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binatorial theory of such intersections is what we want to
der here.

One motivation is the question of “orientation” in matroids.
he elementary cycles and cocycles of a directed linear
ph, there is a natural sense in which two elements have
game or the opposite orientation. There are certain com-
itorial results, such as Minty’s “colored arc lemma”, which
lve orientations but are otherwise really assertions about
roids. Minty has recently presented in [8] an interesting
elopment of matroid theory, in which certain orientations
~introduced axiomatically in terms of “digraphoids”, so
{t' abstract generalizations of the graph results are true.
#digraphoid ”, he has shown, corresponds to a dual pair of
Bffoids which are “regular” in Tutte’s terminology. There
xist, then, an abstract theory of “oriented” or “ signed ”
oids which implies that the matroids involved are regular.
A much broader theory of orientation ought to be pos-
Ble, in our opinion. Regular matroids arise from subspaces
RY, but only subspaces of an extremely special type. For
v subspace K of RY, however, there is a natural way of
Ming the signs of the coordinates of the vectors to introduce
Bentations into the corresponding matroid. The study of the
med matroid amounts to the generalized intersection problem
ed above. We shall demonstrate that, for such signed
troids, several theorems are valid which are far from obvi-
, and which even have important well-known non-matroid
ficorems as consequences.

No attempt is made here to develop a theory of signed
troids axiomatically. We are concerned, rather, with show-
Mo that there are interesting and significant examples which
such theory ought to encompass.

The paper is partly expository, in that we also aim to
cribe a certain bridge between results in convex analysis
Rd' graph theory. Well-known theorems about systems of
fear inequalities can sometimes be reformulated as seemingly

ch simpler combinatorial theorems about the way a sub-

e K intersects some orthant. This is true of the duality

fieorem for linear programs, as has been pointed out by

Micker. We want to show that, in this form, the theorems

.‘ﬁ inequalities correspond to other well-known theorems of

gcombinatorial character about graphs, which have been ar-

Mived at by an entirely different route. The idea is to special-

WE K to a space of network flows. It turns out, for instance,

The Elementary Vectors of
a Subspace of R"

R. T. ROCKAFELLAR! University of Washington

1. INTRODUCTION

This paper concerns some no%dﬂnﬁosm between convex anag
i twork flows and matroid theory. .

EmHm,rMM K be an arbitrary subspace of R, 4&@8 R is ﬁ_
real number system. Regarding K as a chain group in »...F
sense of Tutte, one can pass to the ooﬁmm@os.%zm matroid
Combinatorial facts deduced from general Gwﬁoa gmog. Bm‘w
then be reinterpreted in terms of the original .<moao~m.5 <
The results so obtained reflect the fact that K 1is coa.ucmﬁ :
real vector space, but has further structure because & its par;
ticular disposition within RY. Specifically, the matroid analysi§

of K deals with the way K intersects the special subspaces m
R spanned by the canonical coordinate axes. Zoé, the natud
ral ordering of R allows one to enlarge the @ES omdom%n% o ;
intersections under serutiny to include closed “orthants”,
in general all the polyhedral convex cones generated by t

various positive and negative halves of coordinate axes. .H_F

1 The research was supported in part by the Air mogm.oamo of mn_m”mu .
Research through Grant No. AFOSR-1202-67 at the University of Washing

ton, Seattle.
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that Minty’s “ colored are lemma’

‘cal lemma of Farkas. .
ot ﬁﬁrmgwww%ﬁ Mo which we would most like to draw the

i ’ «interval networks” 1In
i s Minty’s theorem for “in :
Mc% wow Hmnxmﬁmm :% partly combinatorial result about the consistency

. X : X m-
f systems of linear inequalities, mc;m@ in particular for ap
w:oWSo: to the dual convex programs in [11].

¢ was submitted, P. Camion has Emﬂ.BMM
i i

that a more general form of Theorem 3 is wa%hWQOManmm
ar blished thesis [23] in terms of modules over m %z?&mi
intog 1 domains. The thesis also contains results mﬁm B
Edﬂ,mmm. rems 1 and 6, which we display below as mmg mMWBsmH
WO i mﬁwmoamam in convex analysis, and L%o.ao are Jmme:: to
ﬁwmwmroma ‘n Section 7 about using the %WBE@MH Mm%& ds in a

: i i re
i ich of the alternatives In .mo )

mm.wﬁowawowwméfmogm results from Camion’s thesis are stated
give .

without proof in -an appendix to [22].

is essentially a special case

Note. Since this pape

9. ELEMENTARY VECTORS AND SUPPORTS

ul to think of the vectors X = (@1, s Ty)

5 .m *&f

= T r 1 tain
wi = 1, he support of X 18 then a cer
..., ey}, with X(e;) = @ N Tt O At L 0. o

It will be helpf

f e

f E, namely the set of ¢; e
e ctor of K is defined to be a mnon-zero <monow. 0 -
T oy i.e. does not properly contain

ort is minimal, > the
Muﬁwwﬁmﬂmv any other non-zero vector of K. The syste

isti £ the supports of the elementary
mcdmmww %M Nmﬁﬁmﬂwmmﬁwmo%_ the elementary supports of K) 18,
<Mnoo:~.mm. the matroid mwmoemam.a 2;.: K. lemontary
° .« important to keep In mind that two ele v
o _wm :ﬂw X' of K having the same support .7m<m to ¢
e _m les of each other. Indeed, if 1€ R 18 MSOmosu. H,mm -
o ch wrm non-zero components of 21X wpcm;m the oOm ~
drmﬁ%:o oooB@osoa of X', then X' — ».N\ is a <mo%o~. %osoo
mvms e ort is properly smaller, so that X' — X=0. fence
X o mccw finitely many clementary vectors, up to S o
N smm o Mﬁrm ratios between the components of ~an mﬂm‘mﬂms mm
madtile do not depend on the arbitrary Bz._SEm.. ) cm@m-
Q&m\hwﬁm.idm “ratio system” 1s uniquely and intrinsically
ce
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fined by K. This “ratio system” determines K completely,
because K is the subspace generated by its elementary vectors
(see Section 3). An interesting “combinatorial ” problem is to
determine necessary and sufficient conditions on a “ratio sys-
tem” in order that it arises in this fashion. This is closely
related to the problem of characterizing the classes of real
matrices combinatorially equivalent to each other in the sense
of Tucker (see Section 6). Most of the results below concern
necessary conditions on the patterns of signs of the ratios or
matrix elements.

By a signed set in E, we shall mean a subset S which has
been partitioned into two further subsets S* and S~ (possibly
empty). We shall say that S contains an element e, positively
or negatively, according to whether ¢, € S* or ¢, € S-. A signed
subset can be represented in an obvious manner by an N-
vector formed from the symbols +, — and 0.

With each vector X of RY, we associate a signed set S
formed from the support of X, where S* consists of the ele-
ments e¢; with x; > 0, and S~ consists of the elements e, with
z; < 0. We call this the signed support of X. A signed set
which is the signed support of some vector in K is said to be
a signed support of K. It is elementary if it actually comes
from an elementary vector of K.

The system of elementary signed supports of K may be
regarded as a sort of “signed matroid.” Its properties include
an extensive duality with the system of elementary signed
supports of K+, the orthogonal complement of K, as one would
readily expect from ordinary matroid theory.

A special case to which we shall often appeal for motiva-
tion, and which therefore deserves a brief review, is the case
where E is the set of arcs of a directed graph. Here we in-
terpret the vectors in K as circulations in the graph, i.e.
flows which are conservative at every vertex. Thus Xe¢ K if
and only if X is orthogonal to every row of the (vertex vs.
arc, signed) incidence matrix of the graph. For the general
theory of such flows, we refer the reader to the exposition of
Berge [2].

The elementary circulations are easy to determine. Given
any elementary cycle S in the graph and a real number «, a
“circulation of intensity « around S” is obtained by setting
z; = a if S contains e, in the sense of its orientation, z, = — «
if S contains ¢; in the opposite sense, and z, =0 if S does
not contain e; at all. On the other hand, a simple argument
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invoking the conservation condition at each vertex .mwoém that
every non-zero circulation contains some cycle in its suppo ‘
It follows that the elementary vectors for this choice of K arg
precisely the circulations of non-zero intensity around m_m:.,g‘
ary cycles. The elementary signed supports of K can be ide
tified with the elementary cycles themselves. .
In this example, K* is the subspace generated by t
rows of the incidence matrix. Thus Y € K+ means that w,
o tension in the graph, i.e. that there exists some “ potentialy
function on the vertices of the graph such that each %18
obtained by subtracting the potential at the initial vertex oR
e, from the potential at the final vertex of e. Given any el
mentary cocycle S in the graph and a real number a, one
construct a ¢ tension of intensity a across S”, much as mv.oﬁm
The non-zero tensions of this .form turn out to be precisely
the elementary vectors of K+, so that the elementary sign
supports of K* are the elementary cocycles. . sof. The conditions on 7 follow immediately from the con-
Much of the theory of linear inequalities, our other malfl tions on the supports of Xi,..., X,, and they need not be
source of motivation, concerns «linear systems of variablesg ntioned further. It suffices to treat the theorem in the
rather than subspaces of R¥. But the two settings are really] tationally simpler case where X > 0, i.e. ;>0 for all i.
mbﬁOHOTw.Sm@N‘Uw@. In ﬁTO “Jinear <N‘H.wm.d~0w ” case, one QO. « e must mTOé ﬁsm.d X can be mxﬁﬁmmmmg as ﬁT@ sum Om non-
with the pairs of vectors U ¢ R* and Ve R" satisfying UA gative elementary vectors of K, each of which has an ele-
— V, where A is a given mX™n matrix. The set of such ant in its support not belonging to the support of any of
pairs X = (U, V) forms, of course, a certain subspace K of o others. A preliminary step is to show that there exists
R, with N=m + n. The orthogonal complement K* of thig -least one non-negative elementary vector whose support is
K consists of the pairs Y = (U', V') such that U'€E", Vg Bntained in the support of X. Assume inductively that this
¢R", and V'A" = — U’', where AT is the transpose of Af F'+ has already been established for all non-zero non-negative
Tucker’s theory of combinatorial equivalence tells us how Y tors X' ¢ K whose supports are properly smaller than that
represent an arbitrary subspace K in this way by various matrl } X. Let X, be any elementary vector of K (not necessarily
ces A. More will be said about this in Section 6. fon-negative) whose support is contained in the support of X.
Everything that follows would still be valid if B were Rbplacing X, by its negative if necessary, we can assume that
placed by any ordered field.  has a positive component. Then there exists a largest
sitive scalar 2 such that 1X, < X. If 21X, = X, X is itself a

-negative elementary vector. Otherwise, X' =X — X, is
B on-negative vector of K whose support is contained in the
port of X but does not contain the support of X,. By in-
ction, there exists a non-negative elementary vector of K
Mhose support is contained in the support of X’, and hence in
he support of X. We can proceed now to prove the theorem
%lf in the same way. Assume inductively that the theorem
already been established for all non-zero non-negative
tors X' € K whose supports are properly smaller than the
port of X. Repeat the argument above, but this time

funion of the elementary cycles involved. This theorem can be
Ereneralized to arbitrary K, as we now show.

¥ Let us say that two vectors X and X’ in R" are disso-
hant, if, for some 1, the components x; and 1z, are non-zero
nd opposite in sign. Thus X and X' are in harmony (i.e.
il to be dissonant) if and only if wa, >0 for every 1.

[heorem 1. Let X be any mnon-zero vector in K. Then there
rist elementary vectors X,..., X, of K, such that X=X+
. +°X,. These elementary vectors may be chosen such that
el is in harmony with X and has its support contained in
support of X, but mone has its support comtained in the
inion of the supports of the others, and such that r does mot
ceed the dimension of K or the number of elements in the

3
a
A

3. HARMONIOUS SUPERPOSITION

A known result about circulations in directed mam@ ig
that every such circulation X can be represented Asozwﬁzns. ]
ly) as a superposition X + ... +X, where each X, 18 a CiIg
culation around an elementary cycle of the graph. Moreovery
the cycles can be chosen so that the orientations of their arct
agree with the signs of the corresponding flow components
X, see [2, p. 145]. In particular, the support of X is then ar‘
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taking X, > 0, as has just been shown possible. The induction

hypothesis yields a decomposition
X,+ ...+ X, =X =X—-2X,.

Setting X, = AX,, we get the desired decomposition of X.

Corollary. The elementary vectors of K generate K algebrai-
aa:@%:mowmﬁ 1 has been depicted as an extension of a result
about graphs, but it is actually equivalent 5 a ?3@2@558&
theorem in convex analysis. The theorem in question says
that each non-zero vector in a polyhedral convex cone contain-
ing no whole lines may be expressed as a sum of 7 .mxﬁm.Bo
vectors of the cone, where r need :od. exceed Som. dimension
of the face of the cone in which the given <mo.ﬁow lies.

It is not hard to deduce Theorem 1 @.oB this cone gmoﬁmg.
One argues that the set of :o:.-dommﬁ:& <mgowm. of K is a
polyhedral convex cone K. containing no whole lines, whose
extreme vectors are elementary. The faces of K. o.oww.mm@o:m
to the “non-negative” signed supports of K. It is just as
easy, on the other hand, to gmmsom.drm cone theorem .@.03
Theorem 1. This is even a convenient route for mgmi_:m
various important facts about polyhedral convex cones, since
the direct proof furnished above for Theorem 1 is so m_mBmv-
tary. Recall that, by definition, a c.o_%rm%& convex cone Q. in
R™ can be represented as the :Zowwm. image of the :ov-:mmmﬁ:\m
orthant of some R under some linear Qw:mmoagmﬁoss T. If
C contains no whole lines, T is one-to-one from R oﬁo a
certain subspace K (the range space of T), m:a. T carries C
onto K,. Application of Theorem 1 to K. yields the facts
mvoc%wm. study of signed sets is greatly aided by Theorem 1.
We can define, in the obvious parallel way, what we mean by

two signed sets being dissonant or n waﬁﬁo@@. IfS,... .mq
are signed sets pairwise in harmony, a new signed mmﬁ S, the
harmonious union of Sy, ..., S,, can be formed by taking

S+=S8rU...US; and S =S U...USY

(In the dissonant case, this S* and m.. 2055. o<m1.m? $0 that
there would be no natural way &.Eﬁ.wogﬁﬁ:m signs in the
union.) If vectors X,,..., X, are pairwise in wmisoﬁ%, so are
their signed supports, and vice versa. The harmonious union
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of these signed supports is then the signed support of X, +
.-+ X,. Theorem 1 immediately yields the following result,
according to which the properties of the signed supports of K
can entirely be deduced from those of the elementary signed
supports.

Theorem 2. Every signed support of K is a harmonious union
of elementary signed supports of K. On the other hand, every
such harmonious union is a signed support of K.

4. FUNDAMENTAL EXISTENCE THEOREM

In applications of flow theory, the question often comes up
as to whether there exists a circulation X whose components
; lie within certain given ranges I, depending on the arcs e,.
It may be required for some ares, say, that 0 < x, < k,, where
k; is the “capacity ” of the arc, while for other ares z; 18 to
assume a constant value specified in advance. Some existence
theorems pertaining to closed intervals, for instance, are pre-
sented by Berge [2, p. 157-160]. These are all really special
cases of a theorem of Minty [6] for arbitrary intervals (i.e.
non-empty connected sets of real numbers, not necessarily
closed or open or bounded, possibly degenerating to a single
point).

We shall now prove that Minty’s theorem is valid for ar-
bitrary K, if reformulated in terms of elementary vectors.

Theorem 3. Let I,..., I, be arbitrary real intervals. Then

one of the following alternatives holds, but not both:

(a) There exists a vector X of K such that z, el for 1 =1,
..., N;

(b)) There exists an elementary vector Y of K* such that yl,
t ...+ yvdy >0 (te. the interval obtained by letting
Y&+ ...+ Yvy vary over all choices of x, €I, lies en-
tirely to the right of 0). :

Proof. The conditions are mutually exclusive, because y,x, +
.+ Yy@y > 0 is impossible when X ¢ K and Ye¢ K*. Let Q
be the set of all vectors X € R such that x, el for 1=1,...,
N. In the terminology of [10], Q is a partial polyhedral con-
vex set. If condition (a) fails, @ does not meet K, and a
certain separation theorem of the writer [10] may be applied.
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+ x
This gives the existence of W‘ meﬁom«o M\wﬁ., mcmw MWMH W}o._
ever , le. ydi + ...

ﬂ&. .&mﬁemwﬁwmwammm that Mam Y can actually be wmmwpommmmn www

tary vector of K+. Theorem 1 allows us et ¥

Z unwm\.\mg + Y,, where the vectors Y, = AS.: ceey szvﬁwmw

ol_mB,m:ﬂm.a.% vectors of K* pairwise in harmony sm;r mmomsmo:&
The distributive law (1, + )] = 4 + 2[ holds for any

I provided 2,4, > 0. Therefore

wh+ ...+ yvlv = MQ\EN_ + ...+ SZNNL

by “harmony.” The interval represented on ﬁrm W?ﬂ%w MMWM_Mm
ly in the positive part of R, 80 the same Szm\ omd e et
of the 7 intervals ooawmm.vo:%:m to M\:..ﬁ o LcmeH, nt.
(If all r intervals contained a non-positive ,

would their sum.) Thus
w\:b + ..o+ \.$2~2 >0

for some elementary vector Y, of K*, which is what was to
be vmwmmwm. that (b) in Theorem 3 is a combinatorial .Mwwm%oww
in that there are essentially only .\?SS@ wsmmwﬁwﬁ_vwww _mHs -
test. Up to positive BzEEm.m. K+ wmm osw M\: tely many el
mentary vectors, and a positive multiple o ; e ectors
ference in (b). In the graph example, the eleme [ vectors
ow K* correspond to cocycles, and the multiple can Hm I%H be
chosen so that all the oogvo%:ﬁm Y, om %.Mammou. m«mw% o
0. Then condition (a) holds if and only 1if,

mentary cocycle of the graph,
Oew I, + ... + ynIy = DAY AR A

i the indices ¢ such that ﬁ.wm given

Ssmaw P Mmmsmsﬁmrwsmwo oMmM: the direction of its .oaﬂozgeozm
now\dm QWM MSm sum over the indices such ﬁ.rmﬁ 9.:5 Modgwm_mmm
w% the m%@ow:a direction. The * Bmxhoé-zﬁzw-omﬁo t %%MM%.

dily deduced from this, as has been exp ained %: o
e Hﬂmont 3 has been derived from a separation t mOMmB !

vex analysis which is stronger .ﬁrm: the ém:-wzows mmmﬂwmm
oo:@ kas. Actually, this separation theorem can be m.a.
& dmu«: T..oB Theorem 3, using the fact .armﬁ. w.% defini MMMH.,
ovens artial polyhedral convex set is the inverse .::me WB I
MNMW %:mma transformation of a set of “paralellopiped fo
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{x|z; € I, for every 1}
where the I, are intervals. .

Existence alternatives for inequalities involving the vari-
ables in a “linear system” UA = V can be obtained by ap-
plying Theorem 3 to the subspace K described at the end of
the Section 2. Tucker’s results in [13] can be established this
way. Some special cases will be considered below.

As an immediate combinatorial application of Theorem 3,
we shall show how the signed supports of K may be const-
ructed directly from those of K-*. From matroid theory it is
known, of course, how to construct the elementary supports
if signs are disregarded. One takes the collection of non-empty
subsets S of E such that no elementary support of K meets S
in just a single element: the minimal sets among these are
the elementary supports of K. The following theorem ‘shows
what modification works for the signed supports.

’

Theorem 4. Let S be g signed set in E. In order that S be a
signed support of K*, it 1s necessary and sufficient that every

&@38333\ m&msm&mgsﬁc\a &awn\;om&s.&.&i Srom S be disso-
nant with S. :

Proof. The necessity is on the surface. For if X¢K and Y
€ K* had signed supports in harmony and not disjoint, then
%Y. 2 0 for every ¢ with strict inequality for at least one 7,
contradicting x,y, + ... + ZvYy = 0. To prove the sufficiency,
we apply Theorem 3, with the roles of K and K- reversed,
to the case where I, = (0, + o0) for ¢, ¢ S+, I, = (— o, 0) for
¢.€S5", and [, = {0} for e, eS. If S is not a signed support
of K, that means there is no YeK* such that y; €I, for

every ¢. Then by Theorem 3 there exists an elementary
vector X € K, such that

el + ...+ a2y, >0.

This implies that z; = 0 for e, ¢ S* and r, <0 for e, € S-, with
strict inequality for at least one ¢, ¢ S. The signed support of

X is then an elementary signed support of K in harmony
with S, but not disjoint from S.

5. PAINTINGS

Certain combinatorial problems in graphs involve g speci-

B E———— ]
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fied partitioning of the set of arcs into several subsets. A
happy way of describing the partitioning, which has been ex-
ploited by Minty, is to say that the arcs have been “ painted ”
various colors. One can then speak of a “black and red co-
cycle”, meaning a cocycle constructed exclusively of “black”
arcs and “red” ares, and so forth. (A black and red cocycle
could be entirely black or entirely red.)

Here we shall present several results abo
of signed supports matching a given * painting.”
a complementarity theorem.

ut the existence
The first is

Theorem 5. Let each of the dements ¢, of E arbitraridy be
painted white, green Or red (where any of the colors can re-
main unused). Then there exist a green and white signed sup-
port S of K and a red and white signed support S’ of K-,
such that S and S’ have mo element in common, but every
white dlement 1s contained in S positively or in S’ positively.”

Proof. From among the vectors X ¢ K such that z, >0 for
e, white and «, =0 for e; red, choose one whose support con-
tains a maximal number of white elements. Call it X, and
let S be its support. Take I, = (0, +oo0) for e, white and not
in the support of X, I = (—°, +o0) for e; red, and I, = {0}
for every other i. If there exists a vector Y e K* such that
y, € I, for every ¢, the support S’ of Y, along with S, meets
the requirements of the theorem. Suppose, therefore, that no
such Y exists. We shall show that leads to a contradiction.
By Theorem 3 (with K and K* reversed), there alternatively

exists some X ¢ K, such that
w4+ ... Faxndy > 0.

The choice of intervals forces ;, = 0 for e, red and z, > 0
for e, white and not in the support of X, with z; > 0 for at
least one of the latter elements. Then X + 1X,, for 2 positive
and sufficiently large, has a green and white signed support
containing no white element negatively and containing at least
one more white element than was the case with X,. This
conflicts with the maximality in the selection of X

There exist non-negative vectors X € K and Ye K+

Corollary.
which are complementary, i.e. such that «,y, =0 and 2z, + Y

> 0 for every 1.
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Hunoo%.v. Paint every element white.

is corollary is a well-known complementar

ﬁwo_e,m:: of Tucker .Zw_, which can be made the Moamhwmwwoohw
of linear programming theory. Theorem 5 itself could be d

mcoom.g;oca much trouble from Tucker’s many results m_ooﬁm
S:m_ linear mwmﬂﬁ.sm of variables in [13], so only its formulatio

ere, as a oo.B_oEmﬁolm_ theorem concerning dual systems om.
m_mzmm m.mnm‘ is really new. The interesting thing about this
ormulation, however, is that it leads quickly to the follow-

ing generalization of Minty’s fundam ¢
. ental “ »
[6] for directed graphs. al “colored arc lemma

MMMAVMME m.@ w.mw woxm we\ the elements e, of E be painted black
each o e other elements arbitraril ) ite,
y be painted whit
green or red. The ; 5 ¥
green o n one of the following alternatives holds, but
(a) There exists an elem )
The: entary signed support of K
WM\\.MSSMQ the black element and otherwise only Mﬂ%s MNM@&
ite elements, with th ite el ;
e e black and white elements contained,
(b vs.sﬂwww.@ %a@w& M:s elementary signed support of K* contain
g the black element and otherwise onl ) i
. ‘ Yy red and white ele-
ments, with the black and white elements contained %om&s.emm

Proof. If both conditions could be sati i
M:m would have overlapping signed m5@@0hwwm%m Mgwwwzwmwaw,
armony, oosﬁamw% to Theorem 4. Thus (a) and (b) ro
ﬂsasm:%.mxogm.:&. On the other hand, suppose the Emnm
M%HWM:M mM Mmum:;mm M:#m and apply Theorem 5. The S M.ow
: e expressed as a harmoni i 1
s.NE.Mm m_mBmimQ .mmmsmm supports Mmocwmn ww_o%wma%%mws Mzm
wﬁyﬁwwmlu_\ for S’ with “red” .5 ‘place of green. The vwo&ocmd%
brack element wm_ozmm to either S or S’ and hence to one of
he elementary signed supports in these decomposition Th
signed support satisfies either (a) or (b). > a

MMMO_A_M.-Q.M er_@% element of E belongs either to some NnoN-nega-
1i.e. =38, S =¢) elementary signed support of K or

to some non-negati :
both. gative elementary signed support of K*, but not

Proof. Paint the. element i i
element of E white. nt in question black and every other
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the
1 the corollary reduces to
directed graph case, / Tedu o 7
dﬂwmﬂuw,\ow% arc belongs either to some ) cspmiomwwo: L
m%o entary cycle or to some “ unidirectional 7 elementary
elem
: “ M Q:
n%&m&?@ has demonstrated in [8] ﬁrmnmﬁrm mMM%WoM: M«N%ﬂmosm
1 na
i f the property In Hrmo«wg . L one
<Mmmm% MTM color white and all mention & signs, Bmuw wmwwm %od
Mm as a fundamental axiom of Bmﬁoﬁ ﬁrmommr e Bas hot
developed the signed version as an :mx_oB_ Mw::o%V e has
shown it is valid for his “ digraphoids . Accor ME% heorem
6, the signed version is mogm_.ﬂ% valid for a
. stems than “digraphoids. - e
Qmmmhm mwco«ﬁmi virtue of the “colored arc _MBMH,WM mm mesmwwn
1 tone netw
rogramming theory mow mono 2t
Mwsmmaﬁwsﬁmgggsmﬁoi& algorithm mgﬂm:%mmwﬂmﬁﬂ%vﬁm ow:AM v
isfyi m .
cle or cocycle satisfying alte .
%MMSMWQMM% one to ask whether a constructive %Moomg%nm
exists for the more general case of Hrmo«mé m/,)\o Ommmz e
of we have given here is not constructive. o Jhall see
Wwwoé however, that the construction can be effecte y

simplex algorithm of linear programming.

6. MATRIX REPRESENTATIONS

The relationship between Hcowmw,m.oojgsmwowmwﬂ ﬁMMWMMN mww
linear systems of variables, “ %mE@:oam‘.: m:é _omm e e,
elementary vectors and signed supports wi no o
The results described below are M_M w:o€Wm MM:% Ay o

up
her, but they need to _om. workes n
M,wm% as preparation for their use in the Smxﬁ. mmmﬁw:Aa..v X is
Suppose that, for a certain m Xms Mdmﬁiwx ‘Eﬂw <mOwowm e
d of Section 2.
i by UA = V as at the en .
m%wmw E.M then precisely the ones whose components satisfy

S = n.
S %0 = Tpe,; for i=1,...,

! . .

Here the values of 2z, x. can be specified arbitrarity, mwa
g n .< i i L m+n =
QM values of the remaining ooBUo:mam. ﬁi:&.ﬁ ; Woo.ook.m mw
are then explicitly given. At the saine time, »
in K+ are precisely the ones whose components satisty

S = Lm.
S Yme; = — Yo for i=1,...,

Jj=3
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These dual systems of equations may conveniently by sum-
marized in a tableau.

,W\a\:+~l.\ o I,M\SW:‘
¥ ay, Ay V = Y
| |
|
f
| |
&.L Ay o @3:; = — Yy,
= Tmay =X

min

We shall call such a tableau a Tucker representation of
the subspaces K and K-, For notational simplicity, we have
only pictured a representation in which the symbols 1, . . o Ly
occur in undisturbed order along the margins of the tableau.
In reality, of course, there will usually be numerous represen-
tations, involving different arrangements of the symbols.
Every such representation entails the partitioning of E into
two subsets D and D', such that the components x, of g
vector X in K for ¢, in D are uniquely determined by the
components for e, in D', while the latter components take on
all possible combinations of values as X ranges over K. With
respect to K*, D and. D’ have the opposite property.

Tableaus which represent the same complementary pair
of subspaces are said to be combinatorially equivalent (along
with their corresponding matrices A). How to pass arithmeti-
cally from any given tableau to any other combinatorially e-
quivalent tableau has been thoroughly clarified by Tucker [14,
15, 16]. « Pivoting ” and rearranging are all that is required.
A simple pivot step corresponds to a classical elimination pro-
cedure for the dual systems of equations. Any non-zero entry
in the tableau may be selected as “pivot ", one then passes to
an adjacent representation, in which D and [’ are modified
by interchanging the e; of the pivot row with the e, of the
pivot column. As far ag getting an initial representation is
concerned, that is g Very easy matter, at least if K is defined
as the subspace orthogonal to a known finite set of vectors in
R", or as the subspace generated by such a set. (That is the
situation in the graph example.)

Tucker’s theory grew out of studies of the simplex al-
gorithm for linear brograms. But it is also relevant to some
ideas Tutte has exploited for representing matroids, as we
shall now relate.

Thinking of the vectors X in K as functions on E, we
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may restrict them to a given subset D of E. The restrictions
may be viewed as vectors in RY, where M is the number of
elements in D. The Tucker representation corresponds to the
case where the restriction mapping (a linear transformation) is
one-to-one from K onto RY. The mapping clearly is “ one-to-
one” if and only if no non-zero vector of K has its support
disjoint from D. It is “onto” if and only if no mnon "°ro
vector of K* has its’support contained in D. Indeed, in these
conditions it is enough to speak of elementary vectors. The
case where both conditions hold is where D is minimal with
respect to the property that it meets every elementary sup-
port of K, or equivalently where D is maximal with respect
to the property that it contains no elementary support of K*.

A set D with the latter properties is called a dendroid of
K by Tutte. Notice that the complement of a dendroid of K
is a dendroid of K*. In the example of a connected directed
graph, of course, the dendroids of K are the sets of arcs
maximal with respect to the property that their deletion would
not disconnect the graph; the dendroids of K* are the maxi-
mal trees of the graph. In general, according to the analysis
above, the various partionings of @iy...y Ty ANA Yirewos Yn into
“yrow symbols” and column symbols” in the T wcker represen-
tations of K and K* correspond to the possible ways of parti-
tioning E into a dendroid D of K and a dendroid D' of K-.

Given a Tucker representation of K and K+ in the nota-
tionally simple form above, the m x N matrix [I,, A] (where
I, isthe m x m identity matrix) is what Tutte calls a standard
representative matri¥ for K (and its matroid). The rows of
this matrix are evidently eementary vectors of K forming a
basis of K. Likewise, [—A", L] is a standard representative
matrix for K* (and the dual matroid), and its rows are ele-
mentary vectors of K+ forming a basis of K*.

Two such standard representative matrices are implicit
similarly in a general Tucker representation. They are ob-
tained by applying to the columns of [I,., A] and [—A7, L)
the permutation which is required to restore the symbols 2;
from the order in which they occur, down the left side and
across the bottom of the tableau, to the order z,,...,%y.
Every Tucker representation thus yields a basis of elementary
vectors for K and one for K*. The bases so obtained will be
called elementary bases. (A Dasis consisting of elementary
vectors is not actually an elementary basis unless one can also
«gelect an identity matrix from the components.”)
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HH.: Emﬂ«oa terms, a dendroid D of K yields a certain uni-
pcmﬁ EE.G of elementary mcvvo;m of K (namely, those of the
vectors in the corresponding elementary basis), each havi
meoE% one element ¢, in common with D. Won BNQMM
M:Mowuw it Hm.w.wzoés that, for any elementary support S of K
and %maw €S, one can .w:& a dendroid D giving rise this way
ko and having e, as its only element in common with S
ﬁmwwom,\wom%mﬁm Mrma wmmc.z equivalently as follows: each mHmBmsh
Gy vec %M:do .Nwrmu,::m a component equal to 1 belongs to
some wmvwmwwwﬁm%“m Omﬁwmw m:m therefore occurs in some

. cker’s “pivoting” formulas thus
serve 1
sore oﬁﬁﬁwwww all the elementary vectors of K and K*, up to

In a directed graph, for example, an elemen
wm‘ having some component equal to 1 is a n?om_MMMM Mm%mmMmMm
sity 1 .8.9.5@ some elementary cycle; hence it is actuall )
representative vector for some elementary cycle, and all w#w
ooBUo:o:ﬁm. equal + 1, — 1 or 0. The matrices w‘: the Tucker
representations thus must have all their components equal to
+ 1, IH. or 0. If the graph is connected, each Tucker r
presentation corresponds to a certain maximal tree D’ of mm_.
The mﬁamzﬁmw% basis of K which can be read from ?ood U.
MMM WMMMm ﬁwrm Mc:aw%gm:g_ basis of elementary cycles mmm%omu

; . e tree . Pivoting in th i
arithmetic expression of the @E.Ma\ ooamm:%uwm”% owo%ﬂ%: mm
passage to an adjacent tree. That is why the general al .
E?B.m of W.Emmw programming can be supplemented by sim mo-
ooggdmﬁoﬁ& algorithms, when network problems are in _vmw..
see Dantzig’s comments [3, Chapter 17]. e

More generally, a simplified combinatorial approach with
mﬁ.o:m mwm@.r-gmoumao analogies is possible in the context of
WMM”M% rw 9@&%%79%. ” Msm “unimodularity.” A matrix A4 mvm

ve the unimodular pr i

matrix of A has determinant mMco%mwwww_.HM oumwu\owmnocmwm@mcw-
ly, by e:o_mm«,m theory, this is equivalent mo the @8@.2@ ﬁﬁwm
Mwm.wwwwsmﬁdx_ ooﬁ.vw:mﬁowmm:% equivalent to A (including 4 it
ve only 's, —1’s and 0’s as com i

%9. property would make a better definition w@ﬂ:ﬂw&&ﬂﬁww -
in the author’s opinion, since it is the property that on i
m_wm.oe._uw ooaomgmm with in linear programming applications ) HHM
WMMMM.M__&: ::am«. Eomwmmﬂgmzm tableau in Tucker’s mowame.rwm

. margins”, and if its “non-marginal ” i
unimodular property, then the m&mSHBmﬁmomﬁmm_ﬁroaww%w%mwwwww
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rithm will be trivial, and the solutions calculated will be in-
tegral.) According to the above, any circulation matrix of a
directed graph (i.e., the tableau matrix A of some Tucker re-
presentation of the space K of cireulations in a directed graph)
has the unimodular property. The derivation given here for
this well-known and important result hinged merely on the
fact that, for graphs, every elementary vector of K is a mul-
tiple of a primaitive vector, i.e. a vector having every compo-
nent equal to +1, —1lor 0. In general, let us call a sub-
space K with the latter property a unimodular subspace of
R¥. We can say then that K is unimodular if and only if the
matrices A in its Tucker representations have the unimodular
property. The study of matrices with the unimodular proper-
ty is thus equivalent to the study of certain subspaces of RY
and their elementary vectors. Such unimodular subspaces are
what Tutte would call “ regular chain groups over the real
numbers.” Minty has shown [3, Appendix A] that the systems
of elementary signed supports of such subspaces and their
orthogonal complements are precisely the objects of his “di-
graphoid ” theory. Minty’s results may therefore be regarded
as a contribution to the theory of matrices with the unimodu-
lar property, in which everything is built up axiomatically in
analogy with graphs.

The class of matrices with the unimodular property is, of
course, closed under many operations besides those of Tucker’s
combinatorial equivalence (pivoting, and permutation of rows
and columns), notably the operations of

(a) taking submatrices;

(d) multiplying various rows or columns through by — 1;

(c) taking transposes; .

(b) appending a new TOwW or column having only one

non-zero component, and that a +1or — 1.

A typical way of proving that a given matrix A has the uni-
modular property is to show that A may be constructed by a
sequence of such operations from a matrix 4’, which in turn
may be interpreted as a circulation matrix of some directed
graph. Although A may itself no longer correspond directly
to a directed graph, it does correspond to one of Minty’s-“di-
graphoids.”  Linear programming manipulations of A there-
fore have graphlike interpretations, which might be an im-
portant conceptual aid.

Part of our interest has been to show that many such
interpretations can even be extended from unimodular sub-
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spaces to arbitrary subspaces, in terms of systems of element-
ary signed supports. Of course, where computational algorithms
are .oo:om.gmm, the entirely combinatorial approach which is so
o.mmo_m:ﬁ in graph theory must give way to a more general
linear programming approach. ¢ ’

7. LINEAR PROGRAMMING

The results about si i i
. gned supports in earlier sections of
Sﬂm. memw place .nmimm: limitations on the patterns of signs
M.\ ic oM: occur in an equivalence class of Tucker representa-
:_MMMN.. E.M a Bmgmw‘)\ of ».Woﬁ so do Tucker’s results concerning
grams. e shall apply these result
study of signed supports. . ults now to the
mo:ﬁ.asowa has shown that, starting with any tableau repre-
5 um:wm am:.m K-, one may pass by a pivoting algorithm to
2 w:.mmm: ation having one of the patterns of signs in Figure
ﬁ. n these tableaus, the top row and the leftmost column are
o correspond to the same two e¢;’s as in the starting tableau

(1)

(11 ;
7+9.‘o ) A+o~o

o
lai

|
|

(11D

(Iv)

[=]
s

<

Figure 1

The four cases are mutuall i i

. y exclusive. In linear pr -
ming, they correspond to the cases where (1) the N@@MMMHMH
wzm the Y problem have solutions, (II) the X problem is un-
ounded and the Y problem is inconsistent, (III) the X pro-
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blem is inconsistent and the Y Eo_o._mB w.m unbounded, and
(IV) the X and Y problems are both H:oo:mﬂ.mam:ﬂ. . ¢ the

The fact just described is a oo:mﬁ,.cns.,\m <m«mwoz 0 !
duality thorem for linear programs. But it may ﬁmo e SmMMM:H
in the light of the observations of ﬁ.wo last section, m.mm m: en
tially an assertion about elementary mﬂm:ma.msvuowdw mdm m.;o
as a fundamental theorem about certain signed matrol m.ﬁ :
bottom row in (II), for instance, oowwmmvojmm to a vec oM. in
an elementary basis of K, whose mc.@wowﬁ is a :oﬁ-ﬂm@ﬂ Mwm
elementary signed support of K containing the e, of the left-

n.

Bomwﬁwﬂwﬂm (1) as alternative (a), and (II), (1) m«m\maﬁzo
together as (b), we can state %.o result as mw:oém.: Hm o:M
of the elements of E be distinguished as the . Em.ow M mBmsm
and one as the “grey” element. (We have in mind t mmsnm
the top row in Tucker’s ﬁmwBE&.deomcm and the @M 0 %
left-most column, respectively.) Paint all the .o?ow mm:%: S
white. Then one and only one of the Ezoéﬁm m:xwi% ?mm
holds (and which one it is may be determined by an efficien
m_mom_wgv&rmam exist an m_mBmsnm.H.u.\ signed support S oM K
containing the black mHmBos\.n .@om;:\mq, and an &oaﬂa JJN
signed support S’ of K+ containing the grey element posl Mﬁw m&,
such that no white element belongs negatively ao\ S or to &',
and no white element belongs _oo.%. to S and to S'. .

(b) There exists a non-negative elementary signe Wmc_v-
port of K containing the grey m_méma vcﬁ not the blac mwa.
ment, or there exists a non-negative signed support of
containing the black element but not- the grey element, ow
Uo?.?wﬁcm:%, this is not quite completely contained in the H.mm
sult stated by Tucker, because there the black &mB.ms.a. ﬂ:
the grey element correspond to a row and a column wESm W
But that correspondence can always be arranged, un ess (b)
holds. For, if the grey element ooﬁom@.o:mm to a row in some
Tucker representation, and that row is not entirely zeros, a
simple pivoting step will calculate a new wmvammoﬂmmﬁ,o: dms
which the grey element corresponds to a column. , ozm. e
other hand, the row contains only zeros, the corresponding
elementary basis of K has a vector éro.mm support is .nwo_ mw%%
element along; this is a case of alternative (b). Similarly for

lement. . .
the WWMWW MoBoésmd mysterious, purely combinatorial result
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about signed sets, let us emphasize, has the celebrated duality
theorem for linear programs as a corollary. We must there-
fore regard it as one of the deepest theorems possible about
the signed matroids arising from subspaces of RY. Here is an
even more elaborate result, which corresponds in linear pro-
gramming to the case where some constraints are equations
and some variables are unconstrained.

Theorem 7. Let one of the elements of E be painted black and

one grey. Let each of the remaining elements be painted white,

green or red. Then one of the following alternatives holds, but
not both:

(a) There exists an elementary signed support S of K contain-
wng the black element positively and mo red elements, and
an elementary signed support S’ of K* containing the grey
element positively and mno green elements, such that no
white element belongs negatively to S or to S', and mo white
element belongs both to S and to S'.

(b) There exists an elementary signed support of K contain-
g the grey element and otherwise only greem or white
elements, with the grey and white elements contained posi-
tiely; or there exists an elementary signed support of K*
containing the black element and otherwise only red and

whate elements, with the black and white elements contained
positively; or both.

Proof. This theorem must be considered known as regards
linear programming, although Tucker has not discussed equa-
lity constraints or free variables explicitly in terms of his
terminal tableaus. Computationally, one can decide between
(a) and (b) (and construct the elementary signed supports in
question) using some extension of the simplex algorithm to
this more general case, such as the extension described by the
writer [9]. Details will not be given here. For the sake of
proving Theorem 7, however, it seems appropriate to indicate
how the general case may be reduced constructively to the
one previously dealt with.

Starting from an arbitrary Tucker representation, we first
arrange, by simple pivoting if necessary, that the black ele-
ment corresponds to a row and the grey element to a column
(henceforth the “black” row and the “grey” column, ete.)
(If this is not possible, then alternative (b) holds, as already
explained.) We continue with simple pivoting, choosing at
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each step as pivot a non-zero entry in a green Yow m:@ white
column, or in a green row and red column, or in a white row
and red column. (The consequence is that the :csaomw oﬁamm
elements in D plus the number of green elements in D' 1mn
the dendroid partition of E is increased m&. each step.) >?ww
finitely many steps, a Tucker representation of the sort _M
Figure 2 is obtained (upon rearrangement of the rows an |
columns). The 0’s mark submatrices all of whose entries are
0. (In any given example, of course, one would expect a de-
generate version of this tableau, without any green rows at

all, say.)

grey white red green
grey W™
black ?
e
white , 0
green ) ? / 0 | 0
L R B
red
| [ R
Figure 2

At this point, we look to see whether the entries in the
grey column and green rows are all zero. If not, one of the
green TYOws furnishes an elementary <woa.9, égmm support
satisfies alternative (b) of Theorem 7. Similarly, if the black
row has a non-zero entry in a red column, then (b) holds.
Otherwise we proceed with Tucker’s analysis & the black-gray-
white subtableau, eventually transforming 1t to one of the
four cases in Figure 1. (At each iteration, the éw.o_m a.miomc
is transformed in accordance with what is happening 5.§.m
subtableau. The transformations S.ZS:%. preserve the indi-
cated pattern of zeros.) The conclusion, in terms of element-
ary signed supports, can be read from the final tableau as be-
moam.ewooumg 7 reduces to our generalization oﬁ Minty’s
“colored arc lemma” (Theorem 6), if one simply omits every-
thing having to do with there being a grey m_mbsﬁ. The
simplex algorithm may then be employed in Emogomzw. the
same way to decide constructively _ooﬁéo.ms the alternatives.
The terminal tableaus correspond to having (1) or (III) of
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Figure 1 in the upper left of Figure 2, with leftmost columns

deleted. In the purely black-and-white case, as Tucker has

pointed out in [15], these alternative tableaus correspond to
the alternatives in the classical lemma of Farkas.

Since Theorem 7 and its algorithm are so complicated (as,
indeed, they have to be to cover so many cases), a more
special illstration may be helpful. Let us demonstrate how the
“unsigned ” form of Minty’s lemma (where nothing is painted
white) may be decided for an arbitrary subspace K. Here we
are given a painting of E, where one element is black, and
all other elements e, are red or green. We start with any
Tucker representation of K. If the black element corresponds
to a column of the tableau, we look for non-zero elements in
that column. If one exists, pivoting on it will yield a repre-
sentation of K in which the black element corresponds to a
row. If none exists, then the set consisting of the black ele-
ment alone is an elementary support of K, and alternative (b)
holds. Assume now that the black element corresponds to a
row. We pivot next on any non-zero entry in a green row
and red column. This is kept up until there are no more such
pivots, at which time the tableau has the form in Figure 3.

o red  green
black i ? l d
e
green 0 _A ,
R R
red W |
| ,, |
" Figure3

If now the black row has a non-zero entry in some red
column, the e;’s corresponding to rows with non-zero entries
in that column, along with the e, of the column itself, form
an elementary support of K* containing the black element and
otherwise only red elements. If, on the other hand, the black
row has only 0’s in red columns, then an elementary support
of K is given by the black element and the green elements

. corresponding to columns with non-zero entries in the black
E row. These are alternatives (a) and (b). (Note, incidentally,

that this special case of the algorithm is valid for graphoids
arising from subspaces of vector spaces over arbitrary fields.)
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