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ABSTRACT

It is customary for statistical agencies to audit tables containing suppressed cells to
ensure that there is sufficient protection against inadvertent disclosure of sensitive
information. If the table contains rounded values, this fact may be ignored by the audit
procedure. This oversight can result in over-protection, reducing the utility of the
published data. In this paper, we provide a correct auditing formulation, and give
examples of over-protection.
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1. INTRODUCTION

Statistical agencies routinely publish aggregate tables containing values rounded to the closest multiple of
some base amount. For example, the U.S. Bureau of Economic Analysis publishes an annual survey of
U.S. direct investments abroad, comprising tables that give dollar figures for industry by country, rounded
to the nearest $1 million. Often, some cells in the tabulation are considered sensitive, and so are suppressed
in the actual publication. To prevent the inference of a suppressed value from the published marginal
totals, additional cells called complementary suppressions may also be suppressed. The procedure for
determining the complementary suppressions is usually heuristic, since any optimal procedure is known to
be NP-complete for tables of dimension three or higher (Kelly, 1992). Therefore, it is of great interest to
check the results of the heuristic to ensure the required level of protection actually obtains.

The procedure usually used for auditing is linear programming (Sande, 1999 and Zayatz 1993). Although
for two-dimensional tables there exist fast network procedures for disclosure auditing (Gusfield, 1988),
linear programming (LP) is customary, since it can also be used for higher-dimensional tables where
network models break down. The conventional formulation of the LP problem, in use for at least a decade
by many U.S. and foreign statistical agencies, is flawed for rounded tables. In this paper, we point out the
error in the conventional analysis, present a corrected formulation, and provide results that give an
indication of the level of over-protection (and hence loss of data utility) that may result from the flawed
auditing procedure.

2. LP FORMULATION

Suppose that Table 1 gives the true data, in decimal form, collected by a statistical agency. In this table,
row 0 contains the marginal sums of rows 1-4, and column 10 has the marginal totals of columns 101-104.

10 101 102 103 104

0 170.2 39.5 58.8 44.1 27.8
1 35.0 14.2 15.3 2.2 3.3
2 41.3 5.4 10.2 10.3 15.4
3 47.1 7.8 20.0 15.0 43
4 46.8 12.1 13.3 16.6 4.8

Table 1: Original Table of Unrounded Data
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The data agency wishes to publish this table, after rounding its entries to whole numbers, and after applying
disclosure protection in the form of cell suppression. There are several rounding methods in common use.
The simplest is independent rounding, in which each cell is rounded, in isolation of the others, to the closest
multiple of the rounding base. If independent rounding is applied to Table 1,a non-additive table (i.e., one
in which a row or column of rounded values doesn't sum to the rounded marginal value) results. In spite of
this possibility, independent rounding is often used because of its simplicity. Various means exist for
controlled rounding, methods that are more complex but do produce additive tables (e.g., Cox 1987). Our
analysis applies, with minor variations, to tables subjected to either form of rounding. To audit a non-
additive, independently rounded table using linear programming, an additional step is required, which is to
produce a best-fit, additive, not-necessarily-integer table. These details are not discussed here.

Suppose that Table 2 is the result of the rounding process, and the shaded cells shown have been chosen for
suppression. The linear programming audit procedure consists in taking the suppressed cells as variables,
then maximizing and minimizing their possible values, one-by-one, subject to constraints that arise from
the published interior cells and marginal totals.

10 101 102
0 170.0 40.0 58.0
1 35.0 14.0 15.0%
2 41.0 6.0 10.0
3 47.0 8.0 20.0-
4 47.0 12.0 13.0

Table 2: Rounded Table, Suppressions Shaded

The constraint set for Table 2 is
Xa103 T X108 = 6
X310 T X104 =19
Xa109 T X3@003) = 17

X106 T X308 = 8

Auditing the protection for the suppressed cells, using any LP solver, results in the (lower, upper) bounds in
Table 3.

103 104
1| (0, 6) (0, 6)
3| (11,17) (2,8

Table 3: Bounds on Suppressed Cells

This conventional approach to disclosure auditing assumes that the rounded values are exact. Despite the
fact that data users, and data intruders, are normally fully advised that the table entries are rounded, this
simplifying assumption is very commonly made. This oversight can result in misleading evaluations of
data protection. Depending on whether suppression is applied to the rounded or unrounded data, over- or
under-suppression can result. In the case of under-suppression, the statistical agency may have failed to
protect the confidentiality of its respondents; for over-suppression, data users suffer the disutility of
unnecessary suppressions.

2.1 Energy Information Administration Example

Protecting respondent confidentiality is a high priority in the federal statistical community. Indeed, much
of the data collected by statistical agencies is collected under an explicit promise of confidentiality; that is,
that information will not be released in a way that allows users of information to determine the data values
for individual respondents or a grouping of respondents. Data collected under such a promise are
commonly made available to data users in the form of aggregated (tabular) data summaries. Because such



releases have a risk of disclosing confidential data, agencies employ a variety of safeguards in an attempt to
avoid disclosures. Indeed, agencies give high priority to assessing disclosure risks and taking necessary
steps (data suppression, error inoculation, and so on) to minimize (ideally, eliminate) such risks. Although
rare, there have been instances where official data releases have allowed confidential data to be identifiable.
More likely, although an untested theory, there have been instances where official data releases have
seemingly breached confidentiality protection rules because of a simplifying assumption, such as assuming
rounded summary values are exact.

We give an example from the Energy Information Administration (EIA) report “Manufacturing
Consumption of Energy 1991, which is funded and disseminated by EIA but collected, edited and
tabulated by the US Bureau of the Census. Complexities of tabular summaries found in this EIA report
vary. We have chosen a table that offers some complexity because of its disclosure pattern, but tables that
are more complex exist in this EIA report. Table A28 presents statistics on US manufacturing expenditures
(in million dollars) for Purchased Energy by six establishment size categories and four Census Regions,
yielding a 3-D table structure. Of the 215 cell values in Table A28, 87 were suppressed from publication.

For this paper, we reduce the display of this table to those cells of interest. Table 4 shows Expenditures for
Purchased Energy for Distillate Fuel Oil for each Census Region from Table A28. An examination of this
reduced table reveals how a user may make a misleading evaluation when rounded cell values are assumed
exact.

Total Northeast Midwest South West

Total 800 248 152 276 124
Under 20 351 132 w w 54
20-49 154 40 w W A\
50-99 76 21 13 26 16
100-249 71 22 12 25 12
250-499 53 w 8 27 w
500 + 95 W 31 35 A

Table 4: Rounded Table of Expenditures, Table A28

First, re-order the Northeast column of Table 4 to obtain Table 5. Re-ordering simply allows for a better
display of the suppression pattern found in the reduced table.

Total Midwest South West Northeast

Total 800 152 276 124 248
Under 20 351 W w 132
20-49 154 4 W | 40
50-99 76 13 26 16 21
100-249 71 12 25 12 22
250-499 53 8 27 w W
500 + 95 31 35 W W

Table 5: Rounded Table of Expenditures, Re-Ordered

In Table 5 ‘we have divided withheld values into three groupings: two are bordered and one is bordered and
ed. These groupings are important. Because of the overlap in suppression patterns — under an
assumptlon that cells are exact (i.e., not rounded) — one may derive an integer value for the shaded cell
(Distillate Fuel Oil expenditures in the West Census Region for the 20-49 establishment size category).
Further, this is a familiar example in which every row and column has at least two suppressions, yet
protection is incomplete, at least for tables where rounded cell values are considered exact.

Let’s derive that integer, 2d cell of Table 5. Using the linear relationships of the marginal totals,
we calculate the grouped withheld values for Under 20 and 20-49 as 165 (351 minus 186) and 114 (154
minus 40), respectively. When combined, these values sum to 279. Similarly, withheld values for the
Midwest and South are 88 (152 minus 64) and 163 (276 minus 113), respectively. Again, when summed,
these withheld values equal 251. Taken separately, these values of 279 and 251 have the intended result of
minimizing disclosure risks. However, these same values become valuable to a data user — or data intruder



— because we may easily derive, by subtraction, a seemingly exact disclosure of the withheld value for
Distillate Fuel Oil expenditures in the West Census Region for 20-49 establishment size category. That
value is 28 (279 minus 251).

Surprisingly, for our shaded Distillate cell, we obtain the same value (28) using the other remaining
withheld values. That is, we may calculate a value for the West (42) and Northeast (33) Census Regions
and the 249-500 (18) and 500+ (29) establishment size categories and subtract these summed values to
obtain 28 for the shaded Distillate Fuel Oil value.

Not surprisingly, a data user or data intruder might find this information useful. ~Moreover, and more
importantly, statistical agencies find this information harmful to their mission and perceived ability to
protect respondents from unacceptable disclosure risks. Fortunately, both results may be false because this
table has an inherent rounding process; that is, the simplifying assumption that rounded cells values are
exact does not hold for Table A28.

Auditing the disclosure protection for the suppressed cells, using an LP formulation that recognizes the
rounding process, results in the (lower, upper) bounds in Table 6.

Northeast  Midwest South West
Under 20 (0,84) (79.5,165)
20-49 2.591) (0,85.5)
250-499 (0,19.5)
500 + (11,30.5)

Table 6: Bounds on Expenditures Table

This agency example demonstrates the impact of oversimplifying disclosure auditing. Specifically, we
show in Table 6 that a seemingly exact disclosure — 28 for the Distillate Fuel Oil expenditures in the West
Census Region — is actually a misleading evaluation because the rounding process provides lower and
upper bounds of 21 and 34, respectively. Because these data are confidential, it is impossible to ascertain
the direct impact of these feasible bounds on privacy; however, the error of taking rounded values as exact
is empirically revealed. Indeed, this example provides direct evidence of the potential errors — misleading
evaluations on disclosure controls — introduced when disclosure audits are inaccurately formulated.

2.1 Corrected Formulation

The solution to these problems is simple and obvious. All that needs to be done is to include additional
variables and constraints for the rounded cell values, explicitly specifying the rounding bounds. This
introduces additional complexity into the linear programming problem, but assures that the disclosure
auditing is done correctly.

Constraints appropriate for Table 2, row 1, for example, are the following.

Xaton T Xa02 T X103 T Xa0e = X110)

13.5< X101, < 14.5
14.5< x40, <15.5
34.5< x4, <35.5

On solving the corrected formulation, the (lower, upper) bounds for the suppressed cells are those in Table
7.

103 104
1[ (0,75) (0, 7.5)
3| (8, 18.5) (0, 9.5)

Table 7: Correct Bounds



3. ERROR ANALYSIS

We can give an analytic account of how the bounds for a suppressed cell expand when rounded values are
taken as exact values. We do this for two-dimensional tables only, because there is a convenient network
representation for 2-D tables that doesn't apply to 3-D and higher tables. Starting with the simple 4x4 table
in Table 2, we follow Gusfield (Gusfield,1988) and draw a network corresponding to the suppressed cells
(Figure 1).

In the network, nodes represent rows (on the left) and columns (on the right). Pairs of arcs join the nodes,
one pair for each suppressed cell. In this graph, flows along arcs represent potential values that the
suppressed cells may assume. The upper arc in each pair holds the current value a suppressed cell. The
lower arc holds a value equal to the largest row sum of the suppressed cell values. The purpose of the
lower arcs is to record the maximum flow that could occur on any arc in the network.

Figure 1: Graph of Suppressed Cells

To determine the upper and lower bounds for any suppressed cell, linear programming can be used, but
Gusfield’s network approach provides insight into the effects of rounding, at least in 2-D tables. As is usual
in network flow models, the maximum flow from one node to another along a specific directed path (i.e., a
succession of consecutive arcs) is equal to the minimum of the potential flows along the component arcs in
the path. To find the maximum and minimum for a suppressed cell, first define M to be the largest of the
rowsums of suppressed cells (19 in our example). This is the value associated with the lower arc in each
pair in the graph. Also, let T(i,j) be the current table value for the suppressed cell in row i and column j.
This is the value of the upper arc in each pair. Finally, define F(i,j) to be the maximum flow from node i to
node j, taken as the sum over all directed paths joining i to j.

The following result is central.

Theorem 1: (Gusfield 1988, Theorem 5) The upper bound for suppressed cell (i*, j*} is equal to P(j*, i*),
the total flow from j* to i* (note the reversed order of the nodes here). The lower bound for cell (i*, j*)
equals max[0, T(i*, j*) — P(i* j*) + M].

For example, the upper bound for the suppressed cell (3, 103) is the sum 15+2=17 of the direct flow
103--3 and the indirect flow 103—1-5104—3. The flow P(3, 103) is the sum of the direct path 1—-103
plus the indirect path 3—104—1—103, for a total of 19+4=23. Thus the lower bound for the suppressed
cell (3, 103) is max[0, 15 -23 + 19] = 11.

We can now consider what happens when we know that certain unsuppressed cells are rounded. We first
consider the case when all the internal cells are rounded, but marginal totals are still considered exact. We
think of a rounded cell as being "partially suppressed,” that is, its exact value isn't known but bounds on it
are known. For the standard case of a cell rounded to a whole number, these bounds are the published cell
value £ 1/2.

We include the rounded cells in the network, with each upper arc from a rounded cell holding the value 1/2.
This accounts for the ambiguity in knowing its value. This new network will have, for our example
problem, four row nodes and four column nodes, with each row node connected by an arc pair to each



column node. With this done, the upper and lower bounds on suppressed cells are calculated much as in
Gusfield’s theorem. Note that there will be additional paths that need to be considered in each calculation,
these new paths going along an arc for a rounded cell.

Theorem 2: Bounds for suppressed cells in rounded tables are computed using Gusfield’s algorithm on the
expanded graph.

As an example, we calculate the upper and lower bounds for the suppressed cell (3, 103). For the upper
bound, we sum over the original paths 103—3 and 103—1—104—3, giving the value of 17 we obtained
previously. In addition, however, we include the paths 103—2—104—3 and 103—4—104—3, both with
flow 1/2. Adding up all these flows, we find the true upper bound for cell (1, 103) to be 18 rather than the
value of 17 obtained before. {(When determining the flows, one needs to be careful that two flows do not
"re-use" an arc in such a way that the total flow over all paths carried by that arc exceeds its capacity. Thus
having chosen path 103—2—104—3, one could not also use 103—2—102—3, since the capacity of the arc
1032 is restricted to 1/2. Also, no cell value is permitted to become negative as a result of multiple
flows.)

For the lower bound on cell (3, 103), the total flow P(3, 103) can be constructed using the following paths:
3—103, 3—5104—2—103, 3-5104—4—103, 3—5101—>1—103, and 3—5102—1—103. These total 25, so
the lower bound is max[0, 15 -25+ 19]=9.

Note that in both of these examples, the result of following each path amounts to an exchange of values
between cells. These exchanges are continued until no more are possible, because of bound or non-
negativity restrictions. In general, there may be many ways to maximize or minimize a suppressed cell,
resulting in the same maximum or minimum value, but different configurations of the other table cells.
Moving from one optimal configuration to another is a move known, in LP language, as a degenerate pivot.

It's now possible to see what would happen if the table were larger. For example, if the table were 10x10,
but still had the simple 2x2 suppression pattern, each of the upper bounds could increase by up to 1/2(10 —
2) = 4 over the same bound computed under the assumption that the rounded cells are exact. Lower bounds
can potentially expand by twice this much. This has clear ramifications for choosing, and auditing,
suppression patterns.

Suppose, in the example table, the cell (3, 103) was a primary suppression. The other three suppressions
might easily be chosen as complements, because their sum is a minimum amongst all available rectangular
four-cell suppression patterns. If a disclosure audit were performed under the assumption that the rounded
cells are exact, then the audit would find bounds of [11, 17] around the "exact" value of 15. Since the
upper bound is only 13% larger than the "exact" value, this might prompt the agency to search for a
different suppression pattern, or perhaps more likely, augment the existing pattern with additional
suppressions. If the agency rule were that secondary suppressions should protect to within 20%, that rule
would in fact be satisfied by the current pattern. Thus, the assumption that the rounded values are exact
may easily result in unnecessary suppressions, reducing the value of the published data product.

The analysis presented so far can be extended to the case where marginal totals are also rounded. To do
this, the network must be expanded to include nodes representing the marginal totals. The resulting
network is precisely the same as that used by, e.g., Cox (Cox 1995), and is shown for a rounded 4x4 table
in Figure 2.

Extending the theorem of Gusfield to this network is also straightforward. The net effect is to include
additional ambiguity into the calculation of upper and lower cell bounds. For the simple "rectangular”
suppression example we have been considering, upper



Figure 2: Network Including Marginal Totals

bounds on each suppressed cell are increased by an additional 1/2, while each lower bound decreases by 1.0
(unless zero is reached).

For tables with larger numbers of suppressions, the effect of rounding is harder to analyze, because of the

potential for interaction among cells. As an extreme case, Table 8 gives another version of our example
with additional suppressions (indicated by shading).

10 101 102 103 104

Table 8: Table with Additional Suppressions

In this example, if we assume that the cell values are exact, cell (4, 103) has identical upper and lower
bounds, constituting an exact disclosure. This is an example of the familiar pattern in which every row and
column has either zero, or at least two, suppressions, yet protection is incomplete. = However, if we
recognize that the cell values are rounded, the true bounds for this cell are [10.5, 21.5], obviously a
substantial difference.

For three-dimensional tables (and higher), there is no longer a direct network representation of the table.
Thus, it is again difficult to analyze the effects of rounding. Empirically, however, results similar to those
demonstrated above make it clear that assuming rounded cells are exact can result in over-suppression.

Bureau of Economic Analysis Example

The Bureau of Economic Analysis offers a larger table for examining disclosure audits. Table 9 shows a
portion of data from Table 28 found in the BEA report, “Direct Investment Abroad 1991.” Using the same
technique of isolating cells, we may derive an integer value for two cells: Tobacco for Canada and Africa.



Latin Middle

Total Canada Europe  America Africa East Pacific International
Other Mfg. 126,840 19,992 77,307 15,429 652 69 13,334 57
Tobacco 14,497 d 9,147 3,085 d 0 725 0
Textile 5,782 466 4,221 436 0 0 659 0
Lumber 3,392 686 2,071 350 0 0 284 1
Paper 30,088 7,794 17,424 2,721 d d 2,046 0
Printing 5,726 1,141 3,654 215 33 0 683 0
Rubber 7,371 985 3,755 1,702 d 0 824 d
Plastics 3,495 430 2,423 161 18 0 463 0
Glass 3,640 d 2,351 607 0 0 d 0
Stone 5,327 2,677 1,832 397 d 0 358 d
Instruments 44,485 3,889 28,498 5,538 d d 6.409 0
Other 3,037 d 1,931 217 0 0 d 0]
Table 9: Rounded Table of Investments, Table 28
Re-ordering the rows and columns of Table 9 provides a better display of the suppression pattern and
results in the following:
Middle Latin
Total Canada Africa East Pacific International Europe  America
Other Mfg. 126,840 19,992 652 69 13,334 57 77,307 15,429
Other ; 0 1,931 217
Glass 0 2,351 607
Tobacco 14,49 0 725 0 9,147 3,085
Paper 30,088 d 2,046 0 17,424 2,721
Instruments 44,485 3,889 d 6,409 0 28,498 5,538
Rubber 7,371 985 0 824 3,755 1,702
Stone 5,327 2,677 0 358 1,832 397
Plastics 3,495 430 18 0 463 0 2,423 161
Printing 5,726 1,141 33 0 683 0 3,654 215
Textile 5,782 466 0 0 659 0 4,221 436
Lumber 3,392 686 0 0 284 1 2,071 350

Table 10: Re-Ordered, Rounded Table of Investments

In Table 10, we have formed four groupings of withheld (“d”) cells: Other and Glass; Tobacco; Paper and
Instruments; and, Rubber and Stone. Using these combinations, if rounded cells values are considered
exact, we may determine integer values for the each of gray-shaded cells: Tobacco for Canada and Africa.
Here’s how.

By subtraction, we calculate the withheld values for Canada, Africa, Middle East and International as
1,924; 601; 69; and 56 respectively. Similarly, “d” values for Rubber and Stone are 105 and 63; and, when
combined, they equal 168 (105 plus 63). From the combined withheld values for International (56) and
Rubber and Stone (168), we may isolate the suppressed value for Rubber and Stone for Africa as 112 (168
minus 56). Likewise, by subtraction, we may isolate the suppressed value for Paper and Instruments for
Africa as 185 (254 minus 69).

Finally, the value for Tobacco for Africa may be given as 304 (601 minus 112 minus 185). Further, the
value for Tobacco for Canada is 1,236 (1540 minus 304). These values, however, are misleading because
cells values are not exact; rather they are rounded to the nearest $1 million.



Applying a correctly formulated set of LP constraints (i.e., one that recognizes a table’s rounding process)
to any linear optimizer, we may calculate the (lower, upper) bounds for the suppressed cells. We display
these audit results in Table 11.

Latin Middle
Total Canada Europe  America Africa East Pacific International

Other Mfg.
Tobacco

Textile
Lumber
Paper (31,105.5) (0,69.5)
Printing
Rubber (45.5, 107.5) 0, 57)
Plastics
Glass (0, 683.5) (0, 683.,5)

Stone (3.5,65.5) (0,57)
Instruments (79, 153.5) (0, 69.5)

Other Other (0, 696) (194.5, 888)

Table 11: Correct Bounds of Investments

Table 11 reveals two insights. First, as already mentioned, re-formulated LP constraints provide direct
evidence of the error associated with simplifying assumptions. Second, Table 11 reveals that large tables
may have wider (upper and lower) bounds because of the increased contribution of the rounding process to
disclosure coverage.

4. CONCLUSIONS

When publishing tables incorporating cell suppressions, a data disseminator tries to strike a balance
between privacy protection and data utility. Complementary suppressions are generally chosen to achieve a
desired interval of protection while minimizing their number. In the case of rounded tables, a common
error is to take the rounded cells as exact, often resulting in over-protection. In this paper, we have
analyzed the consequences of this error, and provided a simple repair.
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