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ALGORITHMS IN ALGEBRA

Abraham Robinson

[Robinson planned to deliver a lecture on the topic of ' ‘algorithms in algebra’’ at the
meeting on algebra and logic held at Monash University (Australia) in January—
February 1974. However, his iliness made it impossible for him to attend the meeting;
it also prevented him from ever finishing the paper. What he left was a preliminary
manuscript.

It seemed clear that the paper was worth publishing in some form, and-we attempted
to produce a revised version adhering as closely as possible to Robinson’s own plan
and ideas. The most substantial changes were made in sections 5 and 8; in the former
case we benefited from a set of notes from a lecture Robinson gave on the subject at

Yale.
It goes without saying that in publishing this manuscript we accept responsibility

for any errors. —D. H. Saracino and V. B. Weispfenning, editors of Mode! Theory
and Algebra: A Memorial Tribute to Abraham Robinson]

1. Introduction. The notion of a computable function or relation in the domain of
natural numbers is by now standard, and the fact that it is explicated correctly by the
notion of recursivity (Church’s thesis) is no longer open to doubt. Even so it is an
intriguing philosophical problem to what category exactly this notion belongs (e.g.,
depending on one’s school of thought, analytic, synthetic a priori, theoretical, empiri-
cal). Let me begin this talk by drawing your attention to the fact that the notion of
computability in algebra is less clear, and that here it is even not obvious whether we
are aiming at the explication of an objectively given notion, or at the description of the
various activities of a number of individuals which they considered to be *‘effective”
or “‘realizable in a finite number of steps.”’

A major figure in the history of effective methods in algebra was Kronecker. Among
other things, he proposed [7] a method by which the reducibility of a polynomial of
one variable with rational coefficients can be tested, and another by which the
reducibility of polynomials of several variables is reduced to the reducibility of
polynomials in a single variable. In a more advanced area he showed how to
determine, effectively, the irreducible components of an algebraic variety (see below).
However, the formal tools available in Kronecker’s time precluded a precise determi-
nation of the notion of effectiveness, even if he had been disposed philosophically to
embark on such an enterprise.

Kronecker was not the first mathematician to employ effective methods. He was the
first to do so consciously, because until about 1850 mathematicians were not even
aware of a possible distinction between abstract and effective mathematics. Thus, the
determination of the number of real roots of a polynomial in a given interval, which
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antedates that period (Sturm) is a beautiful example of an effective method, and, as -
you know, it is the basis of Tarski’s decision method for the algebraic theory of real
numbers. But even earlier (as in the first book which contains the term in its title)
“‘Algebra’’ was regarded as a practical method of computation, and the name of the
author of that book (al-Khowarizmi) was immortalized in the very word ‘‘algorithm.”

2. Previous work. The first paper that discusses the notion of effectiveness in algebra is
that of Shepherdson and Frolich {15]. They reduce the notion of effectiveness in
algebra to the corresponding notion in arithmetic by assuming that the structure within
which a certain problem is to be solved effectively is given recursively, i.e. that it is, or
is represented by, recursive functions. Among the questions treated by Shepherdson-
Frolich is that of the existence of an effective method to test the reducibility of an
equation. They conclude, following an earlier argument of van der Waerden, that there
is no general decision procedure for this problem (uniformly applicable to all fields).
More precisely, they “‘construct” (in the indicated sense) a particular field which has
no decision procedure for this problem.

It may be argued that an effective procedure in an algebraic structure should be
independent of the recursive nature of the structure, more generally it should be
equally applicable to an algebraic structure (of a given type) which is not countable. In
this vein, there exist several papers (Fraissé [3], Peter {9], Lambert [8]). Lambert
introduces a kind of mixed recursive schemes which involve both elements of a given
algebraic structure and natural numbers. The motivation for this is that even in an
arbitrary algebraic structure, ¢.g. a group, which does not involve natural numbers a
priori, they may intervene as soon as we try to introduce the powers of an element, by
definition, as a function of two variables, a in the structure and rn ih the natural
numbers. A theory of inductive definitions which has some similarities with Lambert’s
has been developed more recently by Moschovakis and others.

A theory of algebraic algorithms which is closer in spirit to contemporary model
theory on the one hand and to computer programming on the other, has been developed
in recent years by Erwin Engeler [2]. Let M be a model-theoretic structure. Engeler
considers programs consisting of commands of the following kind. (i) operational
instructions: do s then go to j (where i is an operation and j is the label of another
instruction), and (ii): if ¢ then go to j, else go to k, where ¢ is a statement concern-
ing the structure whose truth or falsehood is revealed by oracle (i.e., is supposed
known, for the purpose of carrying out the program). The operations are of the form
Xt =g (X, . - ., X5.),€.8. X;0 = x5, which implies that we may delete the content of
cell x; and replace it by the content of cell x;,,. Engeler associates a formula of an
infinitary language with each program, so that it holds in a structure iff the program is
effective for it (terminates).

Finally, it is appropriate to mention here a notion introduced by Paul J. Cohen in
connection with his work on decision procedures [1]. The papers listed above have

stimulated the present work in varying degrees. However, they do not address

themselves to the main problem considered here (see below).
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3. Purpose of Present Investigation. In the present paper, we shall study the connec-
tions between (i) the availability of an algebraic algorithm, (ii) definability in a
first-order theory, and (iii) the existence of certain bounds in relation to an algebraic
property.

The fact that (iii) can be a stepping stone to (i) is a matter of common experience.
For example, suppose that we are given a field F and polynomials fy(x,, . . ., Xp)s o o es
files . - x)and glxy, . . L x)inFlxy, . .o, x,], for specified n, all of degrees less
than positive integer d. We are asked to decide whether or not g belongs to the ideal

generated by f1, . . ., fi, in other words, whether or not
* g=2hf;
where Ay, . . ., hy are again polynomials in the given Flxy, . . ., x,]. Itis not obvious

how to determine this. However, once we are told that there is abound b = b(n, d) such
that if (*) is satisfiable at all then it is satisfiable by polynomials h; of degrees less than
or equal to b, then we may substitute a polynomial of degree b with unknown
coefficients in (*) and we then obtain a system of linear equations whose solvability
settles the problem. It is in fact the actual determination of such a bound which seems
involved historically, either directly, or through the proof of its existence by model-
theoretic means. Moreover, as long as no bound is known, the solvability of (*) is
represented by a predicate which is an infinite disjunction of existential predicates of
the coefficients of f;, g, but this is reduced to a finite disjunction and hence to a
predicate of the lower predicate calculus, once a bound is known. Conversely, if we
know that the infinite disjunction is equivalent to a predicate of the lower predicate
calculus then it must already be equivalent to a finite subdisjunction, by the compact-
ness theorem. While in the case under consideration this is not the way things went in
the first place, there are other cases, in particular in connection with Hilbert's
seventeenth problem, where the existence of such a bound was so determined in the
first place.

In the present paper, we consider the converse question. Does the existence of an
algebraic algorithm always imply the definability of the predicate in question in the
lower predicate calculus, and hence, in cases where the predicate is known to be
equivalent to an infinite disjunction, a reduction to a finite subdisjunction? We shall
show that this is indeed the case, for an appropriate definition of the notion of an
algebraic algorithm. Whether this definition is the right one is, as in the arithmetical
case, not a matter of a purely mathematical argument. In the present context the
argument is evidently stronger the weaker the definition. Accordingly, we shall base
our argument on an algorithm whose effectiveness is in fact relative to a particular
oracle, and discuss various possibilities within that definition subsequently.

The main application of our result will be a clarification of the situation in
Differential Algebra where a number of important decision problems still await
solution.

4. Auxiliary results from model theory. Let K be a consistent set of axioms in the lower
PC including equality, relations and functions, and let 3, be the class of models of K.
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We suppose that %, is closed under unions of ascending chains. By the theorem of
Chang-F.o$-Suszko this is the same as to assume that X is logically equivalent to a set of
V3 sentences. Accordingly, we shall assume that K is a set of V3 sentences.

A set K* in the vocabulary of K with class of models 2* is called the model
completion of K if the following conditions are satisfied. (i) 3 D S*, (ii) every
M € 3, can be embedded in an M* € 3* | (iii) if M € T and M,, M, € 2.* are such that
M C M,, M C M,, then for any sentence X in the vocabulary of M (i.e. with constants
for any of the individuals of M), M, = X if and only if M, F X.

It is known that for any given K as specified there can be up to logical equivalence
not more than one K* and to this extent we are justified in talking of the model
completion [ 12]. The model completion of the theory of commutative fields (and also
of course integral domains) is the theory of algebraically closed fields and the model
completion of the theory of ordered fields is the theory of real closed ordered fields.
The theory of groups and the theory of formally real fields have no model completions
(although they have substitutes which do not concern us here [14]). K*, if it exists, is
also inductive and hence may be supposed to consist of V3 sentences.

Let O* (x, . . ., xq), n = 1, be any predicate in the language of K and let K* be the
model completion of K. Then there exists an existential predicate Q(x,, . . ., x,) such
that the following condition is satisfied.

LetM €3 M*€3*% M* DM, andleta,, . . ., a,denote any elements of M. Then
ME Q(ay, . . ., a,) if and only if M E Q(ay, - . -, ay). Qis called a resultant or test
for Q. Moreover, if the theory of X is universal, i.e. if K may be taken to consist of
universal axioms only, then forn = 1, Q(x,, . . ., x,) may be chosen so as to be free of
quantifiers.

5. Algorithmic Instructions. The language in which we shall formulate our algorithmic
operations is the same as before, but in addition we use IF, PUT, and a symbol: = (We
use PUT where in a computer language we might use DO, because DO is not
appropriate to instantiations (see below).) We also use variables called computational
variables: o, 3, . . .

Let V be a fixed vocabulary, R a k-ary relation symbol not in ¥, and g a k-ary
function symbol not in V. Q, @', will always denote well-formed formulae in the
vocabulary V.

We distinguish the following kinds of instructions.

5.1. A standard instruction [ is of the form

HHUQST. . .:mwiv : muc‘.—;.v\ ”,\,AW‘T. . Jm:v'

where v is not one of the 8y, . . ., Bu, &, . . .. & but where some of these may
coincide. If m = 0 and Q(x, . . ., x,,) is a tautology then we call the instruc-
tion unconditional. Here, f is a composite function of our language. We say vy is intro-
duced by 1.
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5.2. An instantiation I is of the form

IF@z). .. Q2 OBrs- - s Brsrs e - -1 23)
PUTE,. . . €0 0B - o B brs - v &)

where &,,. . ., €, arenotamong By, . . ., Bn. Wesay €, . . ., &, areintroduced by 1.

5.3. Final Instructions. These are of one of the following forms:

i IFQ@B:,....Bn) PUT Rx,... a)
() IFQ@,,...,Bn) PUT MR, ..., a)
(i) IFQB,...,Bm) PUT ar=glay, .. ..an ), k>0.

We refer to instructions of form (i) and (ii) as positive and negative final instructions,
respectively, and to a, . . ., a; as final computational variables.

Fix a k-tuple a,, . . ., a; of computational variables. By a deduction d forR or g,
respectively, with initial variables ¢, . . ., a; we mean a finite sequence of in-
structions as above, such that the following conditions are satisfied. The last and only
the last instruction in 4 is a final instruction / of form 5.3 (i), (ii) or 5.3 (i),
respectively. In particular the final variables in / coincide with the initial variables of d.
Every computational variable occurring in an instruction / in d is either an initial
variable of d or has been introduced by a standard instruction or an instantiation /" in d
preceding /. A computational variable introduced by a standard instruction or an
instantiation / in d does not occur in any instruction /' in d preceding /.

We now regard a deduction as a rule for interpreting the computational varia-
bles as elements of a specific structure, except for the final instruction which we
interpret as defining an instance of a relation or function. In fact, the procedure
is obvious. Suppose we are given a structure M which includes V in its vocabulary,
ay, . .., ap € M, and a deduction d with initial variables «,, . . ., o;. We inter-
pret oy, . . ., ap by ay, . . ., o, respectively. If y is introduced by a standard
instruction of form 5.1 and By, . . ., Bum, &1, . . ., &, have already been interpreted
by by, ..., by, ¢y, . . ., cn € M, then we interpret y by flc;, . . ., ¢u) € M, if
M | Qb,, ..., by,). Otherwise we stop. If &,, .. ., &, are introduced by an
instantiation of form 5.2 and B,, ., Bm have already been interpreted by
by, ..., by €M, then weinterpret £, . . ., &, —to some extent arbitrarily—Dby any
n-tuple ¢y, . . ., ¢, of elements of M which makes Q(b,, . . ., by, €1, . . ., Cp) true
inMincaseME 3Qz)...3z)0Wb,, ..., bn 2, ..., 12,). Otherwise we stop.
We say d is effective at a,, . . ., ap € M, if some such assignment of elements
of M to computational variables mapping «;, . . ., oz onto a, . . ., a, can be carried
out for all instructions in d (i.e. does not stop before the final instruction of d).

Now let 3, be an arithmetical class of models, with vocabulary ¥, and let 7 be a set
of deductions for R with common initial variables «,, . . ., ;. Then we say 7 is a
program for R in %, if
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5.4. (i) (completeness condition) forallM €3, q,, . . ., a, € M, there exists
d € 7 such thatd is effective ata,, . . .,a, EM,
and (ii) (consistency condition) for alld, d’ € 7, allM € X, and all
ay,...,aq. €M, ifdandd’ areeffective ata,, . . ., a, in M, then the final
instructions of d and d' are both positive or both negative.

Similarly, we define a set v of deductions for g with common initial variables

oy, . . ., o, k>0, tobeaprogram for gins., if
5.5. () (completeness condition) forallM € 3, and alla,, . . ., a,_, € M there
exists a; € M and d € 7 such that d is effective at q,, . . ., ay,
and (ii) (consistency condition) forallM € %, and alla,, . . ., a;_, € M there is at
most one g, € M such that ad € « is effective at ay, . . ., a.

Thus a program 77 for R (g) in 2, defines on every M € ¥, a relation R C M* (a function
g M M),

We will also consider the case that the relation R (or the function g) is defined in
advance on every M € 3,. Then we say the program 7 is correct if the relation (or
function) defined by = coincides with R (with g).
Next, we associate with every deduction d with initial variables a;,, . . ., o, a
formula X,4(x,, . . ., x;) in the vocabulary V. Choose a set of ordinary variables x, y,
in one-to-one correspondence with the computational variables. Denote the
variables corresponding to «ty, . . ., ax by xq, . . ., x. Let ¥, be the conjunction of all
the following formulas:

(i) For every standard instruction of form 5.1 in d the formula Q(y,, . . ., ym)
Nz=f(zy,...,zy), Wherey,, . . ., ym,2,2y,. . .,z correspondto B, . . -+ Bms
Y€ s bn

(ii) For every instantiation of form 5.2 in d the formula Q(yy, . . ., Vm, 21, . - -, Z0),
where y;, . . ., ¥, 2y, - . ., zg correspond to By, . . ., B, &1, . . L, En.

(iii) If d has final instruction of form 5.3, the formula Q(y,, .. ., yn), where
Yis - - . Ymcorrespond to By, . . ., Bm-
Let X(x;, . . ., x;) be the formula resulting from Y, by existential quantification of
all the free variables in Y, exceptx, , . . ., x.
It is now apparent from the definition of X, that d is effective ata, , . . . ,a, E M if

and only if M = X.{a,, . , ax). As a consequence conditions 5.4 and 5.5 can be
expressed in terms of the formulas X,;: Let K be a set of sentences in the vocabulary V
and let 2 be the class of models of K. Then 5.4 (i) and (ii) are equivalent to

56. (1) KF(Vx)...(Y5)V aerXa (X - o o, Xk)
and (ii)) K+A derts aren— (V) oo (V) T Xg (g, . .. ) N Xars
A.»\T . .X\..vv

where 77 * (77} is the set of deductions in 7 with positive (negative) final instruction.
Similarly, 5.5 (i) and (ii) are equivalent to
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5.7, (1) KH(Vx)...(Vxs) V aep ( Txp) Xalxq, - - -, xk)
and (i) KFA g per (Vx;) o0 (V) (V200 (Vy) Xalxy, .. 1«1\./
\/k&%&.? B ) .!v X = v\v
Two programs are said to be equivalent in 3,, if they determine the same relation or
function on every M € 3. Notice that every subset 77’ of a program 7 which is itself a
program is equivalent in 2, to .
We now see without difficulty:

5.8. Basic Principle. Every program m contains an equivalent subprogram 7'

which is finite.
Proof. Suppose 7 is a program for R in 3, and %, = Mod (K).

Then by 5.6 (i)

KFE\/ qen Xalcr, . . o, cp)
where ¢, . . . , ¢, are new constants not in V. By the compactness theorem there
exists a finite subset 77 of 7 such that

KFE\ aen Xalcy, . . . ,cx), and s0
KENX). . (Vx)Vaer Xalxs, - 5 x0).

Since 5.6 (ii) is trivially satisfied for 7', 7' is also a program for R in % and hence
equivalent to 7.

If 77 is a program for a function g in X the argument is similar using 5.7 instead of
5.6. This proves our assertion.

As a consequence we have now the following.

Theorem 5.9. Let 3, be an arithmetical class and let 77 be a program for arelation R or
a function g in . Then R or g, respectively, is definable in % by a formula in the
vocabulary V.

Proof. Suppose first that we are dealing with the case of a program = for a relation R
in 3, = Mod (K). We may assume by the basic principle that 7r is finite.
Let

X*(xy, s X)) =N demt XalXy, - oo, X)),
and let
X (g, o o X)) =V geae Xalxy, - - o, xp).
Then by 5.6
KFENMx). .. (V) (Xt (xy, . .., x) VX kg, .o, x0)
and

KF(Vx) ... (Vx) 1T(XT 0y, . o x ) A X (xy, . - X)),
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in other words the exclusive ‘or’. Thus we may conclude that
(Vo) o () (X, . L ) = R(xy, L L, x)
and
(Vx) (V) X (g, . L Lx) = TR (xy, . . ., xp))
holds in 3.

If 77 defines a function g in ¥, we may assume as above that 7 is finite. Then by 5.7
the formula

X(xy, oo X)) =V oaer Xalg, - o0, x5)
defines
gxy, . .. xe ) =xin3.

Remark. Letar be a program for R in 3. Suppose in particular that for all d € 7 the
conditions Q occurring on the left hand side of the instructions in d are all existential.
In that case X* and X~ are also existential, so that R(x,, . . . , %) and its negation are
both existential.

6. Discussion. We now have to consider the question to what extent our computations
may be said to be algorithmic. First of all, can we really carry out each individual step?
This must be supposed to be the case if the conditions are all quantifier-free, since the
ability to carry out an actual basic operation must be presumed. Equally, we cannot
really be said to decide an arbitrary well-formed formula except by ‘‘oracle.”
However, if a predicate is D, i.e. both existential and universal, the question does not
have a clear answer.

For suppose
QUxy, o) =(Ay) . Fyw) Orlys e o o X Vin e o o V)
=(Vz). . . (Vz) Qolxys . . . Xay 20y .., 20),
where O, and Q, are free of quantifiers. Then
QG - x)=Fz) . (Fz) QL - Xz, . 2)).

It follows that if the structure M has an effective enumeration as would be the case if M
is recursive in any of the senses mentioned above {Shepherdson-Frolich-Rabin) then
we can actually check in each particular case whetherornot Q(x,, . . . , x,) is verified.
In particular, if in this case a program 7r has the property that all conditions occurring in
instructions in 7 are D, then the relation or function determined by = is calculable.
Also, in this case, we may find the x; which are introduced by instantiation.

If we have elimination of quantifiers, then all predicates are equivalent to
quantifier-free predicates. And in this case also, the predicate as given may be
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existential, so if it has first been verified, by elimination of quantifiers, we may then, in
the case of a recursive structure, as before, again find the examples of the instantiation
by enumeraticn.

Notice that our deductions are not programs, in the sense that they have no go-to
instructions. This is irrelevant to the main conclusion in which we are interested here.

However, once we have reduced the given program to one, 7', consisting of a finite
number of deductions, it is not difficult to turn this into a practical program, e.g. in the
sense of Engeler. For this purpose, we need only a finite numbet of cells. We number
the elements of 77, 1, . . , k, and in each of these we number the instructions aj,,
1.=< ¢ = \;. We now interpret the variables in one-to-one correspondence with cells.
No erasing is necessary. The processing unit is supposed to carry out the individual
step, i.e. enter data as by x; := a in the first available cell, verify conditions (by
appealing to an oracle), and generally enter the name of an element of the given
structure in the appropriate cell. In the case of instantiation this is somewhat indeter-
minate as indicated above. Here in fact, only if the structure is countable, and we are
given an effective enumeration, is there any hope for success. In the case, we ‘‘play”
the various deductions simultaneously, knowing that sooner or later one will arrive at a
conclusion.

Let us now consider the converse problem. Suppose that we are given a program in
the sense of Engeler. Can we transform it into a deduction of our kind?

The last step in Engeler’s program is that a relation is to hold if the program
terminates. Suppose that we also have another program which terminates if and only if
the first program does not. We take our Engeler program, and apply to each variable x;
a second subscript which is raised by one whenever the variable occurs in an equation
of the form x; := an expression involving x;.

Thus x; := x; + 1 becomes x; 4., = x;,, + |. And in any subsequent situation we also
use the highest subscript that appeared previously. It is not difficult to see how to
produce from finite pieces of the Engeler programs for R and ~1 R a set of deduction
which constitute a program for R in our sense.

By contrast, our computability cannot be compared to the computability in the sense
of Shepherdson-Frélich-Rabin. Thus, let us take the relative reducibility of polyno-
mials in fields. This is expressed by an existential sentence. As such it is already
computable by an existential condition in our language, although we know that it is not
a computable problem in the sense of S-F-R. (Note here, that absolute reducibility is
computable by all standards, since it permits elimination of quantifiers.) However, if
our conditions are all quantifier-free, then our computations can be carried out in any
recursive model.

Finally, we notice that in our set-up we do not have any reference to any universal
bounds which may occur in a computation, for example the degree of a polynomial
(see below). This is due to the fact that we are considering separately each given set of
n data, e.g. the coefficients of a given polynomial. Since we have a total bound on the
length of our computation it then follows that the number of coefficients of any other
polynomial or even power series which may intervene must be subject to this bound
also. We cannot go beyond this statement without further formalization.
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7. Introduction of functions. The introduction of functions in place of existential
quantifiers on one hand simplifies formulae. Also, it makes our computations subject
to the supplement to the € — theorems [6], as follows.

Suppose, we are given a universal set of axioms K. Suppose also that we have as a
conclusion from it a sentence of the form

(Vo) o (V) Fy) - Fym) Qe o Xy Vi e - o V)
Q free of quantifiers. Then [6] asserts that there exist i (X1, . . ., x,) such that
T S T1C N ) I T S ) RARY.
<QA.«T. . ,kx.ﬁ\_AH: e .u«:V< LR ,N\EA.KT. .. T«:vv

also is deducible from K. For n = 0, the terms in question are constant terms.

Now suppose that we have a set of Y3 -axioms for a model-completion. We
““Skolemize™ the formulae by replacing each existential quantifier by a corresponding
Skolem function symbol (e.g. in the case of an algebraically closed field). Then a
certain measure of arbitrariness is introduced. For example, if ¢, corresponds to
(3x) (x*— 2 = 0) and ¢, corresponds to (I x)(x* — 2 = 0) which are instances of the
assertions that monic quadratic and biquadratic polynomials have a root then we
cannot decide whether ¢,* — ¢, = 0 or ¢, + ¢, = 0. In fact, given any field M one of
these conditions may be satisfied in one algebraically closed extension of M and the
other in another. Nevertheless in some cases we may still assume that the resulting set
of axioms is model complete.

To see this, consider the theory of real closed ordered fields. Let M be a real closed
ordered field, and suppose that M’ is an extension in which a particular existential
sentence

X=(3x)... A)Q(x;,. .., x)

holds. (Note that, because of the indeterminacy mentioned above it is not true that the
algebraic closure with respect to the Skolemized _m:m:m%m of any field is uniquely
determined by that field (i.e. we do not know if (V¢ )2 = V7 or (V7 )2 = — Nz\ﬂlv.v
We define the square root function of a polynomial as its positive square root and the
real root function of a polynomial of odd degree as its smallest. This can be repre-
sented by universal axioms, say

(V) . .. (Vg o) [ (d(xq, . .. s Xagyr) ) L 4 x ¢+ .+ Xog+1 = Og and
(V) (Vagey ) (V2) 222+ x2%% + . 4 xppe = 0 D Sy, .o Xyy) =z,

With these definitions, it is not difficult to see that any ordered field has a unique
extension which is prime for the situation. For this purpose, we only have to take the
real closure and to define the ¢ as positive (in the case of a square root) or as the
smallest root (in the case of polynomial of odd degree).

Relative model completeness can now be proved exactly as for real closed ordered
fields in the usual language. Accordingly, we have elimination of quantifiers, because
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we started out with a universal theory. Moreover, we even have completeness, because

the real algebraic numbers prove to be a prime model.
The elimination of quantifiers makes instantiation more concrete in this case. Thus,

suppose that we have a condition which is an existential statement

Bx) . Fx) Oxy, . o X, Qe o Q)
In the first place we may suppose here that Q is free of quantifiers. In the second place,
the entire predicate is equivalent to some Qy(a,, . . . , a,) which is quantifier-free.

Also, if the given set of axioms is recursive then we may compute @, from Q by
proving (3 x,) . . . (3 x,) 0 = Q.
In particular we now have

Q_QT. - ,vw‘:vuﬁm N—v, . .Am\«:v QART. .. ,Xz.v;,. .. ,.v::v.
Hence by the second e-theorem, we have terms
N:QT. L ,.%:VJ Coe e ,NB.\QT. .o .%:v

which instantiate the x, and we may actually find them by trial and error a finite number
of times. ,

I can see no similar way to complement the corresponding set of axioms for
algebraically closed fields.
[Editors’ note: See the paper by Winkler in this volume.]

8. On a theorem of Polya. We mentioned at the beginning of this paper one way to
establish the existence of bounds for certain polynomial solutions: In the case of real
numbers the representability of a positive definite polynomial by sums of squares of
rational functions which is realized for all real closed fields, implies the existence of a
bound on the number of squares required and on the degrees of the numerators and
denominators (for a given bound on the degree of the polynomial and the number of
variables). This yields a result even for the classical case of the real numbers. It is
trivial that generally speaking the validity of the argument ceases if we have the
equivalence of an infinite disjunction to a LPC condition only in one model of the
arithmetical class, e.g., the real numbers alone. Thus, x=x is certainly equivalent in

that case to

y=0Vvy2>x vy ty? > x vy yEhyE > v

Yet this ceases to be true if we replace the disjunction by a finite subdisjunction, even
in that model alone. A less trivial example is revealed by a study of a theorem of
Polya which is given in [4] as a (supposedly simpler) companion of Artin’s theorem.
Let F(x,, . . . , x,) be a form (homogeneous polynomial of degree k > 0), such that
F(x;, . . ., xp) is strictly positive for x; = 0, 3 x; > 0. We confine ourselves to the
domain of reals. Polya’s theorem states that F = G/H where G and H are forms with
positive coefficients only. (More particularly we may choose H = (x,+. . . +x,)"
for some m). | am going to show that even if we allow general forms (there is

clearly no point in permitting arbitrary nonhomogeneous polynomials) we_can in
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this case pot impose a bound on the degrees of the G and H in question. But even
here, it is useful to consider in the first place an arbitrary real closed field R’ such that
R C R’ rather than the real numbers R.

An element a € R’ is infinitesimal or infinitely close to zero (opposite:
infinitely large) if a] < r for all positive r € R and finite if |a| < r for some posi-

tive r € R. Let F(x,, . . ., x,) be a form of degree k = | with coefficients in
R,UF=2a . xt. .. xin, Si,=k. Apointx, ..., x,isfinite if all its
coordinates are finite. Then we have the following theorem.

Let Q- denote the set of all points (x;, . . . ,x,) inR'™suchthatx;=0forl <i=<n
and Xx; # 0.

Theorem8.1. Let F (x,, . . . , x,) be a form with coefficients in R'. Suppose that all

the coefficients of F are finite and that the non-zero ones are not infinitesimal. In order
that there exist forms G and H with positive coefficients in R’ such that F = G/H and

such that the coefficients of #"are all finite and non-infinitesimal, it is ncessary
and sufficient that for all finite points (x;, . . . ,x;) suchthatx; = O for I <i = nand
3n; # 0, F(x;, . . . , x,) be positive non-infinitesimal.
Remark. When we say that all the coefficients of G and H are positive, we mean that
every possible monomial of appropriate degree must actually occur nontrivially.
Proof. The condition is necessary. Clearly, if F(x,, . . . , x,) = 0 at some finite
point in O then F cannot be written in the assumed form. To see that F does

not take infinitesimal values on finite points in Qg, we argue as follows. Let

(&1, . ., £a) be such a point. Say ¢; is not infinitesimal and consider the point
0,...,0,6,0,...,0inQy4.

Let a be the coefficient of xf in F (where d is the degree of F). Con-
sidering F(0, ..., 0, ¢, 0, ... ,0) shows that a > 0 by the strict positivity

of F in Q. Furthermore a is not infinitesimal by assumption. The equation
HO,...,0,£,0,...,0) F0,...,0,§,0,...,0=G0,...,0,£,0,...,0)
implies that the coefficient b of x/ in G is not infinitesimal (where r = deg G).
Therefore G (£,, . . ., £,) is not infinitesimal. Thus the equation H(¢,, . . . , &) -
F(¢,, ..., &) =Gl&, . .., &) implies that F(g,, . . . , &,) is not infinitesimal.

Now we prove sufficiency. Although we are dealing with an arbitrary real closed
field and not necessarily with amode! of nonstandard analysis, we may use some of the
notions and techniques of that subject [19]. Thus, every finite number r € R’
is infinitely close to a unique standard real number ° called the standard part of r,
°r — r =0, and the standard parts of sums and products of finite numbers are the sums
and products of the standard parts of these numbers, respectively. The proof of
sufficiency follows the outline of the *‘standard”” proof and the reader is referred to it.
The first step (for the example of three variables) involves taking the minimum of F (x,
y,z)forx=0,y=0,z=0,x+y+z= 1.

By Tarski’s theorem on real closed fields [16], this minimum » exists also for
a form in R’, and there are (x, yo, 7o) such that F (x,, yo, z,) = v. Moreover, since
(g, Yo, 29) € Qg+, v is not infinitesimal by the assumption on F. Accordingly we have a
positive u € R such that % > .



516

Next Polya introduces a function

d(x, y,2,0) = "3, dopy ﬁlv mw__v AN%L v

»h.%mmv,

alBly!’

the summation in both cases being over all triples («,3,y) of integers with « = 0,
B =0,y=0,atB+y = n, and proves the identity, forevery k = n,

ab c 1, X

(xty+2) KM F(x,y,2) = (k=) 2 (5 2 ) Sy

where

N...A.X,VM.NV = M: Aoy

which holds in any field of characteristic zero. Here again 2, denotes the sum over all
triples (a, b, ¢) such thata = 0,b =0, c = 0,a+b+c = k.

Now, ¢ (x, y,z, 1) — F (x, y, z) as t — 0 which, since the coefficients are finite, may
be interpreted in the standard sense. There is a positive € € R such that

&Q%ﬁcvm??anImtvlmtvc

for 0 <t < ¢, in particular for 1 = qw. where k is sufficiently large. This proves the
theorem.

Remark 8.2. The proof shows that H can in fact be chosen to be just (x+ . . . +x,)™
for some m. Also G can be chosen to have all its coefficients non-infinitesimal.

For the special case R' = R, the sufficiency content of our theorem does not add
anything to Polya’s. From the necessity part, however, we may derive the following
‘“standard’’ result. Note that for R’ = R the statement (x;, . , Xu) € Qg reduces to
the “‘standard’’ statement that each x; = 0 and X x> 0.

Theorem 8.3. Suppose that we are given a form F,= 2 a; . . ., (1) x1. . . x;n
where the a; depend on a parameter 7 which ranges over a set T in m-dimensional real
space. Assume moreover that _3_ cee i) | is bounded away from zero for all
i, . . ., i, and that F, is positive definite on Qp forallT € T. m:vwomo that there is a
point P € R™ and a point (£, . , &) E Qgpsuchthat F, (¢, ..., &,) —> O as
7 — P through values in 7. Let k ca any natural number. Then there is a neighborhood

of P in T such that for m<9.< T _m ﬁEm :o_mrco%ooa F, cannot be 8980:8& by positive

forms of degrees < k.
" For the prooT we use an enlargement * R of R. The previous 9845 appliesto *R. It
follows that if r is any infinite positive integer then within a radius ;; around P in *T', F
cannot be represented by positive forms of finite degree with non-infinitesimal
coefficients, in particular not by forms G, H such that deg G, H < k and such that all
the coefficients of H are greater than some positive » € R (although it can be
represented by forms of infinite degrees). This assertion can be represented by a
sentence X (n, r) in the full language of R. But since the sentence is true for all infinite n
it will also be true for sufficiently large finite n, by a well-known principle of

nonstandard analysis. This proves the theorem.

517

For example, consider the form x2 — 7 xy + y? where | <t < 2. We choose the point
Past=2and§, = ¢ = Y%. Then the conditions of the theorem are satisfied. It follows
that although for each 7 in the range in question the form is strictly positive, the
degrees of forms G, H, representing F, = x2 — 7xy + y? tend to o as 7 approaches 2.

Remark. We note that we may associate with Polya’s theorem a diophantine

Q. ihho given

F and cbw:oghm:a G subject to the oosa:_o:m

positive. The answer is that this problem i
Dpaper. By contrast, we have that the condition that F be strictly positive can be
formulated in the LPC and hence can even be expressed in quantifier-free form in
terms of addition, multiplication, subtraction and equality. But these are just not the

same conditions for all real closed fields. We may mention here that [4] contains an
erroneous statement that Polya’s theorem provides a decision procedure for deciding

whether or not a form is strictly positive. ‘‘We multiply repeatedly by Z.x, and if the

form is positive, we shall sooner or later obtain a form with positive coefficients’[4].

However, this is not a decision procedure, for if the form is not strictly positive then the

procedure will never terminate. Of course, the elimination of quantifiers provides a
decision procedure, as stated.

9. Algebraic and differential field theory. Consider as a simple example the assertion
which says that a system of linear equations has a solution.

Let
alx;+.. . 4+alx,=b
atx,+.. . +tax,=b,
atx,+... +tatx,=b,

be the system in question. The test is that the rank of the augmented matrix is equal to
the rank of the (af). Itis not difficult to formulate the statement that the ranks are equal
by a quantifier-free formula.

Next, let us consider the following problem. We are given polynomials
S, o, x), glx, . , xn) of bounded degrees with variable coefficients.

To decide whether g € (f,, . . ., fi) (with coefficients in the given field). This can
be carried out because there is a known bound on the degrees of 41, . , hy for which
we might have g = M hif; {5]. Thus the problem is reduced to one of mo_<mg__€ in terms
of the coefficients.

Second problem. To find a basis for (f;, .
(The symbol (f;, . . ., fi) : g stands for division of ideals; h € (f,, . fi) s gifand
only if ig € (f;, . . ., fi) ). Notice that this problem is not a priori among the kind
considered in our general part, since we do not know the degrees of the basis
polynomials and their number from the outset. If we did, then we could regard the
coefficients as functions to be calculated in the sense of the general theory. And
indeed, the theory of Greta Hermann shows that such bounds exist, and that the
coefficients in question can be calculated by rational operations.

,fe) 1 g where again bounds are given.
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Third problem. To find a basis for
(s oo fi)igo=8 e L fi) g™

To do this, we shall show that there is a uniform » depending only on the degrees
offi, . .., fe,gsuchthat(fy, . .., fi) : 8" = (fi, . . ., fx) :g - First of all, notice
that (f, . . ., f) 18" C (s - - - fo) g = ({1, - -« fi) 1 8" : g. Also, if we
have here equality then also (f;, . . . , fi) : &' = (fi, . . ., fi) : g"*%. For suppose
hE(fy, . .., fi):g™" Then hg"*? = 3 h;f;. We have to show that we can replace
the left hand side by Ag"+!. Butatany rate hg € (f;, . . . ,fi) : g"*! and so by assump-
tionhg €(fi, . . .. fi): g s0ohE(fy, . . ., fi): g™ Moreover, by Hilbert’s basis
theorem, for given (f;, . . . , f) and g, the chain breaks off so there is a first v for
which we have equality, (fi, . . . ,fi): &=, .. . i)' =0, .. .. f): g

Now to show that this ¥ may be chosen ::Ro:s_v\. we EOOQ& as follows. We write
down, for each n, the predicate (f;, . . . fi) 1 g" = (fi, . . ., fi) 1 g"*'. This only
requires writing down that all elements Om the gma of (fi, . .. .\wv : g™ (which have
been computed, as described), &y, . . . .k, say, belong to (f;, . . ., fi) : g", i.e. they
satisfy k;g" € (f;, . . . , fi). All this requires only rational operations. Since they are
completed after a finite number of steps in each case, all this is equivalent to some
predicate @, of {f;, . . . , fx, g} Now consider the axioms of field theory K, together
with 71Q;, 71Q,, . . . where we have replaced the variable coefficients of the f;, g by
new distinct constants. Then if X, 71Q,, “1Q,, . . . is consistent, it has a model in
which Hilbert’s basis theorem is not satisfied. This is impossible, so K F Qv . . . Vv(Q,
forsomev. Butsince K+ Q, D Q, for all u < v, we have K+ @, proving the assertion.

Next we shall be concerned with prime ideals. We refer the reader to Ritt [11] for
the notion of a chain and of a characteristic set. We have the following theorem. Let
I; be the initials of a chain A,, A,, . . . , A,, where A, is of positive class, i.e. is
not a constant. Let G be any polynomial. Then there exist nonnegative integers
t;,i=1,...,r,and a polynomial R such that

N_:. . .NHxQMNBOQA\»T PRI v\»L,

where R is reduced with respectto A, A,, . . . , A, thatis to say, the degree of R in the
last variable which occurs in A; is lower than the degree of 4; in it.
PutH = I} - - I,” We are going to show:

Theorem 9.1 . In order that G belong to the prime ideal J whose characteristic set is
(A, .. .,A,) (provided it is a characteristic set of any prime ideal) it is necessary and
sufficient that R = 0.

Proof. Notice that every /; must be reduced with respect to (4,, . . . , A,). Forit
is lower than A; and by the definition of a chain must be lower than all other A; also. If
G € J then the remainder is in J since the congruence is, modulo {4,, . . . , A,).
Since the remainder is reduced with respect to the A, . . . , A,, R = 0. Conversely
since the /;’s are reduced with respect to A,, . . . , A,, none of them is in J. So if
R =0, then G € J, since J is prime. This proves the assertion.
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We now come to one of Ritt’s major problems in the constructive theory of algebraic
equations. [t is to determine whether a given chain is a characteristic set of a prime
ideal, where the chain is of the form A,, 4,, . . . , A, A; containing the ‘‘paramet-
ers’” Uy, . .., U, and the variables Y,,. . . , Y,_, and introducing the variable Y;.

We shall show that for each such case, with the A; having indeterminate coefficients
and having given degrees, there is an V3-predicate which determines whether the
chain in question is the characteristic set of a prime ideal.

Forp = 1, Ritt[11, p. 88] shows that the condition is that the polynomial A, (Y,) be
irreducible regarded as a polynomial with coefficients in F(U,, . . . , U,), where F is
a given field whose diagram forms part of the axiomatic system K. The condition of
irreducibility can be represented by a universal predicate.

For p > 1, Ritt proves that the following condition is necessary and sufficient.

(f) A\,". .., A,_,isacharacteristic set of a prime polynomial ideal.
(i) fuy, ..., ug ¥y, ... ,y,_, isageneric zeroof A,, . . . , A,_ then when we
substitute these for Uy, . . ., U,, ¥y, . .. Y, , inA,, we obtain a polynomial A,

(Y,) which is irreducible in its field of coefficients.

To interpret these conditons, let us suppose that we have tested—by an
V3-predicate—that (i) is satisfied and let us consider (if). To substitute the generic
zero really amounts to calculating with polynomials in Uy, . . ., U,, Y\, .. . . Y,_,
modulo J,,_;, where J,_, is the ideal determined by the generic point. Now, given
Ay, . . ., Ay_; we have, from Theorem 9.1 and the third problem,

=An . L Ay L) = (AL LA U )"

where m depends only on the given bound for A,, . . ., A,_,. Accordingly, as
mentioned, we can compute a basis for J,,_
Now, having found J,_,, we _Soi that we obtain a generic point of

Jy—y simply by taking the residue class of Uy, ..., U,, Y,, ..., Y, in
F LUy, ..., U; Y,..., Yp.] modulo Jy—1. In other words the point
(U, ..., Ug, Y1, - . ., Yu—y) is a given point in the field F* which is the field of
quotientsof F [Uy, . .. , U, Yy, . . ., Y, 4]/ J, 1. Anyrepresentation A,= HK in

that field where neither H nor K is constant (as a polynomial in Y,) is equivalent to a
representation

(1) GA,=HKmodJ,_,,

where we have obtained G by clearing away denominators, G & J,_,, and where H
and K are not independent of Y,,. Now we may make sure that G is reduced with respect
toA,, ..., A, by multiplying by appropriate powers of I,, . . . ,I,_,, the result,
R, mod J, , being reduced with respect to A, . . ., A, ; and hence of bounded
degree. Hence, we may assume that G is reduced with respect to A4,, . . . , A,_,.
Similarly, it is enough to consider H’s and K’s which are reduced with respect to
Aq. .. ., A, and reducibility is now expressed by the AV-assertion that there exist
certain coefficients of G and of H and K with not all positive powers of Y, in H or K
having coefficients belonging to J,,_, such that G 4, — HK belongsto J,,_,.
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We have thus obtained an V3- test whether ornot A, . . . , A, is the characteristic

set of a prime ideal.

Next suppose we are given a system of polynomials Q,, . . . , Q,,. We wish to

develop a set of characteristic sets of prime ideals whose manifolds make up the
manifolds of @y, . . . , Qn. If we get these characteristic sets, we can also get their
prime ideals, as above, i.e. their bases . . .

1
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