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Toric ideals are binomial ideals which represent the algebraic relations of sets of power
products. They appear in many problems arising from different branches of mathematics.
In this paper, we develop new theories which allow us to devise a parallel algorithm and
an efficient elimination algorithm. In many respects they improve existing algorithms
for the computation of toric ideals.
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1. Introduction

There is a problem in mathematical literature which has recently received considerable
attention. It is the problem of computing the algebraic relations of a set of power prod-
ucts. The reason for this attention is that the problem is related to many fundamental
questions arising from several branches of mathematics, such as integer programming,
statistics, combinatorics, and it is also the basic step of any procedure which “computes”
SAGBI bases (see Robbiano and Sweedler, 1988). For a nice introduction to the subject
see Sturmfels (1996) and Eisenbud and Sturmfels (1996). There are many algorithms
which solve the problem, but here the issue is efficiency, because in the applications
one has to compute relations of huge numbers of power products in a huge number of
indeterminates.

We start by explaining what is known with the help of a very easy problem, which we
take as our guide. Let us consider the following example: we want to compute a set of
generators of the toric ideal 7, which describes the algebraic relations of power products
{st, s3t%, st3, 5°t2}. This means that we wish to compute the kernel of the k-algebra
homomorphism = : k[X,Y, Z, W] — k[s,t] given by X + st, Y > 32, Z — st®, W
s5¢2. If we consider the ideal J of k[s,t, X,Y, Z, W] generated by {X —st, Y —s3t%, Z —
st®, W — s5¢2}, the solution to our problem is J Nk[X,Y, Z, W], which can be obtained
by performing (in CoCoA) Elim(s..t, J). This means that we compute a Grébner basis
G of J with a suitable elimination order and then take ¢ N k[X,Y, Z, W]. This remark
already shows that 7 is generated by binomials (i.e. differences of power products) and
indeed, if we denote by T1,T: power products in X,Y,Z, W, then I is generated by
{Th = T3 | 7(T1) = w(Ty)} (see Sturmfels, 1996, Lemma 4.1, p. 31 for a direct proof).
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In our case, the Grébner basis from which we compute Elim(s..t,J) is

G:={-st+X,-t’X + 7 —tX? + 52,57 - X3, -s X2+ Y,tY — X3,
—SYZ+ X5 X" —~Y?Z,—*Y + W,—X3Y + ZW, —sXY +tW,tZW
XSt XW —Y? —XW 4+ Y3, —sZW + XY? sY?
~X2W, 2 W — X%V, Y4 — XZW?},

hence, the solution is the ideal Z generated by {X7 — Y?Z, —X3Y + ZW, - X*W +
Y3 Y- XZW?).

We observe that 7 is homogeneous. Namely, if we give weight 1 to s and ¢, we obtain
deg(X) = 2, deg(Y) = 5, deg(Z) = 4, deg(W) = 7. More precisely, the fact that we
have power products in two indeterminates s, ¢ implies that 7 is bihomogeneous, but in
the paper we are not going to use this fact. This implies (Nakayama’s Lemma) that the
minimal sets of generators of Z have the same number of elements; in our case we obtain
{X"-Y?%Z, X3Y — ZW, X*W — Y3} as a minimal set of generators of the ideal Z.

This could be the end of the story, but this way is, in general, (certainly not in our
simple example) too expensive from the computational point of view.

So one follows a different path. Namely, suppose that a binomial T — T is in the
kernel. Let us write T} := X® Y1 Za W and T, := X*Y?2Z2W32 Then we obtain

Sal+3b1+01+5d1 . ta1+261+301+2d1 — Sa2+3b2+02+5d2 ,taz+2b2+302+2d2

If we put @ :=ay —ag, b:=by — by, c:=c1 — ¢z, d:=d; — dg, we obtain
a+3b+c+5d =a+ 2b+ 3¢+ 2d = 0, which can be written as

11
(¢ b ¢ d)A=(0 0), where A := :; g
5 2

We denote by Ker(A) the free Z-module of the solutions of the homogeneous diophantine
system associated to A. To every element in Ker(A) we may associate an element in Z.
For instance (—3,—1,1,1) is a solution and we associate ZW — X3Y € 7, and we could
as well say that (3,1, ~1,—1) is a solution and associate X3Y — ZW € T.

The next fundamental step is to use the fact that the following conditions are equivalent
(see Lemma 12.2 p.114 in Sturmfels, 1996):

(1) L C Ker(A) spans the lattice Ker(A), W (z
2) Ip KXY, Z,Wxyzw =T k[X,Y,Z,Wlxyzw, T © 9,
(8) I : (XYZW)>® =T, #€———

where I, denotes the ideal generated by the binomials associated with the vectors in L
and I, : (XY ZW)* denotes the saturation of I, with respect to XY ZW.

So let us see what happens in our example. We wish to compute I, hence, we need
to compute L, a Z-basis of Ker(A). We know that #(L) = n — p, where n and p are
the number of rows and the rank of A; in our example #(L) = 2. There are well-known
algorithms which compute that basis in polynomial time, for instance by computing the
Hermitian normal form of A. In our example, we perform elementary operations on the
rows of A and keep track of the corresponding operations on the identity matrix. We
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obtain
1 0 0 0 1 1 1 0 0 0 1 1
Soro|aslo o hee [T, T ofas={0
-5 0 0 1 0 -3 4 -3 0 1 0 0
Therefore, if we let
1 0 0 0
E = :3 é (1) 8 and (a b ¢ d)y=(d V¥V ¢ d)E,
4 -3 0 1
we obtain
1 1
(@ v ¢ a)|g o|=00 0.
0 o0
/

A basis of solutions with respect to o', ¥, ¢/, d' is given by {(0, 0, 1,0), (0, 0, 0,1)},
which corresponds to the two solutions with respect to a, b, ¢, d given by the last
two rows of E. In conclusion, we obtain L = {(-7, 2, 1,0), (4, =3, 0 ,1)}, hence
I =(X"-Y?Z, X‘W —-Y3).

The final and, from the computational point of view, most demanding step is to com-
pute the ideal I, : (XY ZW)*°. One way to proceed is to adjoin an indeterminate, say ¢, to
our ring so that we obtain k[t, X, Y, Z, W], then consider the ideal H := I, +(tXY ZW 1)
and finally intersect H with k[X,Y, Z, W]. In other words, we have to compute Elim(t, H),
where H := (-X"+YZ, X*W —Y3 tXYZW —1). The Grobner basis from which we
compute Elim(t,H) is {tXYZW —1, tZ2W? - X2 —tY3Z?2W 4+ X6, X*W-Y3, - X"+
Y2Z, -X3Y + ZW, -Y* + XZW?}. Hence, the solution is the ideal 7 generated by
{XW —Y3, —X"+Y?2Z, —X3Y +ZW, —Y*+ XZW?}. As before, we minimalize and
obtain again 7 = (X*4W — Y3, X7 - Y?2Z, X3Y - ZW).

It is quite clear that this method of computing 7 is superior to the first one, since the
computation of the Grébner basis related to Elim(t,H) is simpler than the computation
of the Grobner basis related to Elim(s..t,J), while the computation of L is based on
polynomial time algorithms and so it can be considered as a sort of “easy preprocessing”.

However, this method is not completely satisfactory yet. It is well known that comput-
ing with homogeneous ideals has many advantages and it is clear that computing with
the least number of indeterminates lowers the complexity. Now with the last method we
have to adjoin a new indeterminate (¢ in our example) and we destroy the homogene-
ity in the sense that we introduce the inhomogeneous polynomial tXY ZW — 1 among
homogeneous ones.

A first easy way of fixing the second problem is to change the method of com-
puting the saturation. Because XY ZW is homogeneous of degree 18, we introduce a
new indeterminate u with degree 18 and the homogeneous polynomial XY ZW — w.
Then, I1,:(XY ZW)*> can be computed from a DegRevLex-Grébner basis of H := I, +
(XY ZW —u). This approach is much faster than the inhomogeneous one (see Algorithm
EATI in Section 3).

The remaining question is how to fix the first problem and recently several new ideas
were developed to attack it. The most relevant ones are described in Sturmfels (1996,
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Chapter 12), for instance, a substantial improvement can be obtained from the following
simple equality

I (XY ZW)™ = (I : X*°) : Y®°) : Z%°) : W),

A priori this way seems to be hopeless, as we trade one for four Grébner basis compu-
tations, but, as we said, Iy is homogeneous and so, to compute Iy : X it suffices to
compute a Grobner basis G of I, with respect to a DegRevLex-order with X smallest
indeterminate and then divide each polynomial in G by the maximum power of X which
divides it. Thus, we obtain a new ideal which is again homogeneous and we continue with
the next Grobner basis, which we perform in the same way (now Y is the smallest inde-
terminate), and so on. We call this a sequential approach, in the sense that one performs
the saturations with respect to the indeterminates in sequence.

Before continuing, one word should be spent on the fact that these approaches also
have many other benefits. The most important one is that we do not need to saturate with
respect to all the indeterminates, as it is very easy to see that at most half of them suffice
(see Hosten and Thomas, 1998) and often many fewer are enough. To explain this fact, let
us have a look at our example. We have to saturate the ideal I, = (X" Y Z, X4W ~Y?3).
We may argue as follows. If we invert X, then the first polynomial tells us that also Y
and Z become invertible modulo Iy. But then the second polynomial tells us that W
also becomes invertible modulo Ir. This implies (see Corollary 2.6) that we obtain the
solution simply by performing Iy, : X°.

Another important feature is that if H is an ideal such that I, € H C 7, then instead
of saturating Iy, we may saturate H. This enables us to

(a) adjoin more generators to Ir. This fact is mainly used in PATI (see below).
(b) compute with pure vectors.

Sentence (b) simply means that if 71, Ty, T are power products and during a computation N e .
we produce TT; —TTy, we may replace it by T —T5. This fact was already pointed out and
used in Pottier (1994) and Thomas (1997) to remove _the al structure. Indeed,
binomials ¢an be substituted by vectors of integers, where, for insta?ﬁé?W -Y3
becomes (4,—3,0,1). Note that in this way, X°YW — X°Y* also becomes (4,—3,0,1).

Having said all these things, it is now time to explain our contribution. First of all, we
describe some conditions in Section 2 which allow us to keep the number of indeterminates
that are necessary to saturate Ij, low. In particular, we indicate (see Corollary 2.9) how
to extend the method of Hosten—Shapiro (see Hosten and Shapiro, 1997).

Then a new idea is to use the homogeneous elimination seen before, combined with
more theoretical results described in Subsection 3.1. The output is an algorithm, called
EATI (Elimination Algorithm for Toric Ideals), which almost always performs much bet-
ter than the others. Another main idea is to substitute the sequential procedure described
previously with a parallel one. More precisely, suppose that we have already computed
I, C k[X,,...,X,] and we know that we have to saturate it with respect to a set of r in-
determinates, say X1, ..., X,. Now suppose that we have r processors. Then the strategy
goes as follows. Each processor computes the saturation with respect to a single inde-
terminate, say X;, by computing a DegRevLex-Grobner basis, where X, is the smallest
indeterminate. Since we use vectors of integers, the computation of the Grobner basis
produces an intermediate ideal which contains I : X7°, is X;-saturated and is contained
in 7. Now suppose the processor works degree by degree. Sometimes a critical pair pro-
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duces a binomial, which reduces to a homogeneous binomial of smaller degree because we
cancel out monomial factors, as we explained before. When this phenomenon happens,
the new element is passed to the other processors, which interrupts their computation and
starts again at the correct degree where the new element is placed. The new algorithm is
called PATT (Parallel Algorithm for Toric Ideals); it has a nice behaviour even on a se-
quential machine mainly because of its cooperative nature: namely, each of the r Grobner
basis computations benefits from the information coming from the others, in particular,
less critical pairs are necessary and more reductors are available (see Section 3). Our
algorithms have been implemented in CoCoA (see http://cocoa.dima.unige.it), and
our choice for CoCoA 3.6 was EATIL.

2. Saturating with a Low Number of Indeterminates

As we said in the introduction, it is important to detect a small set SatInd of in-
determinates, such that the saturation of a given ideal with respect to the product of
all the indeterminates is the same as the saturation with respect to the product of the
indeterminates in Satlnd. We start by recalling a few facts about the saturation of ideals.

DEFINITION 2.1. Let A be a ring, let I be an ideal in A, and let F' be a non-zero divisor
in A. The saturation of I with respect to F is the ideal

TAp N A={G e A|GF" € I for some i € N},

that we denote by I : F'*.
The ideal I is said to be F-saturated if [ = I : [’*°,

LEMMA 2.2, Let I, J be ideals in A such that I CJCI:F>®. ThenJ: F® =] : F>,

Proor. Clearly [ : F*°* C J : F* C (I : F*) : F°. But it is easy to check that
(I:F°):F® =1:F>, and this concludes the proof.O

Now we give an easy lemma concerning saturation with respect to a product and its
factors.

LeEMMA 2.3. Let I be an ideal in A. Then

(1) I:(FG)*® =(I:F>~):G>.
(2) If I is F-saturated and G-saturated, then I is FG-saturated.

ProoF. The proof of (1) is an easy exercise and (2} follows immediately from (1).0

COROLLARY 2.4. Let I and J be ideals in A, such that I C J C I : (FG)®. If J is
F-saturated and G-saturated, then J =T : (FG)*>.

Proor. By Lemma 2.3, 2) we have that J = J : (FG)* and by Lemma 2.2 we conclude
that J =1 : (FG)*.0

PROPOSITION 2.5. Let I be an ideal in A and F,G non-zero divisors in A. Then the
following conditions are equivalent
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(1) I: F*> is G-saturated.
(2) I:F*=1:(FG)>™.
(8) 1AF is G-saturated.
(4) IAF = IApg N Af.

Proor. The equivalence between.(1) and (2) follows from the formula
I:FRC(I:F®):(G>®=1:(FG)™,

where the last equality comes from Lemma 2.3. The equivalence between (3) and (4)
follows from the formula

IAp CIAR: (G)oo = (IAF)AG NAp =IApg N Ap.
From (4) it follows that
IApﬂAZIAFGmAFﬁA:IAFGﬂA,

hence (2) follows. It remains to show that (2) implies (4). Let r € TApg N Ap. Then
there exist o, 3 € N such that

_ 1 a

= Fop ~ T
with ¢ € ] and a € A. Then F*r € ANTApg = ANIAr C IAfp. Therefore r € [Ap
and we are done.O

COROLLARY 2.6. Let I be an ideal in A and F,G non-zero divisors in A and assume
that G is a non-zero divisor in Ap/IAp. Then I : F>*° =11 : (FG)™.

In particular the conclusion is valid in the following cases

(1) G is invertible in Ap/IAF.
(2) IAFr is prime and G ¢ [ Ap.

PRroOF. By assumption Ap/IAp embeds in (Ap/IAr)q, which is canonically isomor-
phic to Apg/IApg. Therefore IAp = [Apg N Ar and we conclude by Proposition 2.5.0

DEFINITION 2.7. A binomial is a difference of power products. A binomial ideal is an
ideal generated by binomials. If 77, T, are coprime power products, then 7, — 75 is said
to be a pure binomial.

DEFINITION 2.8. We denote by Indets the set of all the indeterminates and if E C
{1,...,n} by Satlndg the corresponding subset of Indets. Then we denote by I :=
HiG{l,..‘,n} X; and by Ilg =[],y Xi.

CoOROLLARY 2.9. (Hosten—Shapiro) Let I be an ideal in R generated by pure binomials.
Then there exists E C {1,...,n} and #(E) < %, such that I : TIg™ =1 : II*°.

Proor. If a binomial A~ B isin I, then inverting all the indeterminates in A causes the
indeterminates in B to become invertible modulo I. Since GCD(A4, B) = 1, either A or
B has a number of indeterminates which is smaller than or equal to the total number of
indeterminates involved in A and B. If this is true for all the indeterminates then we are
done, otherwise we repeat the argument with the remaining ones. At the end, we have
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inverted all the indeterminates modulo [ just by inverting at most half of them, and we
conclude by Corollary 2.6.0

This Corollary yields a procedure, called HS, which allows us to saturate with respect
to a remarkably small number of indeterminates. However, there are several situations
where such bound can be improved as we are going to see.

EXAMPLE 2.1. Let I := (X1X3 — X3X4). It is a prime ideal, hence I := [ : II*°. We
observe that HS would require a saturation with two indeterminates, e.g. X; X5.

EXAMPLE 2.2, Let I 1= (X1X2X35 — X4X5X6, X5X7 — X1X5X5). The application of
HS would suggest saturating with respect to X; X2 X3 (or other triples of indeterminates
like for instance X5.X7.X4). But much better can be done. Namely we let E := {5} hence
g := Xs; then X7 = X152Xs in Ry, so that Rx,/IRx, = k[X1, X5, X3, X4, X5, Xe]x,/
(X1X2X3 — X4X5X6), which is an integral domain. In conclusion, I Ry, is prime, hence
we apply Corollary 2.6, (2) and conclude that I : X5 = I : II*, i.e. it suffices to
saturate I simply with Xs.

ExAMPLE 2.3. Here we consider the Example on p. 333 of Li et al. (1997). Let I :=
(X2X4 — X(;Xg, X2X82 ins Xg, X1X3 — X5X7, X%X7 — X%X‘s) The application of HS
would suggest we saturate with respect to Xy X3X, (or X4X5Xv7, ...). Let us see how
to use Corollary 2.6 to obtain a better result. Let £ := {1, 4} hence IIg := X; X, and
let us invert it; looking at the first two equations we see that X5, X4, Xg also become

invertible modulo I Rx, x,. The third equation becomes X3 — %5%1 Substituting into the

fourth equation, yields X2X; — XX2  cquivalently X¢X; ~ X3X2 = X(X% — X3X7).
1

This means that if J := I + (X} — X3X7), then I : II®° = J : II*°. But JRx,x, =

(X2 Xy — X6 Xs, XoX3 — X3, X3— %52, X{ - X3X7), hence in Rx, x,/J Rx, x, all the

indeterminates are invertible, so that J : (X;X4)™ = I : TI*® by Corollary 2.6, (1).

The next result is very helpful in the computation of the homogeneous primitive par-
tition identities (see Sturmfels, 1996, Chapter 6). A first hint to the result was given by
Sturmfels in a private communication to La Scala.

COROLLARY 2.10. Let I be the ideal generated by {X1X3Y? — X2Y1Y3, X2X,Y5 —
XYYy, o XD X Y — XPYPY, 00 ) in the ring k[X1, ..., Xns1, Y1,y Yogd).
To compute the distribution of the homogeneous primitive partition identities it suffices
to compute I : (X,Y5)™.

Proor. It is known (see Sturmfels, 1996 p. 49) that in order to compute the homogeneous
primitive partition identities we have to find the Graver basis elements for A, where

1 1 ... 1
A= (1 2 ... n+1>’
hence, (see Sturmfels, 1996 Theorem 7.1 p. 55) we have to compute the toric ideal cor-
responding to the matrix
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A set of generators of the kernel ideal is {X1X3Y? — X2Y1Ya, X12X4Y23 — X3Y?2Yy,

...,XI"_IXHHYQ” - X;)"l"_lyn+1}, so the problem is to compute I : II*®. Let IIg :=

X1Y2. If we invert IIg the first equation becomes X3 — %lﬁy—){i; we do the same with
2

ny n—1
the subsequent equations up to the last one, which becomes X,,,; — Xg—;n%i?y;‘i, hence
1 2

IRx,y, is prime and we may conclude by Corollary 2.6, (2).0

3. Computing the Saturation with Respect to a Set of Indeterminates

Let w := (wo, w1, ..., wy,), where w; € N* for i = 0,...,n; let k be a field and
Xo, -+, Xn independent indeterminates over k. We consider the polynomial ring S :=
k[Xo,...,Xy,] graded over w, i.e. deg(X;) = w;.

We recall the following well-known theorem, from which one can draw an efficient way
to compute I : X*, the saturation of I with respect to an indeterminate X,. For the
sake of completeness, we include the easy proof.

THEOREM 3.1. Let I be an ideal in S homogeneous with respect to w and o a term-
order represented by a matriz whose first row is w and second row is (=1, 0, ..., 0 ).
Let {Xo" F1,Xo"*Fs,..., X0 F,} be a o-Grébner basis of 1 of w-homogeneous ele-
ments, where Xo[F; for ¢ == 1,...,r. Then {F1,...,F.} is a o-Grébner basis of I :
Xo®°.

PROOF. Let F be a polynomial in I : X;™; we need to show that there exists i such
that Lt,(F;) | Lt,(F). The assumption that F € I : Xo> means that there exists
m € N such that Xo™ - F' € I. As a consequence Xo™ - Lt,(F) € Lt,(I), hence,
there exists an index i such that Xo% - Lt,(F;) | Xo™ - Lto(F). But Xo/F;, hence
XofLts(Fi) by the assumption on ¢, hence Lt,(F;) | Lt,(F) and this concludes the
proof.0

Now we wish to extend the method explained in Theorem 3.1 to the general case. We
need the following technical result.

LEMMA 3.2. Let A C B be an inclusion of rings, I an ideal in A, L an ideal in B and
assume that IBN A = 1. Then

(1) The canonical homomorphism A/I — B/IB is injective.
(2) Identifying A/I with its canonical image in B/IB, we have

(IB+L)nA)/I=(UB+ L)/IB)n(A/I).
PROOF. The easy proof is left to the reader.0

COROLLARY 3.3. Let w := (wo, w1, ..., wp), where w; € NT fori:=0,...,n
and let S = k[Xo,X1,...,X,] be graded over w. Let J be a homogeneous ideal in S
with respect to w, F' a non-zero homogeneous polynomial of S of degree d and S[U] :=
kU, Xo,X1,...,Xx] graded over w' := (d, wo, wi, ..., wy).Leto bea term-order
on S[U] represented by a matriz whose first row is w' and second row is (=1, 0, ..., 0).
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Let {UnFy,U%F,,...,U%F.} be a 0-Grébner basis of (F — U,J) of w’-homogeneous
elements, where U [F; fori:=1,...,r. Then

JSpNS=J:(F)® =(F,...,F),
where F] is the polynomial obtained by substituting U with F in F;.

Proor. Using the Theorem 3.1 applied to the ideal (F — U, J)S[U] we deduce that
(F—U,J)S[UlyNS[U] = (Fy,...,F.), hence (Fy,..., F)/(F=U) = (F U, J)S[U]y N
S[U))/(F - U). Now we apply Lemma 3.2 to A := S[U], B := S[U]y, I := (F - U)A4,
L := JB and we obtain ((F -U, J)S[U]|ynSU)/(F-U) = (F-U, )S[U]y/(F-U))n
S[U]/(F —U) We observe that ((F—U,J)S[Uly/(F -U)) 2 JSp and S[U]/(F~-U) = S

and we are done.O

Our goal is to compute the saturation of a w-homogeneous binomial ideal I with respect
to the product of all the indeterminates. As we said in the introduction, a well-known
method (see Pottier, 1994) suggests we remove monomial factors from the binomials
during the computation of the Grébner basis. So we need the following definitions.

DEFINITION 3.4. Let F' be a binomial, F := TT} — TT; with T; and T, coprime. Then
we call the pure binomial T} — 75 the saturation of F, and we denote it by Sat(F).

DEFINITION 3.5. Let L be a list of binomials ordered by a term-order ¢ and F' a bino-
mial. We define the saturating remainder of F' with respect to L, and we denote it by
SatRem(F), the binomial obtained in the following way: if F” is obtained as an inter-
mediate step during the division of F' by L, then F” is replaced by Sat(F’). We define
the saturating S-polynomial of F' and G to be the binomial Sat(SP(F, g)), which we
simply denote by SatSP(F,G).

Now we need a general result.

LEMMA 3.6. Let I be an ideal in a polynomial ring and o a term-order. Suppose that
during the computation of a o-Grébner basis of I via the Buchberger Algorithm we sub-
stitute some polynomials with one of their factors. Then we compute the o-Griobner basis
of an ideal J which contains I.

PROOF. The easy proof is left to the reader.0

COROLLARY 3.7. Let I , w and o be as in Theorem 3.1. Suppose that during the com-
putation of a o-Grobner basis of I we use the following strategy

(a) we discard some of the pairs (F,G) with the property that Rem(SP(F,G)) = 0.
(b) we substitute all the polynomials F with Sat(F).

Then we obtain o o-Grébner basis of an ideal J such that [ : Xo>® C J =J: Xo*™°.
PrROOF. The easy proof based on Theorem 3.1 and Lemma 3.6 is left to the reader.O

Suppose that we want to saturate a binomial ideal I with respect to all the inde-
terminates and that we know that it suffices to saturate it with respect to a subset of
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indeterminates SatIndg, E C {1,...,n}, which is always the case as we have seen in
Section 2. We describe two new algorithms, which do the job:

3.1. ELIMINATION ALGORITHM FOR TORIC IDEALS (EATI)

DEFINITION 3.8. Let o be a term-order and F' := Ty — T} a binomial such that T} >, T».
Then we call as usual leading term of F the power-product T and we denote it by Lt,(F).
Similarly, we call the power-product T the tail of F', and we denote it by T, (F). If it
is not necessary to specify o, we simply write Lt(¥) and TI(F).

DEFINITION 3.9. We denote by ¢ a term order on S[U] := k[U, X, ..., X, represented
by a matrix whose first row is w := (d,wp,...,w,), second row is (=1, 0, ..., 0)
and following rows (0, ..., -1, ..., 0) with —1 in sth position for each i € E.

DEFINITION 3.10. Let L be a list of binomials ordered by a term-order ¢ and F a
binomial. We define the elimination-saturating remainder of F with respect to L
and, we denote it by ElimSatRem(F), the binomial obtained in the following way: let F’ =
SatRem(F). If U divides TI(F’), then we perform the substitution U — IIz and obtain
a binomial F”. If Lt(F') = Lt(F") then ElimSatRem(F) returns Sat(F"), otherwise it
returns F”.

PROPOSITION 3.11. Let I be an ideal generated by binomials. The following algorithm
returns a Grobner basis G of the ideal (I,11g — U) with respect to 0. The subset G' of the
binomials F in G such that U | TI(F) is a Grébner basis of the toric ideal (I : TI) with
respect to o.

ALGORITHM EATI

Start with:
F the list containing a set of binomial generators of I and the binomial IIg — U,
d the minimum degree in F,
G := 0 and Pairs := §.

While d < oo do these steps:

(1) take a pair C of degree d from Pairs and compute
F := ElimSatRem(SatSP(C)) wrt the elements of G.
If F' # 0 then add F to G and add the pairs given by F and the elements of G to
Pairs.
If deg(F') < d go to 3, otherwise take another pair of degree d and repeat.
(2) take a binomial F of degree d from F and compute
F:= ElimSatRem(F) wrt the elements of G.
If F 5 0 then then add F to G and add the pairs given by F and the elements of
G to Pairs.
If deg(F) < d go to 3, otherwise take another binomial of degree d and repeat.
(3) d:= minimum degree in F and Pairs.

PRrOOF. First we prove that G’ is a Grobner basis. We need to show that any S-polynomial
given by binomials in G’ reduces to zero with respect to G’. Note that, by definition of
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elimination-saturating remainder, each binomial F in G\G’ have U| T1(F) and the sub-
stitution U +— IIg would give Lt(F) < TI(F). This means that the smallest saturating
indeterminate Xy appears in Lt(F), more precisely degy, (Lt(F')) > degy (T1(F')). There-
fore, such a binomial cannot be a reducer for a binomial F in k[Xp, X1,..., X,,] as the
smallest indeterminate X} cannot appear in Lt(F”). So the reduction to zero of any
S-polynomial given by binomials in G’ is performed by elements of G’ itself.

Now we prove that G’ is a Grobner basis for (I : II*®). By Corollary 3.3 we have
that (I : II*°) is generated by the substitution U + Mg. Let F' € G\G’ and perform
the substitution. We have seen that this operation gives UF’. This implies that F” is in
(I : T*°) and then reduces to zero with respect to G’. Therefore all elements in G\G’
generate redundant generators for the toric ideal.O

3.2. PARALLEL ALGORITHM FOR TORIC IDEALS (PATI)

DEFINITION 3.12. For all i = 1,... n, we denote by o; a term order represented by a
matrix whose first row is w and following row is (0, ..., =1, ...,0) with —1 in sth
position.

We call a 0;,-Grobner basis a Grébner basis with respect to o;.

ProPosITION 3.13. Let I be an ideal generated by binomials. The following algorithm
returns #(E) Gréobner bases of the ideal I.

ALGORITHM PATI

Start with:
F the list containing a set of binomial generators of I,
d the minimum degree in F,
Go, = 0 and Pairs,, := §, for each i € E.

While d < oo do these steps:

(1) take a pair C of degree d from some Pairs,, and compute
F:= SatRem(SatSP(C)) wrt the elements of G, .
If F # 0 and deg(F') = d then add F to G,, and add the pairs given by F and the
elements of G, to Pairs,,, then take another pair of degree d and repeat.
If F # 0 and deg(F) < d, update G,, and Pairs,,, for each i € E, as described in 2
and then go to 3.

(2) take a binomial F of degree d from F and compute, for each i € E,
F; := SatRem(F) wrt G, . If for some j, deg(F;) < deg(F) then repeat the reduction
on F:= Fj.
HF#0 (& FEI s F; #0 for each i € E) then, for each i € E, add F; to G,
and add the pairs given by F; and the elements of G,, to Pairs,, .

(3) d:= minimum degree in F and Pairs,,.

PROOF. We prove the correctness of the Algorithm PATI. As we see in the description
above, when SatRem(SatSP(C)) has smaller degree than Rem(SP(C)) during the compu-
tation of the o;-Grobner basis for some ¢, then we pass the polynomial to the computation
of all the j-Grobner bases, j # 4. In this way we are computing #(FE) Grobner bases
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of an ideal which changes during the computation itself, but which is, at any time, the
same for all the term orders.

At the end, we obtain #(E) Grobner bases of an ideal J such that J C I : IIg™, be-
cause the only changes to the original ideal I are divisions by power products. Moreover,
I: X CJ=J:XXforall i € E, by Corollary 3.7. Now we use Corollary 2.4 and we
obtain J = I : TIg*°, where as usual IIg := [Licg Xiand I : TIg™ =1 : TI®°.0

A line of PATI reads

add the pairs given by F; and the elements of G,, to Pairs,,.

In this subsection we describe some criteria in order to delete unnecessary critical pairs
in the Algorithm PATI. First, we check that the classical criteria can be used.

REMARK 3.14. The first remark is that if M, denotes the module generated by the
syzygies in Pairs,, (see Capani et al., 1997, Section 3 for a detailed description), we can
substitute Pairs,, with any subset of it which contains a minimal set of generators of
M;. For the remaining ones it is well known that the corresponding S-polynomial would
reduce to zero, hence we may apply Corollary 3.7. Moreover, there is no problem in using
the coprime criterion because if F, G are such that Lt(F) and Lt(G) are coprime, then
clearly SP(F,G) reduces to zero and again we may apply Corollary 3.7.

Now we describe one more criterion, which turns out to be very important for the
optimization of PATI.

We have seen that, during the computation, Algorithm PATI always uses pure bino-
mials. We recall that we denote by SatIndg the subset of indeterminates which we use
to saturate the binomial ideal I.

PROPOSITION 3.15. - Criterion Tail. Let F and G be two binomials. If Ind denotes
the set of indeterminates which divide GCD(Tl,,(F), Tl,,(G)), assume that there ezist
h > 1 such that X}, € SatIndg N Ind. Then the pair associated to (F,G) can be discarded
from the set Pairs,, .

PRoOF. By assumption, there exists h € E such that X,|GCD(TI(F), TI(G)). This im-
plies that SP,, (F, G) = Xj-H for a suitable binomial H (not necessarily pure). Therefore
H e I:Xp° CJ, hence SP(F,G) will reduce to zero and we apply Corollary 3.7.00

REMARK 3.16. The criterion above can be applied because even if the o,,-Grébner basis
is not computed yet, we know that sooner or later it will be computed. At that time we
have the necessary polynomials which reduce SP(F, G) to zero. But this is of no concern,
as the critical pairs can be handled in any order.

The following Lemma tells us that the criterion Tail applies when deg(SatSP(F,G)) <
deg(SP(F,G)) as both assume that GCD(TI(F), TI(G)) # 1.

LEmMA 3.17. Let F' and G be two pure binomials. Then the following conditions are
equivalent
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(1)
(2)

SP(F,G) = SatSP(F,G).
GCD(TI(F), T(G)) = 1.

PRroOOF. The easy proof is left to the reader.O

3.3. REMARKS

Algorithm PATI works very well (even on a sequential machine) mainly because of
its cooperative nature. We mean that every o,-Grobner basis takes advantage of the
information coming from the others. In particular the ideal J, of which we compute
#(F) Grobner bases, changes during the computation, but is always the same for every
i € E. This implies that

(a)
(b)

(¢)

we may use Criterion Tail.

for every i € F, the corresponding computation benefits from more reductors. The
drawback can be space complexity, but only on a sequential machine.

we may use an Hilbert-driven strategy (see Traverso, 1996 and Caboara et al.,
1996). Namely, when we finish the computation of the i-Grdbner basis for some 7 in
some degree d we know the dimension of the current ideal J in degree d. We obtain
this information computing the Hilbert function of the partial --Grobner basis (see
Bigatti, 1997) and then we compare it with the Hilbert functions of the j-Grébner
basis, for each j # i. The difference between the two values is the missing number
of elements of the j-Grébuner basis in degree d. If it is zero, we can delete all the
pairs of degree d from the computation of the j-Grobner basis. The Hilbert function
of the i-Grébner basis holds for all computations of degree d unless we find a new
generator F', whose degree is obviously smaller than d. In this case the ideal is
modified and so also the Hilbert function. This can be very useful at the end of the
computation.

Another way of lowering the complexity of computing toric ideals is to detect small
sets E C {1,...,n}, such that it suffices to saturate with respect to the indeterminates
in E. The idea could be to generalize the argument given in Example 2.3. Of course the
greatest benefit would go to the sequential algorithm and to PATI run on a sequential

machine.

Example Ind Gens Sat GB PATIT Seq EATI
Rnd6x12,0-3 12 48 2 1030 6.89 s 5.64s 6.75 s
Rnd6x12,0-3 12 48 3 1068 11.36 s 8.74 s 12.13 s
Rnd6x12,0-3 12 48 3 882 6.71 s 5.55 s 6.34 s
VT5,4,2 45 320 2 789 1292 s 12.66 s 6.76 s
VT7,4,1 35 224 3 308 142s 1.57 s 0.61 s
VT4,4,4 35 248 2 526 3.97s 3.88s 212s
HS2,10 45 280 5 568 14.25 s 12.64 s 2.61s
HS3,8 56 384 3 1127 60.82 s 56.32 s 22.30 s
CG11 55 352 6 902 71.12 s 80.17 s 11.05 s
CG12 66 432 6 1344 230.32 s 289.90 s 32.16 s
HPPI10 20 8 2 1830 21.85 s 18.12 s 10.40 s
HPPI11 22 9 2 3916 127.85 s 132.73 s 79.10 s
HPPI12 24 10 2 8569 771.37 s 903.51 s 560.74 s
DiagG4x5,3 40 208 7 163 092s 0.87s 0.61s
DiagS5x5,3 100 704 5 854 46.03 s 45.00 s 25.75 s
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4. Description of the Examples and Timings

The examples which are randomly generated are denoted by the prefix “Rnd”. For
instance, Rnd6x12,0-3 is a random matrix of dimensions 6 by 12 with integer entries in
the range 0-3. We give three examples of this sort as their behaviour may vary.

The following examples have a combinatorial structure. For a complete description see
the indicated chapters in Sturmfels (1996).

The first class of “combinatorial” examples in our list is given by the Veronese-type
varieties that we have denoted by the “VT” prefix. For instance, according to Sturmfels
notation of section 14.A, VT5,4,2 is the Veronese-type variety with parameters d = 5,r =
5,81,...,84 = 2.

The examples of “HS” type are configurations corresponding to rth hyper-simplexes
(see Chapter 9 and p. 84 of Sturmfels, 1996). For instance, HS3,8 is the configuration of
the third hyper-simplex of R® (equivalent to VT8,3,1).

The “CGn” examples are given by the node-edge incidence matrices of the complete
graphs on n nodes. More specifically, the toric ideal is the kernel of the following map:
Ti; = ity 1 <i < j <n (equivalent to VTn,2,1).

Other examples we have considered are homogeneous primitive partition identities (see
Chapter 6 of Sturmfels, 1996), denoted by the “HPPI” prefix.

The example DiagG4x5,3 is the toric ideal which describes the algebra generated by
the diagonal terms of 3 x 3-minors of a 4 x 5 generic matrix. The example DiagS5x5,3
corresponds to 3 x 3-minors of a 5 X 5 symmetric matrix.

The examples were computed on a SUNW,Ultra-1, RAM 64Mb, 140 Mhz, compiled
with gee -O2. The meaning of the columns is the following:

“Ind” denotes the number of indeterminates in the corresponding example;

“Gens” denotes the number of the binomials given in input;

“Sat” is the number of indeterminates which we use to saturate;

“GB” is the number of elements in the final Grébner basis:

“PATI” is the timing in seconds obtained with the algorithm PATT;

“Seq” is the timing in seconds obtained with the sequential algorithm;

“EATY” is the timing in seconds obtained with the algorithm EATT.

Great advantage in the computation is given by the coding of the leading terms of
the binomials as described in Bigatti (1997). Briefly, we associate to any monomial with
support {x;_,...,2;,} a 32-bit unsigned integer whose binary expansions have 1s in the
i;th places and Os elsewhere. This representation, which takes very little memory, allows
us to compare the supports very quickly via built-in bitwise functions.
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