BS}, n.4.2
5) [BGK], Butcher, homogenized, DegRevLex
6) [TD], Cohn-2 homogenized, DegRevLex
7) [BGK], Hairer 2, homogenized, DegRevLex, up to degree 10
8) [BGK], Hairer 2, homogenized, DegRevLex, up to degree 11

9) [BGK], Hairer 2, homogenized, DegRevLex, the first 904 elements
found (as you understand, we did not find the whole Grobner basis).

10) to 12) are Rso477,2, R100,20,10, R10,40,20-

The data reported are for our algorithm (BCRT) and for our implementa-
tion of [BS] algorithm, and we report the computing time on a SUN Sparc-2,
the depth of the iterations, the total number of the iterations, and the sum
of m? as described above. We report the data for one run of the probabilistic
algorithm; the experience is that the deviation is not large.

Our implementation of the [BS] algorithm does not work in AKCL with
more than 500 monomials because of bind stack overflow. In this case we
have used an implementation of a variant, that is usually better (instead
of proceeding by induction on all the cogenerators of the staircase only the
mixed cogenerators are considered; moreover induction instead of recursion
is used). For this variant, the recursion depth no longer makes sense; we have

15



preceded the timings by a *. The example 10) was too long anyway, and we

have interrupted it.

# | BCRT | depth iter. S m? BS | depth iter. S m?
1| 854 23" 17 853 2636718 | *4'22" 2371 208144503
2 88 1”31 11 131 30630 9" 88 599 224349
31372 147" 22 2919 8396358 | *13'25" 5274 860272285
414785 | 44'32" 34 | 100241 | 208685423 | *6h25’ 829623 | 41053923691
51 157 215 12 197 64967 17757 157 341 1307015
6 71 17 13 121 19220 3715 71 155 122701
7| 437 16" 14 733 517435 2'30" 433 1433 27175765
8| 567 24" 14 983 827951 | *1'25" 1057 898150
9 904 | 113 16 1653 2603711 *4/ 1279 243426014
10| 477 115 41 4701 2345490 | > 24h > 107
11 20 2" 17 397 1946 2! 14 | 16383 267082
12 40 15" 18 2535 78129 26" 40 5025 154333

For the examples 3) and 4) the timings given in [BS] for the new imple-
mentation on a SUN Sparc-1 are 3'06” and 2h53'23" respectively, and > 4
days and 14h3224” for the Macaulay version.
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9 Two Elementary Examples

Here we show two simple examples (one from [BCR], the other from [BS])
and our computation is in both cases simpler. We take as pivot the GCD of
three power products containing one most frequent variable.

Let S = [z*, 2%y, 2%z, 2%y2?,y?t, yt*]. The possible sequences of piv-
ots are either a) (y,y,z%) or b) (y,2z3), or c) (y? y,z>), with probability
(9/20,9/20,1/10). The computations run as follows:

a):

(S) = (z*,y) + T(z*, z* y z3 vz, :c 2%yt t%) =
(z*,y) + T(z* y) + T*z*, 2%y, 2%2,t) =
(2t ) + T(a?y) + THa?, )+ T%(2,v,2,1)

(5) = (= Ly) + T(at, a2, aByz, 2°2% yt,15) =
( y)+T( )yt7t5>+T4< ,y,yz,z,t).

O..
S

||\.°.J

e

(z) y? ,:c yz2, yt®) + Tz, 23y, 232 t) =
(z*,y) + T(z*, y,232%%) + T (2, t) + T3 (2, y, 2, 1).
The [BCR] algorithm corresponds to the pivot sequence (z2,y,y,y):
(S) = (2%, 9%, y1°) + T%(z, 9%, y2,y2°, vt yt°) =
(@, y) + Tz ,yt,t5) + 1%z, y) + T4z, y% y2, 2%, yt, t°) =
(@3, y) + T{(z3,yt,t°) + T3(z,y) + T4z, y, 2%, t°) + T%(z,y, 2, 1).
The [BS] algorlthm computes
(S) = («® y Yz, 2%y 2%, y?t, yt®) — THy®, vz, y2%, y’t, yt®) =
(z3y?z, 23y2 ,yzt,yt5) - Tﬁ(z,t) — TYy?z,yz2, y°t, yt?) + T (2,t) =
(x3y2z? ,y2t yt°) —T%(z,t) = T%(z,t) — T*(y22, y*t, yt°) + T"(2,t) + T"(z,t) =
(y2t,yt®) — TO(yt, t°) — 2T%(z,t) — T*(y2%, y?¢, yt°) + T7(yt, t°) + 277 (2, ¢).
Here is the second example. Let S = [ac, ab?, a?b, a®, b3d]. Then the pivot
is either @ or b. In the first case,
(S) = (a,b°d) + T{c, b?, ab, a?),
in the second case,
(S) = (b,ac,a®) + {c, b%, ab, a?).
The [BCR] algorithm has as first pivot either a or ¢ (both variables are
excellent, in the terminology of [BCR]), and in the second case:
(S) = (c,ab? a%b,a* b°d) + T{a,b%d) =
(a,c,b%d) + T{c, b%, ab, a®) + T{a, b3d).
The algorithm of [BS] computes
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(S) = (ac,ab? a®b,a®) — T*(a) =

(ac,ab?, a?b) — ( ) — T%{a) =

(ac, abz) T3(c b) T3(b )3 T (a)4:
(ac) = T%(c) — T%(c, b) — T*(b) — T*(a)
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10 A Simple Bad Example

The computation of the Hilbert-Poincaré series in general, and even comput-
ing the dimension, is a problem that is harder than an NP-complete problem
(see [BS]), hence bad examples are unavoidable.

Here we study a very simple example that has a very bad behaviour,
unless we allow vertical splittings and randomized algorithms: avoiding the
general vertical splittings, or taking a “natural” ordering of the variables
requires exponential time. The example is the following:

I= (350151, T1Z2y . .- 7$n—1xn)

A randomized algorithm splits the staircase horizontally in two staircases,
one with n — 2 and one with n — 3 elements; these can be split vertically,
and the expected lengths are in ratio 3 : 1. Hence the expected complexity
is polynomial.

If no vertical splittings are allowed, more than 2*/2 steps are necessary.
Moreover, if we always choose as pivot the lowest (or highest) possible vari-
able appearing in more than one monomial, the splittings are always bad,
and no vertical splittings are useful.

The algorithm of [BS] in this case has the same type of behaviour; however
their heuristics is in this case the worst possible, and even with vertical
splittings the algorithm remains exponential.

Indeed, with 42 variables the example can be computed with our imple-
mentation in 2, (with 101 variables it takes 40"); without vertical splittings
in 42 variables it takes 6’, and 13h47" with the algorithm of [BS].
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