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ABSTRACT. We derive an explicit formula for the expected number of real roots
of certain random sparse polynomial systems. We propose (and use) a proba-
bility measure which is natural in the sense that it is invariant under a natural
G-action on the space of roots, where G is a product of orthogonal groups. Our
formula arose from an effort (now an ongoing project with J.-P. Dedieu) to
generalize the recent condition number theorems of Shub and Smale to sparse
polynomial systems and compactifications other than projective space:

1. Introduction

One may wonder if the recent advances in toric variety techniques, e.g., convex
geometric formulae for the number of complex roots of a polynomial system [Ber75,
LW96, RW96, HS96, Roj96], can be used to refine Shub and Smale’s recent work
[SS2] on the number of real roots of a random polynomial system. We answer this
question in the affirmative for a particular family of sparse polynomial systems and
formulate a conjectural answer for more general sparse systems. Our results are
formulated in terms of one specific probability distribution, but nevertheless present
a surprisingly unexplored aspect of random polynomial systems. Also, since real
root counting is currently much harder than complex root counting, stochastic real
root counts for sparse polynomial systems should be of interest to computational
algebraic geometers as well as probabilists.

We can pose our general scenario as follows: Let F =(fi,..., fn) be a poly-
nomial system with support E := (E,...,E,) and coefficients which are ran-
dom variables. This terminology simply means that we identify the monomial
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z€:=x7' .-z with the point e:= (ey,... ,e,) € Z™ and thus let the nonempty
finite set E; C Z™ determine precisely which monomial terms appear in f; for all
. We call such an F an nxn randomized polynomial system with support E. We
will also call E; the support of fi and the convex hull Conv(E;) in R™ the Newton

polytope of f;.

REMARK 1. Our notion of sparsity is to specify supports. This idea is natural
in the sense that if one specifies the support of a polynomial then one can omit
as many monomial terms as one likes. It is also important to note that our ap-
proach complements that of Khovanskii [Kho91], who has found amazing results
and conjectures in terms of solely the number of monomial terms in a polynomial.

REMARK 2. Working with Newton polytopes is already more precise than work-
ing with total degree. For example, an n-variate polynomial has total degree <d iff
its Newton polytope is contained in Conv{O, dé,, ... ,dé,} (the standard n-simples
in R™ uniformly scaled by a factor of d).

For reasons which will gradually become clearer, it is more convenient to work
in terms of Newton polytopes and lattices (subgroups of Z™) instead of directly
with E. Thus let L be a sublattice of Z™ of finite index. We then say that E is L-
complete iff for all ;€ [1..n] there is an a; € Z™ such that a;+ E; =Conv(a; + E;)n L.
Another bit of discrete geometry we will need is the following: If a € Z™ and Q is
an (n—1)-dimensional polytope with vertices in a+L, then @ naturally determines
a (parallel) (n—1)-dimensional sublattice M of L. One can then speak of a point

.D € a+L being a certain number of lattice steps, dr(p, Q), away from Q simply by
considering the 1-dimensional factor lattice L/M. Thinking in these terms, let us
henceforth fix the following probability distribution on the coefficients of F.

DEFINITION 1. Let F be an nxn randomized polynomial system with L-complete
support E, and let Cg denote the vector consisting of all the coefficients of F. Also,
foralli€[l..n] and e€ E;, let Ci,e denote the coefficient of the z° term of fi and let
this coefficient be a (real) Gaussian random variable with mean 0 and variance

1
II o
Q a facet of Conv{E;) dLi (e’ Q)
where L; is the smallest sublattice of L containing a translate of E;. This distribu-
tion is called the (real) L-polyhedral distribution for Cg.
EXAMPLE 1. Suppose n=2, L=Z72, and E is the pair of sets

({(0,0),(1,0),(2,0),(1,0), (1,1),(1,2),(2,0), (2, 1)}, {(0,0), (0, 1),(0,2),(1,2)}).

Then, following the notation of the last definition, it is clear that E is L-complete
and thus F must be a bivariate polynomial system of the following form:

flz,y) = oy +az+ azz?+ a4y + aszy + aez’y + ary? + agzy?
g(z,y) = B+ B2y + Bsy® + Bazy®

where the a;’s and B;’s are independent real Gaussian random variables with mean
0. (Note that the Newton polygons of f and g are respectively a pentagon and a
triangle, and thus Ly = Ly = L.) Counting lattice steps then simply amounts to
partitioning the lattice Z2 into “slices” parallel to o Newton polygon edge. Using
any reasonable drawing of By, E; C Z2, it is then easy to check that the variances



REAL ROOTS OF CERTAIN RANDOM SPARSE SYSTEMS 3
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of a1, a2, 05, By, B2 are respectively smmimmr: GHEETT TR o2 Tl Ve leave

the computation of the remaining variances as an exercise.

DEFINITION 2. Following the notation of the last definition, we say that F' is
L-polyhedrally randomized and let N'(E) denote the ezpected number of roots of F
in (R*)", where R* :=R\{0}.

REMARK 3. In general one really wants to count roots in R", but restricting to
(R*)™ is technically convenient. Also, for many cases (e.g., remark 4) it is easily
verified that the roots of F in C* all avoid the coordinate hyperplanes with proba-
bility 1; so sometimes both counts are identical. Nevertheless, there are important
subtleties in general and we will leave these for future investigation.

We will soon see that this unusual choice of probability distribution is natural
and/or, at very least, convenient. A purely aesthetic reason is that for certain
E one can actually derive convex geometric formulae for N (F). For example,
call an r-simplex L-fundamental iff its vertices all lie in L and its Euclidean r-
volume is minimal over all such (nondegenerate) r-simplices. We then say that
a simplex is L-uniform iff it is a uniform integral scaling of an L-fundamental
simplex. A product of polytopes of dimensions ni,...,n; is simply a polytope
sum Q = Zle Q; such that dim@Q = Z§=1 n; and dim Q; =n; for all j. Letting
Vol () denote the renormalization of Euclidean n-volume which evaluates to 1 for
L-fundamental n-simplices, we have our first main theorem.

MAIN THEOREM 1. Let F be an nxn L-polyhedrally randomized system with
support E. Assume the Newton polytopes of F are integral translates of P, where
P is a product of L-uniform simplices of positive dimensions ny,... ,nx. Then

N
/\/(E):wTF(k+1) T ) Aei(P)

9 1
4 n 2
Myyees Nk

We call the special case where L =2", all translations are O, and P is a product
of scaled standard simplices, the standard case

Examples illustrating our main theorems appear at the end of this introduction.

REMARK 4. In more concrete terms, the standard case of Main Theorem 1
gives us the ezpected number of real roots of a random unmized polynomial system
of given multidegree. (Unmizedness simply means that all the polynomials have the
same support.) More precisely, if we

1. partition the variables z1,... ,zn into k vectors Ty, ... ,Tx such thatT; con-
sists of ezactly n; variables for all j, and
2. assume that fs1,... , fs,n are general (3 n;)-variate) polynomials with ran-

dom variable coefficients and total degree §; in T; for all j,

then it is easy to see that the Z™-polyhedrally randomized systems of the form F:=
(fory-- s fs.n) define the standard case. Also note that with probability 1, such a
system has no roots on any coordinate hyperplane.

REMARK 5. An alternative characterization of the general case of Main The-
orem 1 would be to start with F, as in the last remark, let {b1,... ,b,} CZ™ be a
basis for an n-dimensional lattice L, and let aq,... ,an €L". Then, defining zB .=
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(z*,...,ab"), it is clear that any system of the form (z* f, 1 (zB),... ,z° f, . (zB))
satisfies the hypotheses of Main Theorem 1. Conversely, given L and the Newton
polytopes Py, ..., P, of F, let v be any vertex of Py. Then by assumption we can
pick a; :=v and ay,... ,a, € Z" such that P,=qa;,+P for allic (1.n]. One
can then define by,... b, to be the edges emanating from v and find b1y0ne, bk
(and thus B and F,) from the Smith factorization [Jac85, sec. 3.7] of the matriz
B':=[by,...,b,]. We will see later that this characterization lets us write Vol (P)

more ezplicitly as ( n n n Hé;j.
FERRI 7

REMARK 6. The multinomial coefficients [GKP94] in Main Theorem 1 are
defined (in the most obvious way) by using gamma functions so that they are well-
defined for half-integral entries. When Y.n;<n it is clear that Vol (P)=0 and we
thus cheat our way out of ambiguity. Note also that the power of ® disappears iff
there is at most one odd n;.

REMARK 7. Let M(E) denote the (unnormalized) n-dimensional mixed vol-
ume [Ber75, Oda88, Roj94, DGH96, VGC96, EC95] of the convezr hulls of
the E;. Then it easily follows from the results of [Ber75] that for general E, the
ezpected number of roots of F in (C*)" is ezactly M(E) [Roj94]. The connection
to real roots is the following: Let M(-) denote the renormalization of M(-) which
evaluates to 1 for n-tuples of L-fundamental n-simplices. Then for E as in Main
Theorem 1, Mp(E)=Vol(P).

REMARK 8. Note that the k=1 portion of the standard case yields a special
case of the following formula due to Shub and Smale [SS2]: N(E) = \/T] d; when
L=7Z" and, for all i, the Newton polytope of f; is the standard n-simplex uniformly
scaled by a factor of d;. Main Theorem 1 thus complements their result. (That our
distribution specializes to theirs is very easy to verify.) Conver geometry was not
mentioned in [SS2], so it is even more of a coincidence that N(E)=y/ML(E) (by
the multilinearity of Mr(-)) in the case they considered.

Given any matrix B with integral entries, let even(B) (resp. odd(B)) denote
the number of nonzero even (resp. odd) entries in its Smith normal form [Jac85,
sec. 3.7). Also let Niy(E) denote the expected number of real roots of F in a region
U. Then we can do even better and compute Nu(E).

MAIN THEOREM 2. Suppose U is a measurable subset of an orthant of (R*)™.
Then, following the notation of Main Theorem 1 and Remarks 4 and 5,

1 I () . dz;
Ny(E) = 2/ 6’-"/ ——
U( ) 2even(B) W%.Hl H J expB(U)H (1 +Ej"’_fj)nj+1

where expg(z):=25.

REMARK 9. For the standard case it is clear that B is the identity matriz and
thus even(B)=0 and expg(U)=U.

From Main Theorem 2 it is easy to derive that Ny(E) (for the E specified
in Main Theorem 1) is also invariant under a natural group action. If }"n; <n
this is vacuously true, so let us assume that d_nj =n. We can then note that
(R*)™ naturally embeds into the product of projective spaces X :=Pp!x. . -xPg* by
homogenizing each group of variables Z; with an extra variable. It then follows that
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under this embedding, the distribution defined in Main Theorem 2 reduces (almost
everywhere) to the uniform probability measure on X [Fol80]. The product of
orthogonal groups G:=0(ny +1)x- - -xO(ni +1) acts naturally (and isometrically)
on X and we thus obtain the following corollary of Main Theorem 2.

COROLLARY 1. Following the notation of Main Theorems 1 and 2, assume that
n=Y.n;. Then there is a natural open embedding ¢ : (R*)" — Pg'x---xPg* making
Ny(E) a well-defined O(ny+1)x- - xO(ny+1)-invariant function of (expg(U)). O

REMARK 10. One can in fact derive the above corollary without resorting to
Main Theorem 2. Shub and Smale did this for the case described in Remark 8 and
this was how they derived their O(n+1)-invariant measure [SS2].

For more general E it is somewhat unclear if any sort of natural group in-
variance can be maintained. However, following the notation of Remarks 4 and 5,
the generalization where one replaces é; by di; € N preserves G-invariance and is
currently under investigation. In particular, the mixed versions of Main Theorems
1 and 2 corresponding to this broader family of E are imminent.

Stretching Main Theorem 1 a little further, we propose the following conjecture.

SQUARE ROOT VOLUME CONJECTURE. Suppose F is an L-polyhedrally ran-
domized system with support E. Then the ezpected number of roots of F in (R >
is K - /ML(E), where K is a constant depending only on the GLn(Z)-similarity
class of the inner normal fan of the polytope S := 3 Conv(E;), modulo GL,(Z)-
similarities of S.

We refer the reader to [KKMS73, Oda88, Ful93] for the definitions and
properties of normal fans. In particular, the combinatorial condition on K above
is equivalent to K depending only on the isomorphism type of the compact toric
variety over R associated to S.

REMARK 11. As we’ve already seen, the conjecture is true for those E sat-
isfying the hypotheses of Main Theorem 1. (Simply note that the toric variety
associated to P is isomorphic to Pp! x-- - xPp*, following the notation of remark
5.) The conjecture is also clearly true for the case described in remark 8, since the
normal fan depends only on n. Also, if ML(E)=0 then it easily follows that the
ezpected number of complex roots is 0 [Roj94]. So the conjecture is true in this
degenerate case as well.

REMARK 12. If one no longer assumes that E is complete with respect to any
lattice, then eztending the above conjecture becomes harder. In particular, if one
tries to use the Z™-polyhedral distribution corresponding to the Newton polytopes,
then the n=1 case already shows that N'(E) must depend on more information than
just Newton polytopes. (For ezample, one can apply Theorem 1 of the next section
to a general trinomial.) One is then faced with an intriguing (but vague) question:
Is there a “canonical” probability measure for polynomial systems with incomplete
support?

The remainder of our paper is devoted to proving our main theorems. Main
Theorem 1 follows from Main Theorem 2 after partitioning (R*)" into orthants and
performing a routine multivariable integration. Main Theorem 2, after an algebraic
trick, follows from a beautiful integral formula due to Edelman and Kostlan [EK95].
Our proofs are detailed in the next section. Also, the references section contains



6 J. MAURICE ROJAS

some important additional sources should the reader desire to learn more about
random equations, convex geometry, or counting real or complex roots of non-
random polynomial systems.

In closing we point out that an important corollary of our L-polyhedral dis-
tribution is that it can form the basis for a complexity analysis of solving mul-
tihomogeneous polynomial systems. This is ongoing work with J.-P. Dedieu and
initial calculations show that some of the numerical conditioning results of Shub and
Smale [SS1, SS2, SS3, SS4] — on homotopy methods for solving homogeneous
polynomial systems — can be generalized to multihomogeneous systems [DR96].

We end this introduction with two examples illustrating our main theorems.

EXAMPLE 2. (Shifted Powers) Suppose n=1, L:=5Z, and E := {—-4,1,6}.
So Main Theorem 1 applies and we are considering o single univariate trinomial
of the form F(z)=az™* + Bz + vz8, where o, 3,7 are independent real Gaussian
random variables with mean 0 and respective variances %,1, % Main Theorem 1
tells us that the expected number of roots of F in R* is ezactly /2. Main Theorem 2

tells us that the expected number of positive roots of F is exactly \/Lf (since expg(z)=

z5).

EXAMPLE 3. (The Matrix Polynomial Problem) Suppose L := Z™ and
E = (PNZ™" where P := Conv{0,é,,... y€n_1} % [0,d]. In particular, this is
the standard case with k =2 and (n1,n2,61,62) = (n~1,1,1,d); and L; = --- =
L, =L since dim P=n. Now note that the embedding ¢ from Corollary 1 can be
modified slightly into an embedding ¢ : R* — ]P’,};‘1 XR. This last embedding can
then be used to transform our system into the following randomized version of the
nxnxd matriz polynomial problem [GLR82] (modulo a set of 0 measure): For all
J€[0..d], let A; be an n x n matriz consisting of independent real Gaussian random

variables with mean 0 and variance < ;l ), and consider the values of A such that

the matriz Ag + M1 + -+ + A\%A4, is singular. Letting z := (z1,... ,2,)T, Main
Theorem 1 (combined with @) tells us that the ezpected number of real eigenpairs
(z,\) e Pﬁ_l xR of

AQ.’L‘+/\A1$+"'+/\dAd.’IZ=O

nil
is ezactly N(E) = ﬁ%‘*ﬁ')lﬁ In particular, lim A—%_? =4/Z¢. Our ezample
complements another result where all the variances are 1 '[EK95]. When d =1,
both of these results merge and we have a randomized version of the generalized
eigenvalue problem. (This special case was discovered earlier in [EKS94].) Fi-
nally, for our randomized matriz polynomial problem, Corollary 1 implies that the
concentration of real eigenpairs is uniform on IF”R’;_1 xPL.

2. Proofs of Our Main Theorems

We will first prove Main Theorem 2. Main Theorem 1 then follows from a
simple application of Main Theorem 2 which we will describe at the end of this
section.

Let us begin with a theorem which implicitly contains Main Theorem 2, as well
as much more.

THEOREM 1. [EK95, Theorem 7.1] Let fy(t),..., fn(t) be any collection of
real valued rectifiable functions defined on R™, let V be a measurable subset of R™,
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and let the vectors ax = (ako,. .. ,axn), k € [L..m] be independent and identically
distributed. Assume each ar is a (real) multivariate normal random vector with
mean O and covariance matriz C. Then the ezpected number of real zeros of the
system of equations

akofo(t) + -+ arn fn(t) =0, k€[l..m],

that lie in the set 'V, is
1
r(mtl 2 2
—(%/ det 9 log(v(z)T Cu(y)) dt,
T2 1% aa:,-ayj y=o=t| . n

where v(t)=(fo(t),..., fn(t)). a

REMARK 13. It would be a great help to have a mized version of the above
theorem. That is, a version where the vectors {ax} have covariance matrices (and
dimensions) depending on k. Such a theorem (which is expected soon) would then
immediately give us mized versions of Main Theorems 1 and 2.

Before beginning our proof of Main Theorem 2 let us define some convenient
notation: Let A; @ --- ® Ak be the block-diagonal matrix (with exactly k£ blocks)
whose It block (going from northwest to southeast) is the matrix A;. Also let
Fyo-- T0) =0 (F1s..-,3k):=t, and (81,... ,8) :=e be such that 7, &, and &
each consist of exactly n; variables for all l€[1..k]. Finally, let A; be the standard
n;-simplex and define Ps:=(61A1) X +++ X (6xAk).

2.1. Main Theorem 2. First note that the map 7 ~ 7™ defines a conformal
automorphism of R* (resp. Ry ) when n is odd (resp. nonzero and even). Next, note
that any A € GL,(Z) defines a permutation of the orthants of (R*)" via z — A
(since A=! €GL,(Z) and thus (y4)4™ =y44™" =y for any y € (R*)"). Thus, by the
Smith factorization, it immediately follows that expg defines a conformal bijection
between two subsets Y, Z C (R*)™, each a disjoint union of 2°44(5) orthants. It then
becomes clear that expg : (R*)™ — Z has exactly geven(B) analytic inverses, and
these inverses differ only by coordinate reflections.

REMARK 14. Techniques of this sort are developed further in [Stu91, PS94,
IR95] in connection with a conjectural combinatorial upper bound on the number
of isolated roots in (R*)"™ of a general non-random sparse polynomial system. The

underlying framework is the theory of toric varieties and some ezcellent references
for this theory are [KKMS73, Oda88, Ful93].

The preceding facts allow us to simplify the proof of Main Theorem 2 somewhat.
In particular, since z € U = 28 € expg(U) => z € expp' (expp(U)), it is clear
from our observations that 2°V*™ BNy (E) = Nexp , (v)(Es), where E; is the support
of F, (recall remark 5). Also note that multiplying any f; by a monomial z* does
not affect the roots of F in (R*)"™. It thus suffices to work with the standard case.

Now, for the Z™polyhedral distribution, it is clear that multiplying the vari-
ances of the ¢; . by a constant depending only on 7 does not affect the distribution
of the roots of F,. Also, it is easily checked (since all our simplices our now stan-
dard) that J[(6!) times the variance of ¢;. is actually the following product of

multinomial coefficients
H 61
e
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where the I term is an (n;+1)-nomial coefficient. We will thus assume in our
calculations that the variance of ¢i,e 15 the above product.

We now invoke Theorem 1 to compute Nexp ) (Es) by setting m:=n, V.=
expg(U), and letting the vector v(t) be (t*)eep,nz~. Note that the covariance
matrix, in this case, is diagonal. Since the I-function factors in front of the cor-
responding integrals from Main Theorem 2 and Theorem 1 fortuitously match, it
suffices to show that the two integrands are identical, up to the remaining factor of
V16", Solet us examine the square of the integrand coming from our application
of Theorem 1:

12 ;:[ o Iog(v(:v)TCv(y))
811:1;33,(_7'

z=y=tJ nxn

_ & log H( & ) 2oy
axiayj ecP,NZ" 4 2

_ 12 S % H(& )fa—a
- 8mi8yj & € v

€L €6 ALNZT €1€6HAINZ |

9? —
= [ 52idm; (Zz: 6;log(1 + mz-m))

z=y=t} nxn

2

o -
= GIB [m (6:11log(1 + 7,-7,))

51=§71=t1:, npxng

where the I block in the above block-diagonal matrix is indexed by the variables
in Z; and 7. Since the determinant of a block diagonal matrix is the product of the
determinants of the blocks, it thus suffices to know the determinants of the blocks
to determine I2.

In particular,

o? —
[—ax-ay- (6110g(1 +71-7,))
iJYj
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- 6, |:6ij(1 +fl_-fl_) - tjti]
(14t,-41)? ny X1

- (1 -+ 21 -21 )2
where 6;; is the Kronecker delta. Now (by an observation of J.-P. Dedieu which

the author humbly thanks him for) one can use multilinearity to derive that the
determinant of the last matrix is

BT P S
(1 +7;-2)%m e - (L4 -2y)mt
Multiplying the corresponding factors for the remaining blocks of our original
large matrix then gives

[5,‘j(1 +114) — tjti]

ny Xny

&M
Iz = _—__—l;——.
H (1 + tl-tl)"""l .
Main Theorem 2 follows immediately. O

2.2. Main Theorem 1. Following the notation of the proof of Main Theorem
2, note that we can decompose (R*)" into a disjoint union of geven(B) reflected copies
of Y. Further decomposing into orthants and invoking Main Theorem 2, we obtain
by symmetry that

_r(=) ™ az
o= I [, Tl e

Thus our proof amounts to evaluating a product of integrals of the following
form:

Joom T

(R*)™1 (1 +El-'a_:1)"l+1

Since the integrand is bounded and continuous on R™, we can enlarge the domain
of integration (by a set of measure 0) to R** without changing the value of the
integral. Then, by converting to spherical coordinates, using the standard formula
for the Euclidean measure of a hypersphere, and converting to a trigonometric
integral by integration by parts, we obtain that the above integral is precisely

n:+1
T2
T(=E)

Multiplying our integrals together and collecting terms, we obtain that
e T(EY -
M= ) - rg VL
Main Theorem 1 then follows from the fact that

VolL(P)=( " ) &,

Niy... Nk
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This final assertion is easily proved: Using the notation of remark 5, it is clear that
P=DBP, and det B is the lattice index [Z" : L]. So Vol.(P)=(det B)Vol(P,) =

[2™ : L ]IZ—,}I]Volzn(Ps) =n!]] %‘,:—: (since the Euclidean d-volume of a standard
d-simplex is ;).
a
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