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We give a new upper bound on the number of isolated roots of a polynomial
system. Unlike many previous bounds, our bound can also be restricted to different
open subsets of affine space. Our methods give significantly sharper bounds than
the classical Bézout theorems and further generalize the mixed volume root counts
discovered in the late 1970s. We also give a complete combinatorial classification
of the subsets of coefficients whose genericity guarantees that our bound is actually
an exact root count in affine space. Our results hold over any algebraically closed
field. © 1996 Academic Press, Tnc.

1. INTRODUCTION

Root counting for polynomial systems can be reduced almost completely
to a convex geometric computation. This approach began with the BKK
bound [Kus75, Ber75, Kus76, Kho78] and was further refined in [Roj94].
We will carry these techniques a step further.
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Our results seek to give the tightest possible upper bound on the number
of isolated roots lying in the complement of an arbitrary union of coordinate
hyperplanes. One should note that the BKK bound corresponds to the case
where one works in the complement of the union of all the coordinate
hyperplanes. Just as in the BKK bound and its recent generalizations, the
bounds we derive depend solely on which monomial terms are allowed to
occur in the given polynomial system. Given only this monomial term
information, our bounds are best possible for certain families of polynomial
systems. In particular, we obtain previously unknown generically exact root
counts in affine space. We now review some notation necessary to state
our results.

Let K be any algebraically closed field (positive characteristic is allowed)
and let f;, . . ., f, be polynomials in the ring K[xi, . . ., x,']. We call
F:= (fi, ..., f,) an n X n polynomial system over K. For any e =
(e1, ..., e) € Z" let x* denote the Laurent monomial x7* --- x,#. The
support of a polynomial f € K{xi', . . ., x;'] is the set of ¢ € Z" such
that the coefficient of the x° term in f is nonzero. For instance, with
n = 3, the polynomial 3x; — x5%x3 has support {(1, 0, 0), (0, —2, 5)}. The
support of an n-tuple of polynomials is simply the n-tuple whose ith coordi-
nate is the support set of the ith polynomial. We also let .#(E) denote the
n-dimensional mixed volume [Grii69, Roj94, Sch94, HS95, EC95, DGH96,

VGCI6] of the convex hulls of E;, . . ., E,, whenever E := (E, . . .,
E,) is an n-tuple of nonempty finite subsets of Z”. When the support of
fi is contained in E; for alli € {1, . . ., n}, we simply say that the support

of F is contained in E. The convex hulls of the supports of the f; are
commonly known as the Newton polytopes of F. For further background
on the theory and applications of mixed volumes and Newton polytopes
we refer the reader to [Grii69, Roj94, GKZ94, HS95, Sch94, EC95, DGH96,
LW96, VGC96, HS96, Roj96].

Remark 1. When one fixes the support of F, it is not always true that
the isolated roots of F avoid a given coordinate hyperplane for a generic
choice of the coefficients. (We give examples of this phenomenon in the
next section.) Hence the ordinary BKK bound is insufficient for accurate
root-counting in affine space.

For any I C {1, . . ., n} (possibly empty) define Hyper(I) C K" to
be the union of coordinate hyperplanes U;;{x € K" | x; = 0} and let
Lin(J) C R” be the coordinate subspace generated by the subset {¢; |
j € I} of the standard basis. (In particular, Hyper(#) := # and Lin(f) :=
O.) For any ay, . . ., a, € Z" let a be the matrix with rows a, . . ., a,
and define a U E := ({;;} U Ey, . . ., {a,} U E,). We will prove the
following upper bound on the number of isolated roots of a polynomial
system in certain open subsets of affine space.
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AFFINE POINT THEOREM 1.  Let F be an n X n polynomial system over

K with support E and fix I C {1, . . ., n}. Suppose further that x; has a
negative exponent in some monomial term of F only if j € I. Then for any
a, . ..,a, € Z" N Lin(I), F has at most ..#(a U E) isolated roots in
K"\Hyper(l), counting multiplicities.

Remark 2. Note that when I = {1, . . ., n}, we can simply pick each g;
to lie in E;. In this way, the I = {1, . . ., n} case is just the BKK bound

over a general algebraically closed field [Dan78, Roj94]. So in this case we
obtain an upper bound on the number of isolated roots whose coordinate
are all nonzero.

Remark 3. Note that the I = (§ case is quite important: Each a; must
be equal to the origin O and we obtain an upper bound on the number of
isolated roots in K". Setting (K, I) = (C, ) we thus recover the upper
bound discovered in [LW96].

Remark 4. From the monotonicity of the mixed volume, it easily follows
that one can always find a,, . . ., g, such that the above bound is at least
as sharp as the shadowed mixed volume bounds in [Ro0j94] (cf. Theo-
rem 3). The older bound is already at least as sharp, and frequently signifi-
cantly sharper, than any of the multihomogeneous Bézout theorems

[Wam92, Roj96]. How to pick the best a, . . ., a, for any given £ and
I#{1, P n} will be addressed in [Roj96], but a simple choice which
already{beats the methods of [Roj94] is a; = - = a, = O.

“~A Simple explanation for the improvement these bounds give over those
in [Ro0j94] arises from the monotonicity of the mixed volume: growing
polytopes potentially increase (and never decrease) the mixed volume.
Thus polynomial systems with more monomial terms should, potentially,
have more roots since their corresponding support sets have potentially
larger convex hulls. In particular, the “pointed” Newton polytopes we

" compiite the-mixed volumes for here are usually much smaller than the

shadowed Newton polytopes used in [Roj%4].

To see how often the above bound gives an exact root count we will
simplify things slightly by letting I = @, thus restricting to the case of
counting all roots in K”. (The I = {1, . . ., n} case is covered extensively
in [Roj94].) Fix E;, . . ., E, and suppose the coefficients of all the f; are
now (algebraically independent) indeterminates. Further suppose that the
support of F is precisely E and let ¢ ¢ be the vector consisting of all the
coefficients of all the f;. We now call F an indeterminate polynomial system
with support E. Since we want to give a tight upper bound solely in terms
of E, it would be especially nice if our formula was exactly the number of
roots for generically specialized ¢ ;. This optimality is indeed attained by
our upper bound, for a large family of supports E (cf. Corollary 3). However,



COUNTING AFFINE ROOTS 119

expressing such an optimal bound canonically as a single mixed volume is
an open problem for general E and /. Optimal bounds for general E and
I can be found in [HS96, R0j96], but the methods there are not always as
simple as just appending a single point to each support and computing a
mixed volume.

We will also make the natural restriction of considering only those E
such that £; C (N U {0})" for all i and F has only finitely many roots in K" for
generic ¢ . We call such an E nice for K" [Roj96] and give a combinatorial
characterization of niceness in Section 3. A related notion that will be
quite useful is the following: Call B C R" cornered whenever B lies in the
nonnegative orthant of R* and {(y1, . . ., y») € B | y; = 0} # ¢ for all
j€{l,.. ., n} Note that E; being cornered is equivalent to f; not being
divisible by x; for all j € {1, . . ., n}. We then say that E is cornered iff
E,, ..., E, are all cornered. Note that O U E := ({O} U E{, . . .,
{0} U E,) is always cornered.

Remark 5. In general, neither of the last two definitions implies the
other. For example, if n = 3 and E, = E, = E; = {(0, 1, 1), (1, 0, 1),
(1, 1, 0)}, then E is cornered but not nice for K?. This is because any
polynomial system with support contained in E contains the coordinate
axes in its zero set. Going the opposite way, it is easily checked that
@, 1), (1, D} {(1, 0), (1, 1)}) is nice for K?* but not cornered.

Given these two conditions on E, we can then deduce that the above
mixed volume bound is generically the exact number of roots in K”.

THEOREM 1. Suppose E is an n-tuple of finite subsets of (N U {0})" which
is nice for K" and cornered. Then a generic polynomial system
with support contained in E has exactly .#(Q U E) roots in K", counting
multiplicities.

Remark 6. This result will follow as a special case of a more general
result (Theorem 7) in Section 3.

Remark 7. This complements, and makes explicit, a generic affine root
count alluded to in [Dan78, DK&87]. In essence, these works covered the
case where K = C and the zero set of F generically intersects Hyper
({1, . . . . n}) nonsingularly. However, an explicit formula in terms of
mixed volume was not mentioned. One should also note that although our
hypotheses and those of [Dan78, DK&7] overlap, neither set of hypotheses
implies the other.

Remark 8. It is worth noting that, in the notation of [HS96], Theo-
rem 1 is equivalent to the following statement: E is nice for K" and
cornered = £ #(E) = . #(0 U E), where .£./(-) denotes stable mixed
volume.
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Even better, when E is nice for K” and cornered, we can get a stronger
genericity result by arbitrarily fixing some of the coefficients and leaving
only a few coefficients generic. To be more precise, let c¢;, denote the
indeterminate coefficient of the x¢ term of f;. If an n-tuple D := (D,,. . .,
D,) satisfies D; C E; for alli € {1, . . ., n} then we abbreviate this simply
as D C E. For any such D define ¢ :={c;. |1 =i =n,e € D;}. We will
then say that D K"-counts E iff (0) D C E, (1) D and E are nice for K",
and (2) for any specialization over K of the coefficients ¢z\¢p, a generic
specialization of the remaining coefficients ¢ suffices to make F have
maximally many isolated roots lying in K", counting multiplicities.! Note
that D K"-counts £ = D' K”"-counts E, forany D' 2 D.

In Section 3 we give a complete combinatorial classification of the
D which K"-count E, whenever E is nice for K” and cornered (cf. Theo-
rem 7). From this classification we can then recover more information about
the non-cornered case. In particular, we can strengthen Theorem 1 to
determine exactly when its main assertion is true (cf. Corollary 3). We thus
obtain that for a large family of polynomial systems, appending the origin
to each support set and then computing the mixed volume of the new
“pointed” Newton polytopes generically gives the exact number of roots
in K”. Our results also generalize a different version of Theorem 1 (where
K = C) due to Li and Wang [LW96]. It is interesting to note that their
version has the hypothesis that a particular zero set be nonsingular at
infinity, while our hypothesis is stated combinatorially. Also, their proofs
rely on complex analytic techniques while ours are more algebraic in nature.

In the following section we review some background and give examples
illustrating the generic behavior of roots lying in coordinate subspaces for
various E. Theorem 1 and its more combinatorial extensions are proved
via toric variety techniques in Section 3. The Affine Point Theorem I,
proved in Section 4, follows directly from the groundwork laid in [R0j94]
and an additional homotopy argument. Our homotopy proof avoids the
use of Puiseaux series and thus also applies to the case where the characteris-
tic of K is nonzero.

2. PRELIMINARIES

Background for this paper can be found in a number of journal articles
but we will primarily use the language and notation of [R0j94]. We now
state a few necessary results.

Recall that a quasi-affine variety in KV is a Zariski-open subset of an

! We would like to emphasize that K"-counting replaces (as well as generalizes) the earlier
notion of 0-counting found in [Roj9%4].
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affine variety in K% [Har77, Sha80, CLO92]. A constructible set is a finite
union of quasi-affine varieties. Constructible sets are closed under comple-
mentation, projection [CLO92], and finite union and intersection. Note that
a dense constructible set has nonempty interior.

ProposiTION 1. Any two dense constructible subsets of KN have dense
constructible intersection.

DeriNiTION 1. By a generic specialization of N indeterminates (or by a
set of N indeterminates being generic or satisfying a generic condition) we
will mean a selection of values lying in some a priori fixed dense con-
structible subset of K",

Alternatively, the above proposition can be restated more applicably by
“any finite conjunction of generic conditions is again a generic condition.”
In particular, when K = C, note that any generic condition is true with
probability 1, given any continuous probability measure on the domain
in question.

ProrosiTiON 2. [Roj94]. Suppose U C K" and the set
{z € KM ({z} X K) N U is Zariski-dense in {z} X K}

is Zariski-dense in KN~\. Then U is Zariski-dense.

For convenience, we will let Z(h,, . . ., h;) denote the subscheme of

K" defined by h;(x) = -+ = hJx) = 0, whenever hy, . . ., h, € K(xq,

., X,). As an application of Proposition 2 we will prove the following
useful lemma.

LemMma 1. Let Y C K" be a constructible subset of codimension e. Also
let fi, 81, . - ., fr, g : K" - K be rational functions such that g,, . . .,
g« never vanish at any point of Y. Then for generic (c1, . . ., ¢) € K¥,

codim(Y N Z(fy + c1g81,- . ., fu T &18r) = e + k.

In particular, k > n =Y N Z{fi + c1g1,. . ., fi + cxge) = 0 for generic
(Cla N Ck)'

Proof Let f;:= f. + cg for all i, and pick points {z;}, one in each
irreducible component of Y. As long as f 1(z) # O for all z € {z}}, it is clear
that codim (Y N Z(f,)) = e + 1. Since g, never vanishes within Y and {z;}
is finite, it is clear that the set of ¢; € K such that codim (Y N Z(f,)) =
e + 1 is cofinite. Thus a generic choice of ¢; € K suffices to keep this lower
bound true.
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Next we proceed by induction. Assume i > 1 and that for generic
(Cl,. . .,Ci) EKi,

codim(Y N Z(fi,. ... f) =e+i
Then, mimicking the preceding paragraph, pick points {z;}, one in each

irreducible component of ¥ N Z(f;,. . ., f:). As long as f;.1(z) # 0 for
all z € {z;}, it is clear that

codim(Y N Z(f1,. .., fu)) =e+i+1.
Since g;+; never vanishes within Y and {z/} is finite, it is clear that (for
generic (¢i, . . ., ¢;) € K') the set of ¢;;; € K such that codim(Y N Z
(fir. .., fi1)) = e + i+ 1is cofinite. So by Proposition 2 the set of
(c1,. . ., ¢iy1) € K™ such that this lower bound is true is Zariski-dense.
Moreover, since constructible sets are closed under projection, it easily
follows that the set of (¢, . . ., ¢;1) € K™! such that codim(Y N Z
(f], ..., fi1)) = e + i+ 1is also constructible. Hence a generic choice
of (¢1, . .., c1) € K™ suffices to maintain this lower bound. Having

completed our inductive construction, the lemma follows. =
Let K* := K\{0} and recall the following version of the BKK bound.

THEOREM 2. [Ro0j94] Suppose F is an n X n system of nonzero polyno-
mials over K. Let E be the support of F. Then F has at most . #(FE) isolated
roots in (K*)", counting multiplicities. Furthermore, a generic polynomial
system with support contained in E has exactly .#(E) roots in (K*)", count-
ing multiplicities.

Remark 9. The K = C case is originally due to Bernshtein [Ber75]. The
generalization to any algebraically closed K appears in [Dan78] but is not
stated explicitly.

Remark 10. 1t is useful to recall, to clarify our upcoming examples,
that for n = 2, .#(E) = Area(Conv(E, + E,)) — Area(Conv(E,)) —
Area(Conv(E,)).

The following is a more recent upper bound on the number of affine
roots which is as sharp as the Affine Point Theorem I in some cases, but
not all.

THEOREM 3. [R0j94]. Suppose F is an n X n system of nonzero polyno-
mials over K with no negative exponents in its monomial terms. Let E be
the support of F and fix r € {0, . . . , n}. Then F has at most .4 .(E)
isolated roots in (K*)" X K", counting multiplicities, where . # ,(*) denotes
r-shadowed mixed volume.
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Remark 11.  The definition of . #,(-) appears in [R0j94]. For the pres-
ent discussion it suffices to know only that ..#y(E) is simply the mixed
volume of the n-tuple where each E; is replaced by the union of E; and
the images of all its coordinate projections.

ExampLE 1. Let n = 2 and consider the bivariate polynomial system

filx,y) = aix + axy + asxy® + asx’y
fo(x,¥) = bix + byy + baxy® + byx’y

where the a; and b; are constants in K. Then setting
El = E2 = {(19 0)9 (O’ 1)’ (17 2)7 (27 1)}9

the BKK bound implies that F has at most .#(E) = 4 isolated roots in
(K*)2. Remark 11 tells us that .#y(E) = _#(P, P), where

P = Conv({(0,0), (2, 0), (0, 2), (2, 1), (1, 2)}).

So Theorem 3 implies that F has at most seven isolated roots in K2
However, the Affine Point Theorem 1 implies that F has at most
/(0 U E) = 5 roots in K2 Better still, Theorem 1 tells us that this bound
is best possible. Note that the root (0, 0) persists for any choice of the g;
and b;. Also note that this is the only root of F lying on the coordinate
axes, for generic {g;} and {b;}.

ExampPLE 2. Letn = 2 and

filx,y) = a1y + axy* + asxy?
f(x,¥) = bix + byx® + bsx’y.

Then setting E;, = {(0, 1), (0, 2), (1, 3)} and E, = {(1, 0), (2, 0), (3, 1)}, the
BKK bound implies that F has at most..#(F) = 3 isolated roots in (K *)2.
Remark 11 tells us that . #,(E) = .#([0, 1] X [0, 3], [0, 3] X [0, 1]). So
Theorem 3 implies that F has at most ten isolated roots in K2. The Affine
Point Theorem I implies that F has at most eight isolated roots in K2
However, our new upper bound is not optimal for this example: F generically
has only six roots in K2 This system and the preceding fact are quoted
from [HS96], but we make two additional observations: (1) For generic {a;}
and {b;}, F has exactly one root lying in each of following sets: {(0, 0)},
K* x {0}, and {0} X K*; and (2) E is nice for K? but not cornered. In fact,
the way in which E fails to be cornered affects the generic number of roots
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E, B, V y y B,
{1}, {2} {1,2} None

Fie. 1. The essential subsets for three different pairs of plane polygons.

in the sets mentioned in (1). This is explored further in the next section
and [Roj96].

3. OPTIMALITY IN AFFINE SPACE

In discussing when the Affine Point Theorem I is exact, it will be helpful
to review (K*)"-counting and some related concepts.

Let ./"! C R" denote the unit (n — 1)-sphere centered at the origin.
For any compact B C R” and any w € R", define B* to be the set of
x € B where the inner product x - w is minimized. (Thus B" is the inter-
section of B with its supporting hyperplane in the direction w.) We then
define £ := (EY,. . .,E})and D N E¥:= (D, N EY,. .., D, NEY).
We will also use | - | for set cardinality, and the dimension of a finite subset
B C R” is simply the dimension of its convex hull, Conv(B).

DeriniTION 2. Suppose C := (Cy, . . ., C,) is an n-tuple of polytopes
in R” or an n-tuple of finite subsets of R”. We will allow any C; to be empty
and define Supp(C) := {i | C; # ¢}. We will also say that a nonempty
subset J C {1, . . ., n}is essential for C (or C has essential subset J) < (0)
Supp(C) 2 J, (1) dim(Z;e, C;) = |J| — 1, and (2) dim(Z;c; C;) = |J'| for
all nonempty proper J' C J.2

Alternatively, J is essential for C < the |J|-dimensional mixed volume
of the |/|-tuple (Conv(C;) | j € J) is 0 and no proper subset of J has this
property [Oda88, Roj94]. Figure 1 shows some simple examples of essential
subsets for E, for various E in the case n = 2.

A basic fact about mixed volumes is that. #(E) = 0 & E has an essential
subset, whenever Supp(E) = {1, . . ., n}. This begins to hint at the deep
connections between convex geometry and polynomial systems. In particu-

*Note that condition (0) is new and slightly generalizes the original definition found in
[Stu94].

* For aesthetic reasons, we have actually drawn the convex hulls of the E;. Also, the segments
in the middle pair are meant to be parallel.
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lar, we can define (K *)"-niceness in the most natural way (paralleling the
definition of K"-niceness) and apply essentiality as follows.

LemMma 2. [Roj94, Sect. 2.5]. An n-tuple E := (E,, . . ., E,) of finite
subsets of Z" is nice for (K*)' < one of the following exclusive condi-
tions holds:

1. FE has an essential subset, or

2. Supp(E) ={l,. .., n}and dim(Z;c; E;) = |J’|, for all nonempty
J'c{1,..., nkL

Moreover, .#(E) > 0 & condition 2 holds.

Essentiality arose from the study of the combinatorics of the sparse
resultant [Stu94]. Closer to our focus, one can define (K*)"-counting by
paralleling the definition of K”-counting. The notion of (K *)"-counting was
first considered in [CR91] and completely characterized in [Roj94] where
it was called “counting.”” Essentiality came into play as follows.

THEOREM 4 [R0j94, Sect. 2.5] Suppose D and E are n-tuples of finite
subsets of 2" such that D C E and E is nice for (K*)". Then D (K*)"-counts
E < one of the following exclusive conditions holds:

1. Supp(D) contains a subset essential for E, or

2. H(E)>O0and forallw € /"1, Supp(D N E") contains a subset
essential for E".

Remark 12. One certainly need not check infinitely many w in the
second case. In fact, we need only check one w (just pick any inner normal)
for each face of the polytope = Conv(E)).

Remark 13. Note that we immediately obtain that E (K*)"-counts E.
Better still, it follows just as easily that E is (K *)"-counted by D when D;
is the vertex set of Conv(E;) for all i. In fact, one can sometimes get away
with using far fewer points for D [Roj94].

The crux of the relationship between generic root counts in (K*)" and
mixed volumes is the following definition and theorem: D fills E < (0)
D C Eand (1) .#(D) = .#(F).

THEOREM 5. [R0j94]. Following the notation of Theorem 4, D fills E <
D (K*)'-counts FE.

Remark 14. When some FE; is empty and E has an essential subset, we
make the natural extension of defining . #(E) := 0.

Our combinatorial results for K”-counting and K"-niceness will then
follow easily upon partitioning K" in a special way.
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DerFiNiTiON 3. Forany J C{l,. . ., nhlet O;:={x € K" |x; # 0 &
j € J}. (In particular, Oy := 0.) We call O; an orbit and it is clear that

subsets of {1, . . ., n}.
It will also be useful to refine K"-niceness in the following way.

DeriNniTION 4. Suppose W C K" is a finite union of orbits and £ is an
n-tuple of finite subsets of (N U {0})". We then call E null for W < a
generic polynomial system with support contained in E has no roots in W.

For any J C {1, . . ., n}, define E N Lin{J) := (E; N Lin(J), . . .,
E, N Lin(J)). We can then simplify our analysis of counting and niceness
with the following immediate corollary of Proposition 1.

CoroLLARY 1. Suppose E is an n-tuple of finite subsets of (N U {0})".
Then E is nice (resp. null) for K" & E is nice (resp. null) for O, for all
Jc{,. .., n.

To conclude our analysis of generic conditions on coefficients, we will
need the following final definition.

DEFINITION 5. We say that C has an almost essential subset J < (0)
Supp(C) D J, (1) dim(Zje,; ;) = |J|, and (2) dim(Z,e; C;) = |J'| for all
nonempty /' C J. Also, § is defined to be almost essential for C iff Supp

(=94

In particular, note that the |/|-dimensional mixed volume of (Conv
(G;) | j € J) is positive whenever J is nonempty and almost essential for
C. Also, it is clear that J U {j} is essential for E = J is almost essential for
E, provided |J U {j} | > |J| > 0. Almost essentiality arose from the study
of affine root counts [Roj94] and also turns out to be quite useful for
characterizing when E is nice for O;.

CorOLLARY 2. Following the notation of Corollary 1, E is nice for
O; & E N Lin(J) has an almost essential subset of cardinality |J| or an
essential subset. In particular, E is null for O; < E N Lin(J) has an essen-
tial subset.

Proof. Let F be an indeterminate polynomial system with support E
and coefficient vector ¢ . Setting the variables {x; | j & J} equal to 0, we
get a new polynomial system in =|J| variables which we will call F,. Clearly
then, F; has support E M Lin(J) and the vector of indeterminate coefficients
of F; is a subvector of ¢ .

4 Note that condition (0) is new and this version slightly generalizes the original definition
found in [Roj9%4].
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Note that F generically has a positive finite number of roots in O; < F,
generically has a positive finite number of roots in O,. Since dim(E; N
Lin(J)) < |J| for all i, it is then easy to see that the latter condition holds
iff the vector (Conv(E; N Lin(J)) | E; N Lin(J) # @) is a |J|-tuple with
positive |J|-dimensional mixed volume (by Theorem 2). But then the last
condition is true iff £ M Lin(J) has an almost essential subset of cardinality
|| (by Lemma 2). Similarly, F generically has no roots in O, & E N Lin(J)
has an essential subset. ®

We can then combine Corollaries 1 and 2 into the following lemma.

LeEmMA 3. An n-tuple E of finite subsets of (N U {0})" is nice for K" <
forall 7 C{1,. . ., n}, EN Lin(J) has an almost essential subset of cardinality
|J| or an essential subset. In particular, E is null for K" < for all J C
{1,. . ., n}, E N Lin(J) has an essential subset.

Remark 15. 1t is easily checked (from the above lemma or from first
principles) that O U E is always nice for K",

Before we state and prove our classification of K”-counting, we will need
the following more abstract version of Theorem 2. From here on, we will
implicitly assume familiarity with some basic facts about intersection theory
on toric varieties, e.g., parts of [Ful93, GKZ94]. Let T := (K*)".

THEOREM 6. [Ro0j96]. Suppose F is an n X n polynomial system over K
with support contained in an n-tuple .= (Py, . . ., P,) of integral polytopes.
Let P C R" be any n-dimensional rational polytope compatible with
Py, ..., P,and let 7p be the toric variety over K corresponding to P.
Finally, forall i € {1, . . ., n}, let & be the T-invariant Cartier divisor of
Zp corresponding to P;, and define &, := &; + Div(f;). Then

1. 7pis an n-dimensional, normal, and complete algebraic variety. In
particular, 7p is compact when K = C.

2. %y, ..., 2, are effective and their intersection product & has
cycle class degree .#/(7°). Furthermore, @ N (K*)" is precisely the zero
scheme of F in (K*)".

3. If % is zero-dimensional or empty, then 7 has exactly ./#(9P) irre-
ducible components in 7p, counting multiplicities.

4. If 7 is positive-dimensional and .#/(P) > 0, then & has strictly less
than . #(°) zero-dimensional irreducible components in 7p, counting multi-
plicities.

Although we prove our classification via toric variety methods, its state-
ment is pure combinatorial geometry.

THEOREM 7. Suppose D and E are n-tuples of finite subsets of (N U
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{0V such that D C E and E is nice for K" and cornered. Then a polynomial
system with support contained in E generically has exactly .# (0 U E) roots
in K", counting multiplicities. Furthermore, D K"-counts E < one of the
following conditions holds:

1. .#(0 U E)=0and forallJ C{l,...,n} Supp(D N Lin(J))
contains a subset essential for E N Lin(J), or

2. .#(0 U E)>0and, for all w € R" lying outside the nonnegative
orthant, Supp(D N E*) contains a subset essential for E™.

Remark 16. Theorem 7 was derived by the first author after this paper
was submitted for publication. A more general version is proved in [R0j96]
where further background is also developed. For completeness, we have
included here Theorem 7 and a sketch of its proof.

Remark 17. Similar to Theorem 4, the number of n-tuples that one
must check in case 2 is finite and is precisely the number of faces, with an
inner normal lying outside the nonnegative orthant, of the polytope =
Conv({O} U E).

Remark 18. Assuming E is nice for K" and cornered, we immediately
obtain that E K"-counts O U E. Better still, under the same assumptions
on E, it follows almost as easily that O U E is K"-counted by D when
A#(0 U E) > 0 and each D; is the set of vertices of Conv(E;) having an
inner normal lying outside the nonnegative orthant.

Proof. Let F be an indeterminate n X n polynomial system with
support E and coefficient vector ¢ ¢.

Note that the .#(0 U E) = 0 case follows almost tautologously: by
Proposition 1, the Affine Point Theorem I and our hypotheses immediately
imply that F generically has no roots at all within K", i.e., E is null for K".
As for condition 1, since F is null for K", it easily follows from Proposition
1 that D K"-counts E < D O;-counts E for allJ C {1, . . ., n}. But then
the last condition is equivalent to condition 1 by Theorem 4 and the fact
that F has a root in O; & F; has a root in (K*)" (following the notation
of the proof of Corollary 2).

So let us now assume that.#(0 U E) > 0. Here we will apply Theorem
6, but first we must define an appropriate P in terms of the input data
E,,. . ., E,. To do this, we begin by defining P, = Conv(O U E,) for ali
iand P’ := 2 P;. By Lemma 2, it is clear that dim P’ = n. Now let o C
R” be the nonnegative orthant, ¢ € Q" N o, and let 7, be the normal fan
of (¢ + o) N P’. Then it is easily checked that, for ||ef| sufficiently small,
(a) #, contains o as one of its cones and (b) #, is a refinement of the normal
fan of P'. Solet P:= (g + o) N P’ for such an . In particular, P is rational,
n-dimensional, and compatible with P;,. . ., P,.
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The resulting 7 from Theorem 6 has two very nice properties: (I) it has
a naturally embedded copy of K", and (II) &; N K" = Z(f;) for all i.
Property (I) follows easily from (a), and property (II) follows from the
definition of the &, and the fact that E is cornered.

Now let O, denote the T-orbit of 7, corresponding to the face P* of P
and consider the following condition on Z:

A: 7 N O, = @ for all w € R” lying outside the nonnegative orthant.

It then follows (e.g., from Corollary 2 of [R0j96]) that Condition A holds
iff the relativized initial term system (in,, p (f1),. . ., (in,.p (f2)) has no
roots in (K *)", for all w lying outside of the nonnegative orthant. In particu-
lar, the latter condition holds for generic ¢, (for any specialization of
¢ \€p) iff condition 2 of our present theorem holds (by condition 1 of
Theorem 4).

However, condition A also turns out to be equivalent of & being
zero-dimensional and lying entirely within K”. That condition A is equiva-
lent to & lying entirely within K" follows almost immediately from the
definition of the orbits O,,. However, establishing the wonderful coinci-
dence that dim & = 0 as well takes a little more work. The argument,
which we will omit, reduces to the observation that toric varieties of the
form 7, P+Conv(0.6)) have canonical proper morphisms onto & and Pk. In
particular, using the fact that the jth coordinate projection defined on (K *)"
extends to the proper morphism from 7 P+Conv(0) 1O Pk, one can show
that a positive dimensional component of £ which intersects K" must
intersect some O,, with w outside the nonnegative orthant.

In any case, we have just shown that (i) condition A holds for generic
¢ p (for any specialization of €'\ ¢ ) iff condition 2 holds, and (ii) condition
A is equivalent to & being 0-dimensional and equal to Z(F). So we can
now quickly conclude by Theorem 6: Parts 3 and 4 imply that (ii) is true
iff F has exactly .#(0 U E) roots in K", counting multiplicities. The latter
half of Theorem 6 also tells us that this must indeed be the maximal number
of isolated roots in K", counting multiplicities. So by (i) and (ii) (and the
-#(E) = 0 case, which we have already proved), D K"-counts E iff condition
2 holds. In particular, setting D = E, we see that F generically has exactly
~#(0 U E) roots in K", counting multiplicities. ®

Remark 19. An immediate consequence of our proof above is a quick
toric variety proof of the I = @ case of the Affine Point Theorem I. (Of
course, to avoid circularity, one must do a tiny bit of additional work in
the case .#(0 U E) = 0.) However, we will give another more elementary
argument in the next section.
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Theorem 1 is, of course, contained in Theorem 7 and generalizes in a
different way to the following result.

COROLLARY 3. Suppose E is an n-tuple of finite subsets of (N U {0})"
such that E is nice for K". Then a generic polynomial system with support
contained in E has exactly /(0 U E) roots, counting multiplicities, in
K" & one of the following condition holds:

1. .40 U E)=0and, forallJ C{1,...,n}, Supp(E N Lin(J))
contains a subset essential for (O U E) N Lin(J), or

2. .40 VU E) > 0and, for all w € R” lying outside the nonnegative
orthant, Supp(E N (O U E)*) contains a subset essential for (O U E)¥.

Proof.  Obviously, O U E is cornered. Also, in Remark 15 we already
observed that O U FE is nice for K”. So by Theorem 7, it is clear that
the conditions of our present corollary are equivalent to E K"-counting
O U E. By the Affine Point Theorem I (and the definition of K"-counting)
we are done. W

ExampPLE 3.  One might believe (as the first author did, for a little while)
that the above criterion can be simplified further. For example, one might
conjecture that E is null for K" & .#(0 U E) = 0. However, even this
simple statement is false: counterexamples already crop up for n = 2. One
of the simplest is £ = ({(0, 1)}, {0, (1, 1)}).

ExampLE 4. It is easy to check that the criterion from the above corol-
lary is violated by Example 2 when w = (—1, 1). This confirms the fact
that the Affine Point Theorem 1 overcounts the generic number of roots
of this particular example.

Remark 20. Tt is worth noting that in the notation of [HS96], the above
corollary is equivalent to a complete classification of the E such that
SAM(E) = #(0 U E), where ./ .#(-) denotes stable mixed volume. Alterna-
tively, by Remark 8, we also have a classification of all E such that
S H(E) = £.4(0 U E).

Thus we now know exactly when..#(0O U E) is an optimal upper bound
on the number of isolated roots in affine space.

4. AN ALGEBRAIC HoMoTOPY PROOF OF THE AFFINE POINT THEOREM I

Letb = (by,...,b,) € K" and H(x, 1) := F(x) + t(bx™,. . .,
b, x*), where tis a new variable. Note that H|,_, = F. Our proof is essentially
a reduction to some basic facts about the degree of a proper morphism
between algebraic curves over an algebraically closed field, e.g., [Sil86,
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Chap. 2]. The one possibly nonstandard technicality of our proof is the use
of a special toric variety 7p (containing K"\Hyper(/)) in order to com-
pactify our curves and make our morphisms well defined. We will confine
the construction of 7 to a remark immediately following our proof.

By Lemma 1, and since a € Lin(/), it is easily checked that a generic
choice of b suffices to make dim(((K"\Hyper(I)) X K*) N {x; --- x,, =
0} N Z(H)) = 0. So let us fix b so that this condition on Z(H) holds. We
will then call any one-dimensional irreducible component of ((K"\Hyper
(1)) X K) N Z(H), whose image under projection onto the last coordinate
is dense, a good curve. Note that by our assumption on b, the intersection
of any good curve with (K"\Hyper(I)) X {c} lies entirely within (K*)" X
{c}, for all but finitely many ¢ € K.

Clearly, for all ¢ € K, if z € K™\Hyper({) is any isolated root of H|,.,
then (z, ¢) must lie on some good curve. (First, (z, ¢) must lie in some one-
dimensional irreducible component of Z(H) not contained in (K™
Hyper(l)) X {c}, since dim Z(H) > 0 and dim{z} = 0. Second, this curve
must be good since any nonconstant rational map between algebraic curves
(over an algebraically closed field) has dense image.) In particular, since

Klellx; | j & 1[xf" | j € 1)/, t = ¢y = Kx;| j & Il | j € ITKH],-0)

for all ¢ € K, we see that the number of isolated roots of H|., in K™\
Hyper(I), counting multiplicities, is bounded above by

5@ =2 > w(z; (H, 1t = ¢))

C zecn (K™ Hyper(I))x{c})

for all ¢ € K, where the outer sum ranges over all good curves and u(+)
denotes intersection multiplicity [Ful84, Chap. 2]. Therefore to complete
our proof it suffices to show that S(0) = .#(a U E).

Now the projection of a good curve C onto the (n + 1)st coordinate is
a nonconstant rational map of algebraic curves ¢.: C — K. Let C be the
closure of C in 7, X Pk and note that C\C is 0-dimensional. Since the
natural projection from (K" \Hyper(/)) X K onto the last coordinate natu-
rally extends to a proper morphism ¢ : 7p X Pk — Pk [Ful93, Chap. 2],
¢¢ can be extended to a proper morphism ¢ : C — Pk. Now by [Ful84,
Examples 4.3.7 and 7.1.15], Z;cencrxey m(z; (H, t — ¢)) is precisely the
degree of the morphism ¢, for all ¢ € Pk. In particular, for all ¢ € K,
S(c) = T, where T := = deg ¢¢ and the sum is over all good curves. But
by construction, the fiber ¢c'(c) C 75 actually lies entirely within (K*)"
for all but finitely many ¢ € K. So for all but finitely many ¢ € K, T is
precisely the number of isolated roots in (K *)”, counting multiplicities, of
the polynomial system (H, t — c).
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To conclude, we thus obtain by Theorem 2 that T =< .#(a U E,
{0, é,:1}) = #(a U E). The last equality follows almost immediately from
the definition of the mixed volume. So .#(a U E) = T = 5(0) and we
are done. ®

Remark21. The toric variety 7 p used in the above proof was constructed
as follows: Similar to the Proof of Theorem 7, define P; := Conv({a;} U E;)
for all i and let P’ := IP;. Now define ¥ to be the intersection of half-
e € Q" N (g7 + Za;) and let % be the normal fan of (¢ + o) N P’. Then
it is easily checked that for ||¢ — Zq/| sufficiently small, (a) %, contains the
dual cone of o7 as one of its cones, and (b) #, is a refinement of the normal
fan of P’. So let P := (¢ + &%) N P’ for such an &. In particular, P is
rational, n-dimensional, and compatible with P;,. . ., P,. Now the resulting
7p has two very nice properties: (I) it has a naturally embedded copy of
K™\Hyper(1), and (II) Z; N (K"\Hyper(l)) = Z(f) N (K™\Hyper(I)) for
all i. Property (I) follows easily from (a), and property (II) follows from
the definition of the ¢&; and the fact that ¢ U E is cornered relative to gr.
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