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1 Problem Statement

Let T = [tiy, . 5.)s31 €1,...,11,...,in € 1,..., I, be an n-way table of unknown nonnegative integers, and
suppose some or all of its (n — 1)-way and lower-dimensional marginal totals are known. Our problem is
to find sharp upper and lower integer bounds on the entries of 7. This problem is of interest to statistical
agencies who publish categorical tables that are aggregations of responses to surveys and censuses. From this
perspective, the agency wants to ensure that identification of individual respondents, or inference of sensitive
attributes, cannot occur. If the bounds on a cell entry in the n-way table are too narrow, given information
contained in published lower-dimensional margins, a disclosure of sensitive information may have occurred.

A natural first choice for finding the desired bounds is linear programming [11]. Unfortunately, if at
least three of Iy, ..., I, are greater than three, there is no guarantee that the optima found by LP will be
integer [7]. Since there are standard examples in the integer programming literature that show that the
optimum for the corresponding integer program may be an arbitrary distance from the LP solution, using
LP for disclosure auditing of integer tables has been criticized [1]. We show in this paper that, in certain
circumstances, the optimal LP bound for any cell in the n-way table may simply be rounded to obtain the
optimal integer bound.

2 The Integer Rounding Property

Any collection of marginal tables {T1,...,Tx} of T imply a set of equality constraints on the underlying
cell values ¢;, _; . In this section we focus on an n-way table where all of the (n — 1)-way marginals are
known. Let AT (where T indicates transpose) be the matrix of coefficients in the equations that define all
(n — 1)-way marginal totals of T, and let ¢ be the vector of the entries of the marginal tables (defined in the
same order as the rows of AT). The reason for denoting this matrix as a transpose will become clear shortly.
We define the values

p = Z Il"'Is‘l']s-}—l"'In (1)
s=1,..n

q = Il"'In
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s — q—T

and note that matrix AT has p rows and q columns.

Example: A 3 x 2 x 2 table T will have the following constraint matrix. There are p=3*2+3%2+2x2
rows; the first six rows correspond to the 3 x 2 marginal T}, ;,+, the second group of six to the 3 x 2 marginal
T;, vi5, and the last four rows to the 2 x 2 marginal T’ ;,;,.
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In general the rows of such a table will not be linearly independent, since the number of degrees of freedom
in choosing values ¢;, . ; is not necessarily the same as the number of marginal table cells. Below we will
give a simple method for directly writing a minimal set of linearly independent constraint equations.

We consider the dual problems

max{cz | Az < b} and min{yb|y > 0;yA =c},

where the minimization problem is the one we are interested in. The vector ¢ is, again, the vector of the
released marginal totals, while vector b is chosen as +e; according to the cell in 7" whose bound is sought
(i.e., +e; for the lower bound of z;, —e; for the upper bound). We call this the bounds problem.

Schrijver [8] presents a series of definitions and results that we use here.

Definition 1 A rational system Az < b of linear inequalities is called totally dual integral (TDI) if the
minimum in the LP-duality equations

max{cz | Az < b} = min{yb |y > 0;yA =c} (2)

has an integral optimal solution y for each integral vector ¢ for which the minimum is finile.



Thus if one can show that Az < b is TDI, then optimal solutions to the dual problem (the RHS of (2)) are
guaranteed to be integral, provided c is. For the bounding problem, we know that Az < b is not TDI, since
we have examples of non-integral bounds.

Definition 2 The cone of a set of vectors S = {ay,...a;} is the set

cone{al, .. .at} = {/\1(11 4.4 /\tat I Al, . ,At Z 0}

Definition 3 A finite set of vectors ay, .. .a; is called a Hilbert basis if each integral vector in cone{ay, . ..a:}
s a nonnegative integral combination of ay, .. .a;.

1t is well known that every rational polyhedral cone is generated by an integral Hilbert basis [8].

Definition 4 A rational system Az < b of linear inequalities has the integer rounding property if
min{yb | y > 0;yA = ¢;y integral} = [min{yb | y > 0;yA = c}],

where [z| is the smallest integer greater than x.

We wish to show that Az < b has the integer rounding property for the bounds problem, thus assuring that
any fractional bound returned by an LP can be used to obtain the correct integer bound. The following
result is central.

Theorem 1 (Giles and Orlin [{]) Let Az < b be a feasible system of rational inequalities, with b integral.
Then Ax < b has the integer rounding property if and only if the system Az —bv <0 is TDI, or equivalently,
if and only if the rows of the matrix
A b
01]

Example: We illustrate the use of these definitions and theorem with the 3 x 2 X 2 problem presented
earlier. The row-reduced version of the matrix for the 2-way marginal sums is the following.

form a Hilbert basis.

1000000 1000 1
0100000 1000 -1
0010000 -1000 —1 rz
0001000 1000 1

4T_|0000100 1000 0 i
0000010 1000 O
0000001 1000 O
0000000 0100 -1
0000000 0O0T1O0 1
00000O0OC O0O0OO0T1 1

There are s = 10 rows, which is the number of degrees of freedom. To show that the bounds problem has
the integer rounding property, we must show that the rows of the matrix in Theorem 1 form a Hilbert basis.
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Because the vector b is always a unit vector (in the minimization problem), it is obvious that if the rows of
A form a Hilbert basis, so will the rows of the augmented matrix in Theorem 1 (although the bases will be
for different cones). So the bounds problem becomes one of showing that the rows of
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form a Hilbert basis (the rows of A have been slightly rearranged to show some structure). In general, matrix
A will have the special structure displayed in the example.

Lemma 1 After row reduction and deletion of rows of zeros, the matriz A" has the form [I B) where I 1is
the identity matriz of dimension s =1, --- I, — (I —1)---(I, —1) and Bisaq—r x (I —1)--- (I, — 1)

dimensional matriz with entries in the set {—1,0,1}.

Proof: We explicitly give the rows in the row-reduced matrix AT. First define the following summation

limits.
o it lf (a7 }é 1
Pl e #1 ifa;=1
For any complete set of indices 4y, 42, . . . , in, define p to be the number of these indices not equal to 1. Then
define

2 R Lig,nsin lfp =n
RN $‘i1,...,in + (_l)p Zax,...,an mil""’i" ifp # n

Then the left-hand sides of the constraint equations A" x consist of those Ziy,...in Such that at least one index
i¢ is a one. There are r such rows, each with a leading coefficient of 1, and any row having -1 coefficients
consists of this leading 1 followed by terms all having coefficient -1. Any constraint from the original set (i.e.
before row-reduction) can be generated from a suitable linear combination of the z. Finally, rearranging the
columns of the set of = produces the form [I B] as desired. O

Example: For the 3 x 2 x 2 table, the two levels may be arranged with the cells numbered lexicographically,
as follows.

111 121 112 | 122
211 ] 221 212 | 222
311 | 321 312 | 322
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The lemma says that the reduced constraint equation set is the following.
an =z +(—-1)° Z Tiyinis = T111 + (Z222 + T322)
i1#1,ip#1,is#£1

1
z112 + (—1) E Tiyigis = Ti12 — (222 + Z322)
i1#£1,i0#1,i3=2

Il

2112

I

2 _
2321 z321 + (—1) E Tijigiz = T321 — 322

i1=3,in=2,ig#£1L

which is identical to the matrix A shown above.

To prove the integer rounding property for the bounds problem, it remains to show that the rows of
matrix A form a Hilbert basis for the cone generated by the rows. One way to do this is computationally,
that is, actually compute the Hilbert basis for cone(A) and show that it is identical to A. A number of
algorithms exist for computing Hilbert bases, but all of them are derived in one way or another from the
Buchberger algorithm for computing the Grébner basis for a polynomial ideal [5, 9, 3]. Each algorithm is
designed for a different representation of the cone; we chose the version of Henk and Weismentel, which
assumes the cone is described, not in terms of its generating vectors (as in Definition 2), but rather by a set
of homogeneous inequalities. In particular, their algorithm requires that the cone C be described as

C={z|Mz<0}.

Each inequality is called a support of the cone.

In order to use the algorithm of Henk and Weismentel, it is thus necessary to find the matrix M corre-
sponding to the cone of the row vectors a;,i = 1,...,q. A procedure for this is given in Weyl [10], and is the
following.

1. For each set of s — 1 linearly independent vectors {a;,,...,a,_,}, find A; such that the hyperplane
/\1a1 + ...+ /\3710,571 =0
contains them.

2. Test whether one or the other of the halfspaces
:t(/\]_al + ...+ )\3_10.3_1) <0
contains (supports) all the a;. If so, add the support to the matrix M.

Example: The Weyl procedure was coded and run for our 3 X 2 X 2 example; M is a 28 x 10 matrix of -1’s
and 0’s. The algorithm of Henk and Weismentel was then run for this matrix, and produced a Hilbert basis
precisely equal to A.

The example problem is not realistic, for two reasons. First, it is known [2] that three-dimensional
problems where at least one I; < 3 are actually network problems, and so are guaranteed to have integer
bounds, provided the data (the marginal values used as input) are integral. So such problems vacuously have
the integer rounding property. Second, the execution times for Buchberger-like algorithms grow exceedingly
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quickly with increases in the I;. For example, one fast implementation of Buchberger’s algorithm for finding
Grobner bases [6] takes milliseconds to find the basis for a 3 x 3 x 3 problem, 20 minutes for the 4 x 3 x 3
problem, and 3 months for the 5 x 3 x 3 problem.

The smallest bounds problem that is known to have non-integer linear programming bounds is the 3x3x3
problem. Evidence that the step from 3 x 3 x 2 to 3 x 3 x 3 is a major one can also be seen in the size of
the support sets for the two. The matrix M for the 3 x 3 x 2 problem has 47 integral rows (up from the
3 x 2 x 2, having 24 rows), while that for the 3 x 3 x 3 has 919 rows, many of them with fractional entries.
Computing the Hilbert basis for the latter seems out of the question with current algorithms and computing
capapbilities.

Nonetheless, it is possible to exploit the structure of the matrix A to extend the range of bounds problems
that provably have the integer rounding property. We note that the real problem is not to actually compute
the Hilbert basis from scratch, but rather only to verify that a given set of vectors (the rows of A) actually
are the basis. This can make the difference between success and failure. We give next an analysis if the
3 x 3 x 3 case as an illustration, and then extend this to larger three-dimensional problems.

3 The 3 x 3 x 3 Problem

The matrix A for the 3 x 3x 3 bounds problem has size 27 x 19, with the usual structure of a 19 x 19 indentity
matrix on top of an 8 x 19 array of rows containing 1's, 0’s and -1’s. The last 8 rows are the following,
blocked off to show the structure.

i1 -1 0 110 0 0 0(-1 1 0100 00O0O0
i 0 -1 1 01 0 0 ©{y-1 0 1 1 0j0 0 0 0 O
i -1 0 00O -1 10}-1 1 0O0 1[0 00 00
1 6 1t 0 0 0 -1 0 1|{-1 01 0 1,0 00 0 O
i -1 0 -1t 0 00 O0O[{0O0O0OTOO}]-1 1 010
i1 0 -1 -1 01 000,060 0O0O0O0O|-1 01 10
1 -1 0 o000 -1 100000 O0]-1 1 0 01
i1 0 -1 0 0 O -1 0 100 O06OO0Of-1 0 1 01

Thus the overall structure looks like the following.

1

D E 0
D 0 E

The structure of A suggests that we examine the following submatrices, where the identity matrix I is chosen
appropriately.

1 1
1 "__
A= D E A= E




We identify the D and E submatrices in A’ with the submatrices in the second horizontal block in A, and
E in A" with the F in the third horizontal block of A.

Lemma 2 If the rows of A’ and A” are both Hilbert bases (for their respective cones), so are the rows of A.

Proof: Let Is = {1, ..., s} and suppose that for some \; > 0,h = ZIS Xa; is integral. Let 14, C Ig denote
the set of indices corresponding to A’ in A, and similarly for A”. Then 37, , Aaj is an integer vector, and
because A" is a Hilbert basis by assumption, there are integer o, i € 14~ such that )~ Ly aal =3 L Aal.
Let A" =h -3 [, @il SO that k' is integer and a non-negative linear combination of the rows of A, but
with its trailing columns (those corresponding to A”) equal to zero. Since A’ is a Hilbert basis, there are
integers 3; > 0,i € I4 such that b’ =} L Bial. Then the coefficients a;,i € 1a»,3;,1 € 14/ are integers

such that h = 3=, , a;a; + 3 ;,, Bia:, showing that A is a Hilbert basis. 0

Both matrices A’ and A” can be checked to be Hilbert bases in a reasonable time. Computing the
supports takes only seconds, and verifying that these matrices are Hilbert bases is similarly fast. Thus we
have the following.

Theorem 2 The 3 x 3 x 3 bounds problem has the integer rounding property.

Applying the procedure of Lemma 1, it is immediate that any k x 3 x 3 problem will also have the integer
rounding property. Indeed, moving to the 4 x 3 x 3 problem adds (3 —1)*(3—1) =4rows and 3x3—-4=5
columns to M. An examination of the entries in these new rows and columns shows that the pattern shown
in the 3 x 3 x 3 case is simply continued, with a repitition of the horizontal block of four rows, along with
an additional identity matrix, as follows.

1
D E 0 0
D 0 E O
D 0 0 E

This extends in the obvious way to the k& x 3 x 3 case. Empirical results suggest the following extensions.

Conjecture 1 The I x J x K bounding problem, when all (I — 1) x (J — 1) x (K — 1)-way margins are
known, has the integer rounding property.

Conjecture 2 The bounding problem for an n-way table, when arbitrary lower-dimensional margins are
given, has the integer rounding property.
4 Finding an Optimal Integer Solution

It may be useful to exhibit an instance of a table that achieves the optimal integer solution foracellinT
(for instance, in Senate testimony!). Experience suggests that non-integral optima are rare, so the method



given here will only occasionally be required. We use a Gomory cut [8] derived from the objective function
row of the simplex tableau. The idea is to use some facts evident from the optimal (continuous) simplex
tableau to generate new constraints that eliminate non-integer optima.

Let’s start with the example of a 2 x 2 x 2 x 2 table for which all six two-way margins are known. This
is the most elementary example that has no decomposition, so should illustrate some of the complications
that can arise. The dimensions are labeled W, X, Y and Z.

(217 yl) 1 | To (21, yz) L1 | T2 (zz, yl) Ty | X2 (Zz, y2) Ty | T2
w1y 5 4 w; | 18 | 10 w; | 16 | 10 w; | 16 | 11
w9 5 12 we 17 13 wWo 16 6 Wy 9 9

With variables numbered lexicographically, the constraint equations look like this:

x1 x2 x3 x4 x5 x6 x7 x8 x9x10x11x12x13x14x16x16 b
yi. 1111000000000 0 0 054
y2 0 0 0 011110060000 0 035
y3 0 0 0 0 0 0 0 O 1 1t 11 0 0 0 047
y4 0 0 0 0 00 00 0 O0O0O0OTI1 1 1 140
y5 110 00 000 110000 0 042
y6 0 0 1 1 0 0 0 0 0 O 1 1 0 0 0 059
y7 0 0 0 01 1.0 0 0 00011 00 32
y8 0 0 0 0 0 01 1 0O 0 0 0 0 1 143
y9 1 0 0 0 1 0 0 O 1 0 0 01 0 0 026
yto 0 1. 0 6 0 1 0 0 01 O OO 10 0 48
yt1 0 0 1 0 0 0 1 0 0 O 1 0 O 0 1 0658
yi2 0 0 0 1 0 0 01 0 00 1 0 0O 144
y3 1. 1. 0 0 1 1 0 0 0 0 0 0 O 0 0 035
yi4 0 0 1 1 0 0 1 1 0O 0 0 0 0 0 0 O0b4
yt5 0 0 0 0 00 001100110 039
yi6 0 0 0 0 0 000 001100 1 148
yi7 1 0 1 0 0 O O O 1 0t 0 0 0 0O 045
yi8 0 1 0 1 0 0 O O 01 0 1 0 0 0 0656
y19 0 0 0 0 1 0 &t 06 0 0 0 01 0 &t 039
y20 0 0 0 0 0 1 0 1 0 0 0 0 O 1 O 1 36
y21 1 0 1t 01 0 1 0 O O O 0 0 0 0 0237
y22 0 1 0 £t 01 01 0 00 0O 0 0 0652
y23 0 0 0 0 0 0 0 0 1 0 1 O 1 0 1 047
y24 0 0 0 0 0 0 0 0 01 0101 01 40

After row reduction to find an independent set, we have

x1 x2 x3 x4 x5 x6 x7 x8 x9x10x11x12x13x14x15x16 b
yt. 1t 0 00 0001000101 1 3 71
y2 0 1 0 0 0 0 0-1 O 0 0-1 0-1 0-2-28
y3 0 01 0 00 0-1 00 0-1 0 0-1-2 -33
y¢ 0 0 01 0 0 010001000 1 44
y5 0 0 0 01 0 0-1 0 00 0 0-1-1 -2 -44



y¢ 0 0 0 0 01 010 00O0O0O0T1O0 1 36
y7 0 0 000011 00O0O0O0O0OTI11 43
y8 0 0 0 00 0 0 0 1 0 0-1 0-1-1-2-4
y9 0 0 0 00 00001010101 40
yio 0 0 0 06 0 0 00001100 1 1 48
yit 0 0 0 6 0 00 00 0O0O0OT1 1 1 1 40

Giving this to a simplex algorithm and maximizing z;, we have this tableau:

x5 x16 X 2 x 3 x9
x1 22.33 -0.33 -~0.33 -0.33 -0.33 -0.33
x 8 7.67 0.33 -0.67 0.33 0.33 -0.67
x10 19.67 0.33 0.33 -0.67 0.33 -0.67
x4 31.67 0.33 0.33 -0.67 -0.67 0.33
x13 3.67 -0.67 0.33 0.33 0.33 -0.67
x 6 12.67 -0.67 0.33 -0.67 0.33 0.33
x 7 14.67 -0.67 0.33 0.33 -0.67 0.33
xi11  22.67 0.33 0.33 0.33 -0.67 -0.67
x14 15.67 0.33 -0.67 0.33 -0.67 0.33
x12 4.67 -0.67 -0.67 0.33 0.33 0.33
x15  20.67 0.33 -0.67 -0.67 0.33 0.33
z 22.33 -0.33 -0.33 -0.33 -0.33 -0.33

The maximum for z; is 22.33, not an integer. To find the maximum integer solution of z;, we can
construct a Gomory cut (an additional contraint, see [8]) which reduces the feasible region while not
eliminating integer lattice points. The final (2 = z1) line of the tableau says that, given the values of the

basic variables,

1 1 1 1 1
Ty = 2233 — §$5 - §$16 -— §$2 —_ §(E3 — gzg.

Since we are seeking an integer solution, it’s necessary that one or more of the non-basic variables zs, w1,
4, T3 become positive, in order to reduce the continuous maximum of 22.33 to at least 22.00. Thus we must
have
1 1 1 1 1 1
3%+ 3718 + 372 + 3%+ 3% Z 3
or
x5+ x16 + T2+ a3+ x9 > 1.

This inequality can be converted into an equality by the addition of the non-negative slack variable z,7:
T5 + T+ 2y + T3+ Tg—T17 =1

When this new constraint is added to the original LP formulation, and z; is maximized, we get the following
tableau:

x 9 x16 x 2 x 3 x17
x1 22.00 0.00 0.00 0.00 0.00 -0.33
x 6 12.00 1.00 1.00 0.00 1.00 -0.67
xi4 16.00 0.00 -1.00 0.00 -1.00 0.33



x5 1.00 -1.00 -1.00 -1.00 -1.00 1.00
x7 14.00 1.00 1.00 1.00 0.00 =-0.67
x15 21.00 0.00 -1.00 -1.00 0.00 O.
x4 32.00 0.00 0.00 -1.00 -1.00 O.
x8 8.00 -1.00 ~-1.00 0.00 0.00 O.
x12 4.00 1.00 0.00 1.00 1.00 -0.67

0

1

1

888

x10 20.00 -1.00 0.00 -1.00 .00 0.33
x11 23.00 -1.00 0.00 0.00 -1.00 0.33
x13 3.00 0.00 1.00 1.00 .00 -0.67
z 22.00 -0.00 -0.00 -0.00 -0.00 -0.33

Thus we have an integer solution, with definite proof of its optimality. Here is another example. Maximizing
T3 we get

x11 x 7 x14 x 4 x1

x5 1.33 0.33 -0.67 0.33 0.33 -0.67
x 8 18.33 0.33 -0.67 0.33 -0.67 0.33
x10 14.33 0.33 -0.67 -0.67 0.33 0.33

x3 35.67 -0.33 -0.33 -0.33 -0.33 -0.33
x13 156.33 0.33 0.33 ~-0.67 -0.67 0.33
x 2 18.33 0.33 0.33 0.33 -0.67 -0.67
x5 22.33 -0.67 -0.67 0.33 0.33 0.33
x9 9.33 -0.67 0.33 0.33 0.33 -0.67
x6 15.33 -0.67 0.33 -0.67 0.33 0.33
x12 23.33 -0.67 0.33 0.33 -0.67 0.33
x16 2.33 0.33 0.33 -0.67 0.33 -0.67
z 35.87 -0.33 -0.33 -0.33 -0.33 -0.33

This leads, in the same way, to a Gomory cut. In this case, one or more of the nonbasics 11, 27, %14, Z4 OF
z; must become positive, sufficient to reduce z3 by at least 2/3. Thus we require

Ty +ar+ Tia Ty 20 > 2
Adding the slack variable z,5 and the constraint

Z11 + &y + T1a + T4+ T — T18 = 2.

we get

x11 x7 x19 x 4 x14
x5 0.00 1.00 0.00 -0.67 1.00 1.00
x 6 16.00 -1.00 0.00 0.33 0.00 -1.00
x3 35.00 0.00 0.00 -0.33 0.00 0.00
x17 60.00 3.00 3.00 -3.00 3.00 3.00
x12 24.00 -1.00 0.00 0.33 -1.00 0.00
x15 23.00 -1.00 -1.00 0.33 0.00 0.00
x16 1.00 1.00 1.00 -0.67 1.00 0.00
x 8 19.00 0.00 -1.00 0.33 -1.00 0.00

10



x 2 17.00 1.00 1.00 -0.67 0.00 1.00
x10 15.00 0.00 -1.00 0.33 0.00 -1.00
x1 2.00 -1.00 -1.00 1.00 -1.00 -1.00
x13 16.00 0.00 0.00 0.33 -1.00 -1.00
x9 8.00 0.00 1.00 -0.67 1.00 1.00
x18 1.00 0.00 0.00 1.00 0.00 0.00

2 35.00 ~-0.00 -0.00 -0.33 -0.00 -0.00

The idea of Gomory cuts is general—it’s guaranteed to eventually give an integer solution (8], since
bit-by-bit the feasible continuous polytope is whittled down to the convex hull of the feasible integer lattice
points. For general IPs, however, this process may be slow—lots of required cuts. However, for the bounds
problem, the polytope seems to be quite nicely shaped, so few cuts are required.

From a computational perspective, the cuts would ordinarily be added as new constraints in a dual
simplex procedure. In this procedure, new constraints can be easily added without having to start the
optimization problem all over again. The CPLEX software has a good implementation of the dual simplex,
and has functions in its API for adding new constraints.

Conjecture 3 The result of adding a single Gomory cut, and re-solving the LP, gives an optimal integral
solution to the bounds problem.
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