An Efficient Algorithm for Computing Grobner Bases
for Confidentiality Problems

Stephen Roehrig
The Heinz School
Carnegie Mellon University

Introduction
The Buchberger algorithm solves this well-known problem from commutative
algebra (see e.g., Cox et al. 1996).

Given a subset F in k[z1,zo, ... 2], the set of polynomials over a
field &, find G C k[z1, z2, . . . zn], such that Ideal(F) = Ideal(G) and
G is a reduced Grobner basis.

Diaconis and Sturmfels (1998) showed how the solution to this algebraic problem
can be used to examine the set of tables having a fixed set of marginal sums.
Thus finding a Grobner basis has a very practical application in statistical data
protection: If a database administrator publishes some seemingly non-sensitive
marginal totals derived from a sensitive n-dimensional table, to what extent can
a “data snooper” reconstruct the sensitive information?

While routines for computing Grobner bases are provided in packages such
as Mathematica and Maple, they are very slow. The current favorite for this task
is a system called Macaulay (http://vwww.math.uiuc. edu/Macaulay?2), written
by a group at the University of Illinois. While Macaulay is much faster than
Mathematica, it is still a general purpose program that doesn’t take full advan-
tage of the special structure of the statistical disclosure problem. In this note
we provide a number of improvements to the standard implementation of Buch-
berger’s algorithm that give a speed increase of about 20 million over Macaulay.

Background

Let T = [t;,, . i,.] be an n-dimensional table, and let M = {M;,..., M,} bea
collection of lower-dimensional marginal sums derived from 7T". The collection M
implies a set of linear equality constraints on the cells of T. The data protection

problem is to determine what a data snooper can discover about T' from the

published marginals M. One technique the snooper might use is to apply an

optimization method such as linear or integer programming to find upper and
lower bounds on the sensitive values of T'. Very narrow bounds for a cell suggest
a partial disclosure of lts va.lue Another approach is to enumerate all tables

of each cell value. If a cell distribution Is too tightly focused around thetrue‘

value, dlsclosure has a.gam occurred Of course, for larger tables, complete

dist nbutl_qns

U\’Hl\x

C‘MQL\/@r

As shown first by Conti and Traverso (1991), the theory of polynomial ideals,
and in particular the Grobner basis of a special ideal, can be used to solve the
integer programming problem associated with finding upper and lower bounds.
The work of Diaconis and Sturmfels extends this by showing that this same
Grobner basis provides the means for sampling from the space of tables 77 that
agree with the published marginals M.

The Conti and Traverso framework is as follows. Let z;,7 = 1,...,n be
variables associated with the cell values in T, and let A be an m X n constraint
matrix arising from the marginals M. Introduce variables y;,i = 1,...,m, and

set a; = [[,y;”. If k is a field (say, the rationals), consider the polynomials
kim] = k[y1,...,ym| and k[n] = klay, ..., a,]. Finally, let ¢; = a; — z;. Then
Conti and Traverso show that with a suitable term ordering on k[y, z], the ideal
(¢;)Nk|z] is generated by those elements in a Grobner basis of (¢;) that are in
kz].

The ideal (¢;) N k{z] represents the set of “moves” that take one table 77,
that satisfies the marginal constraints, to another table with the same margins.
For example, suppose the cells in a 3 x 3 x 2 table T" are numbered as z;;; —
Ty, X112 — Z9,...T3zz — T1g- Lhen one possible move that leaves the two-way
margins fixed is represented by the polynomial x;z¢z14%17 — Toxsz13218. The
exponents in the first monomial are interpreted as increments to the correspond-
ing table cell values, while those in the second monomial represent decrements.
Because the exponents are restricted to non-negative integers, increments and
decrements will necessarily be integer values, resulting in a new integer table.
An alternative description of this move is the following, where a “+” indicates
a unit increment and a “—” indicates a unit decrement, and the two levels
(k =1,k = 2) of the table are shown side by side.

+ 0 - - 0 +
000 00O
-0+ + 0 -

The Grobner basis is the minimal set of moves that generate the set of all
tables satisfying the known marginal totals. In practice, one starts with a table
known to have the given marginals (such as the true table T'), then applies the
moves in the Grobner basis at random. As Diaconis and Sturmfels show, this
random walk moves uniformly through the space of tables agreeing with the
margins, allowing a statistically valid sampling.

One difficulty with the Conti and Traverso setup is the inclusion of the extra_
variables y;. The procedure is to compute the basis over the set of polynomials
k[y,z), then “throw away” those basis elements not exclusively in the zs. Since

the complexity of computing a Grobner basis depends exponentially on the
total number of variables, this is wasteful. We show below how to overcome this
difficulty.

| B/?éﬂz‘#/g
' or/"%kw,;,

A\,

Buchberger’s Algorithm

The most widely used version of Buchberger’s algorithm for finding a Grébner
basis is shown in Figure 1 (Buchberger 1985). Here, F, G, P and B are sets of
polynomials, f,g, b and u are individual polynomials, and <r is a term ordering
on polynomials.

The algorithm uses the special function NormalForm(F, g), which is essen-
tially g¥ (see Cox et al. (1996)), except that at each division step, the divisor
is chosen in a special way. The notation g —¢ 3, used in the definition is read
“g is reducible using f,b,u” and is true iff

Coefficient(g, u - LeadingPowerProduct(f)) # 0
and
b = Coefficient(g, u - LeadingPowerProduct(f)/LeadingCoefficient(f).
Here is the definition:

Algorithm (h := NormalForm(F, g)).
h:=g

while exist f € F,b,u such that h —j ., do choose f € F, b, u such that
h — 4.4 and u - LeadingPowerProduct(f) is maximal (w.r.t <r)

hi=h—b-u-f

Buchberger remarks that this special choice of the divisor is crucial to the
performance of the algorithm. This assertion was examined empirically by keep-
ing the set F'in an C++ standard template library map collection, where the key
is the leading power product. The importance of the special choice was tested
by taking binomials from the map, first from the beginning (smallest w.r.t. <r),
and then from the end (largest). There was no difference in the number of to-
tal division steps, so this special choice seems irrelevant, likely because of the
special form of our polynimials (monomial differences).

The Grobner basis algorithm uses two criteria to decide whether a B-pair
should even be processed. Criterionl is the same criterion that appears in Cox
et al. (1996) p. 107. Buchberger’s Criterion2 is the same as the Cox et al.
Proposition 4 in Chapter 2, Section 9 (p. 101).

A difference between Buchberger’s algorithm and the one presented in Cox
et al. is that Buchberger uses the additional sets R and P. These hold new
polynomials, that are reduced by polynomials currently in the basis. This tech-
nique results in a reduced Grobner basis at the termination of the algorithm.

{~ %o@ K
3 — Cointing

GRIN H

L

|

—

Algorithm:
R=F,P=0,G:=0; B:=§
ReduceAll(R, P, G, B);, NewBasis(P, G, B)
while B # 0 do
{f1, f2} == a pair in B whose LCM(LP(f,), LP(f5)) is minimal w.r.t. <r
B:=B—{{f,f2}}
if (not Criterionl(fi, fo, G, B) and not Criterion2(f1, f2)) then
h := NormalForm(G, SPolynomial(fi, f2))
if h £ 0 then
Go = {g € G| LP(h) <7 LP(G)}
R:=Gy;, P={h}; G:=G -Gy
B := B~ {{f1,f2} | fL € Go or f2 € Go}
ReduceAll(R, P, G, B); NewBasis(P, G, B).

Subalgorithm ReduceAll(R, P, G, B):
while R # @ do
h := an element in R; R:= R — {h}
h := NormalForm(G U P, h)
if h# 0 then
Go = {9 € G| LP(h) <r LP(G)}
Py:={pe€ P| LP(h) <r LP(p)}
G =G—-Go
P=P-F
R:=RU G() U Po
B::B~{{f1,f2}€ B | fi € Gy or fo GG()}
P = PU{h}
Subalgorithm NewBasis(P, G, B):
G:=GUP
B:=BU{{g,p}|9€G,p€ Pg+#p}
H=G, K=0
while H # 0 do
h:= an element in H; H := H — {h}
k := NormalForm(G — {h},h); K = K U {k}
G =K

Subalgorithm Criterionl(f1, f2, G, B) 1< there exists a p € G such that
h#p,p# fa
LP(p) <r LCM(LP(f1), LP(f2)),
{f1,p} not in B and {p, fo} not in B.

Subalgorithm Criterion2(fy, f2) &
LCM(LP(f,), LP(f;)) = LP(f1) - LP(f2).

Figure 1: Buchberger’s Algorithm for Grobner Bases
4

Improvements

All the improvements discussed here are based on using Conti and Traverso’s
description of the ideal (Conti and Traverso, 1991), and lex ordering on the
monomials. For example, suppose we want the Grobner basis for the moves on
a 3 x 3 x 2 table with all three 2-D margins given. Numbering the 3-D cell
variables as 111 — 1, T112 — T2,...T332 — Z18, the row-reduced form of the
line sum equations is

x1 x2 x3 x4 x5 x6 x7 x8 x9x10x11x12x13x14x15x16x17x18
y.L1 0 0 000 00 0101000101
y2 0 1 0 0 0 0 00 0-1 0-1 0 0 O0-1 0-1
y3 0 01 0 0 0 0 0 0-1 0 0 O O O0O-1 0 O
y4 0 0 01 00 0 0 01 0O0O0OO0OO0OT1 Q0O
y6 0 0 0 01 0 00 O O O0O-1 00 00 0-1
y6 0 0 0 0 61 00 O OO 1 0 000 01
y7 0 0 0 00010 0-10-10000 00
y8 0 0 0 00001 01010O0O0CO0CO0O00O0
y9 0 0 0 0 0 0 001 1 0 O0O0O0 O O0OO0OODO0
yi0o 0 0 0 0 0 0 0 0 0 0 1 1 0 O O 0 0 O
ytit 0 0 0 0 0 0 00 060 0 01 0 0-1 0-1
yi2 0 0 0 0 0 0 0 60 0 0 0 0 0 1 0 1 0 1
y13 0 0 0 0 0 0 0 OO0 O 0 O 01100
yi4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

In Conti and Traverso’s setup, there are 14 y variables, and one t variable. The
ideal-defining binomials are

yl-x1

y2-x2

y3-x3

v4-x4

yb-x5

y6-x6

y7-x7

y8-x8

y9-x9
Y1*yd*y8xy9—y2+y3*y7*x10
y10-x11
y1ky6*y8+y10-y2*yBxy7+x12
y1l1-x13

yi2-x14

y13-x15
ylxyd*y12%y13-y2*y3*yl1*x16
yi4-x17
yly6ryl12ky14-y2+yb+yl1*x18

Y1xy2%y3*yd*xybxy6xy7*y8xy9ky1 0%yl 1yl 2kyl13%yld*t-1

The lex order of the variables is y1, 99, -- ., 414, ¢, Z1, Z2, . . . , T18.
In the Buchberger algorithm, after the first pass through ReduceAll and
NewBasis, the current basis is the following,.

+x1x6x14x17-x2x5x13x18
+x1x6x8x11-x2x5x7x12
+x1x4x14x15-x2x3x13x16
+x1x4x8x9-x2x3x7x10
+tx2"2x3x4x5" 2x7x8x9x11x13" 2x15x18-1
+y14-x17

+y13-x15

+y12-x14

+y11-x13

+y10-x11

+y9-x9

+y8-x8

+y7-x7

+y6-x6

+y5-x5

+y4-x4

+y3-x3

+y2-x2

+y1-x1

The first four binomials are the result of eliminating all ys in the original four
4th-degree binomials. These four, now exclusively in terms of zs, are moves of
the form

- -0
0 00
-0 + 4+ 0 -

+ 0 +
0 0 0

The four binomials, exclusively in the zs, can be read off directly from the initial
row-reduced matrix as follows. Any column in that matrix consisting of a single
“1” is ignored. The other columns—there are as many of these as there are
degrees of freedom in the constraint set—each give rise to a polynomial in the
zs. Looking for example at the x12 column, the polynomial has in its leading
monomial x1, x6, x8 and x10, since these are the zs directly associated with the
rows y; in which the 1s appear. This just corresponds to the Conti and Traverso
polynomials (+y1-x1i etc.). The second monomial consists of x2, x5, x7, and
x12; the x12 appears because this is the x12 column. The polynomial is thus

x1x6x8x10 — x2x5x7x12.

Executing now the master while loop of the Buchberger algorithm, we find
that, because of the way the B-pairs are extracted from the set B, all the
binomials consisting entirely of xs are produced first. There are 15 of these.
The set of B-pairs is built as an STL set, ordered with lex on the LCM of
the leading monomials of the binomials in the pair. This ensures that pairs
of binomials consisting entirely of zs will be chosen first. Following these, 56
other binomials are computed, rounding out the complete Grobner basis. Since,
however, we are only interested in those binomials having only z terms, the while
loop can be stopped immediately on the production of a binomial containing a
y or t. This is the first significant improvement.

A second observation is that, after the initial pass through ReduceAll and
NewBasis, any B-pair containing a binomial in y; or ¢ will result in a reduced
SPolynomial still containing y; or t. This implies that once the algorithm has
processed all pairs containing binomials exclusively in the zs, there is no need,
as above, to continue. It follows that there is no need to keep in the set B
any pair with a binomial containing y; or ¢t. This makes B vastly smaller, and
improves performance considerably. The upshot of this is, so far as the algorithm
is concerned, it is as though everything is done in k[z1, z, . . . 2]

A third observation is that, once inside the while loop, if h is nonzero, there
are some steps to compute Gy and R. For our problem, Gj, and so R, is
always empty. Thus these steps are unnecessary. As a consequence, the routine
ReduceAll does nothing, and can be eliminated, since no updating of G, P, R or
B need be done there.

A fourth observation is that in the routine NewBasis, everything in G U P
is already reduced w.r.t. itself. This is a consequence, ultimately, of the way
the B-pairs are drawn from B. Therefore the only thing that NewBasis needs
to do is update B. Since P always consists of a single binomial, this is fast to
do. The assignment to H, and the while loop over it, are unnecessary. Finally,
note that Criterion2 is best applied before adding a pair to B, keeping this set
as small as possible.

Next, it was observed empirically that Criterion]l was more time-consuming
than the NormalForm calls it is designed to eliminate. Divisions on binomials are
relatively fast, but searching through the STL set B, as required by Criterion1,
is expensive.

After this much improvement of the algorithm, the Grobner basis for the
3 x 3 x 3 example above is calculated in about 250 milliseconds, requiring the
creation of just 79 S-polynomials. This is about a 100,000-fold improvement
over the general-purpose program Macauley, which took a little less than seven
hours on the same machine.

Other Improvements

It’s possible and prudent to use whatever knowledge is available in generating
a Grobner basis. For example, once a basis is available for the 3 x 3 x 3 problem

with all 2-way margins known, it can serve as a starting point for constructing,
say, a basis for the slightly larger 4 x 3 x 3 problem. Simply include the 3 x 3x 3
basis, suitably embedded in the larger problem, along with the starting set of
polynomials described above. This leverages computation already performed,
and appears to provide at least an additional x20 speed improvement.

We used this technique to compute the Grobner basis for the 4 x 3 x 3
problem, which took 20 minutes and had 628 polynomials. Also, the 5 X 3 X 3
problem was solved, resulting in 3,236 polynomials. However, even with the
roughly 10° speed improvement of the revised algorithm, this computation took
two months on a reasonably fast UNIX platform.

Finally, we remark that the same program can be used to verify a Grobner
basis rather than to generate it from scratch. The verification process is itself
vastly quicker than generating the basis, so if one has an idea of what the basis
should be, it is quick to check. An examination of the the progression of bases
so far discovered may lead to a way of predicting the basis for a larger table. In
this way, it may be possible to extend the set of known bases considerably.

References

1. Buchberger, B. (1985), “Grébner Bases: An Algorithmic Method in Poly-
nomial Ideal Theory,” in Multidimensional Systems Theory, edited by
N.K. Bose, D. Reidel Publishing Co., Dordrecht, 184-232.

2. Conti, P. and C. Traverso (1991), “Buchberger Algorithm and Integer Pro-
gramming,” in Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes (AAECC-9), edited by H. Mattson, T. Mora and T. Rao, Lecture
Notes in Computer Science 539, Springer-Verlag, New York, 130-139.

3. Cox, D., J. Little and D. O’Shea (1996), Ideals, Varieties, and Algorithms,
Springer-Verlag, New York.

4. Diaconis, P. and B. Sturmfels (1998), “Algebraic Algorithms For Sampling
From Conditional Distributions,” Annals of Statistics, Vol. 28, No. 1,
363-397.

