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Abstract

We give new positive and negative results (some
conditional) on speeding up computational alge-
braic geometry over the reals:

1. A new and sharper upper bound on the num-
ber of connected components of a semialge-
braic set. Our new bound is novel in that it is
stated in terms of the volumes of certain poly-
topes and, for a large class of inputs, beats the
best previous bounds by a factor exponential
in the number of variables.

2. A new algorithm for approximating the real
roots of certain sparse polynomial systems.
Two features of our algorithm are (a) arith-
metic complexity polylogarithmic in the de-
gree of the underlying complex variety (as op-
posed to the super-linear dependence in ear-
lier algorithms) and (b) a simple and efficient
generalization to certain univariate exponen-
tial sums.

3. Assuming the truth of the Generalized
Riemann Hypothesis (GRH), detecting
the vanishing of A-discriminants (operators
which include all known multivariate resul-
tants and discriminants as special cases) can
be done within the complexity class AM.

4. Detecting whether a real algebraic surface
(given as the common zero set of some input
straight-line programs) is not smooth can be
done in polynomial time within the classical

*This research was partially funded by a Hong Kong
CERG Grant.

Turing model (resp. BSS model over C) only
if P=NP (resp. NP CBPP).

The last result follows easily from an unpublished
observation of Steve Smale. We then conclude by
discussing some of the implications of (3) and (4)
— especially whether the algorithm from (2) can
be further generalized.

1 Introduction and Main Results

We provide new speed-ups for some fundamen-
tal computations in real algebraic geometry. Our
techniques are motivated by recent results from al-
gebraic geometry but the proofs are almost com-
pletely elementary. We then conclude with a dis-
cussion of how much farther these techniques can
still be pushed.

In particular, roughly speaking, we also show
that if singularity detection for curves over C can
be done in polynomial time then we must have P =
NP or NP C BPP. This can be thought of as
a lower bound on the complexity of elimination
theory. On the other hand, we show that the truth
of GRH implies that deciding the vanishing of A-
discriminants (a central problem from elimination
theory) can be done within the complexity class
AM. The best previous bound was EXPTIME
— a fact implicit from, say, [Stu93].

This work is a part of an ongoing program by
the author [Roj97, Roj98, Roj99a, Roj99b] to dra-
matically sharpen current complexity bounds from
algebraic geometry in terms of more intrinsic geo-
metric invariants. We will give precise statements
of these results shortly, so let us begin by consid-
ering the number of connected components of a
semialgebraic set.!

1A semialgebraic set is simply a subset of R™ defined



1.1 Sharper Intrinsic Bounds

The topology of semialgebraic sets is intimately
related to complexity theory in many ways. For ex-
ample, the seminal work of Dobkin, Lipton, Steele,
and Yao [DLT79, SY82] (see also [BCSS98, Ch. 16])
relates upper bounds on the number of connected
components to lower bounds on the algebraic cir-
cuit complexity of certain problems. More directly,
upper bounds on connected components are an im-
portant ingredient in complexity upper bounds for
the first order theory of the reals [BPR96].

Our first main theorem significantly improves
earlier bounds on the number of connected com-
ponents by Oleinik, Petrovsky, Milnor, Thom and
Basu [OP49, Mil64, Tho65, Bas96].2 The main
novelty of our new bound is its greater sensitiv-
ity to the monomial term structure of the input
polynomials. Letting O and é; respectively de-
note the origin and the 7t standard basis vec-
tor in RV, z := (21,...,2,), and normalizing k-
dimensional volume Voli(-) so that the standard
k-simplex Ay :={ze€RF|zy,...,2,>0,3 2;<1}
has volume 1, our result is the following.

Main Theorem 1

Let f1,..., fo+s € R[z1,...,25] and suppose S C
R™ is the solution set of the following collection of
polynomial inequalities:

fl(z) = 0, iE{l,...,p}
filz) >0, ie{p+1,...,p+s}

Let Q C R™ be the convex hull of the union of
{O,é1,...,é,} and the set of all a with z* :=
z{t - -z2 a monomial term of some f;. Then S
has at most

min{n + 1, %}Q"S”Voln(Q)

connected components.

For those familiar with Newton polytopes
[BKK76], our ) above is simply the convex hull
of the union of A,, and the Newton polytopes of
all the f;.

Letting d be the maximum of the total de-
grees of the f;, the best previous general upper

by the solutions of a finite collection of polynomial inequal-
ities.

2These papers actually bound Betti numbers, which in
turn are an upper bound on the number of connected compo-
nents. However, Main Theorem 1 can be extended to Betti
numbers as well, and this will be covered in a forthcoming
paper.

bounds, quoted from [BCSS98, Ch. 16, Prop. 5]
and [Bas96] respectively, were (sd + 1)(2sd + 1)"
and (p + s)"O(d)™. Our bound is no worse than
min{n+1, £1}(2sd)" (better than both preceding
bounds) and is frequently much better. Consider
the following examples:

Example 1 (Spikes) Suppose we pick all the f;
to have the same monomial term structure, and
in such a way that @ has small volume but great
length in the direction (1,...,1) € R™ In par-
ticular, let us assume that the only monomial
terms occuring in the f; are 1,z1,...,2,-1 and
(1 -25), (21 2n)%, ..oy (21 - -xn)D. Then it is
easy to check that () is a “long and skinny” bypyra-
mid, with one apex at the origin and the other at
(D,...,D) € R*. We then obtain, via two sim-
ple determinants, that Vol,,(Q) = D + 1 and thus
our bound reduces to min{n + 1, :—f—}}?”s“(D +1).
However, the aforementioned older bounds are eas-
ily seen to reduce to (nsD + 1)(2nsD + 1)" and
((p+ 5)O(D))".

Example 2 (Bounded Multidegree) Suppose
now that instead of bounding the total degree of
the f;, we only require that the degree of f; with
respect to any z; be at most d'. It is then easy
to check that Q) is an azxes parallel hypercube with
side length d'. So our new bound reduces to
min{n + 1, 1}(2sd’)". However, the old bounds

are easily seen to reduce to (snd’ + 1)(2snd' + 1)"
and ((p+ s)O(nd’))".

We can further compare our new bound to the
best previous bounds in very simple polyhedral
terms: Let Ag denote the smallest scaled standard
n-simplex, YA, containing (). Then, since volume
is monotonic under containment, our bounds are
least favorable when ) = Ag. In particular, our
bounds are never worse than the aforementioned
earlier results, since ) CdA,, always.

Remark 1 [t is interesting to note that there are
sharper (even optimal) results relating polytope
volumes and connected components for complex
varieties, beginning with the remarkable work of
Bernshtein, Kushnirenko, and Khovanski [BKK76]
a bit over twenty years ago. (See also [DK86].3)
However, Main Theorem 1 presents the first non-
trivial upper bounds on the number of connected

3We also point out that the classical Bézout’s theorem
[Mum95] is optimal only for a small class of polynomial sys-
tems. So the results of [BKK76] include Bézout’s theorem
as a very special case.



components of semialgebraic sets with this com-
binatorial flavor. Finding an optimal upper bound
for semialgebraic sets, even in the special case of
nondegenerate real algebraic vareties, is a much
harder problem and is still open.

Our bound can be further improved in various
ways and this is detailed in section 2. In partic-
ular, we give sharper versions tailored for certain
special cases, and we prove analogues (for all our
bounds) depending only on %, s, and the number
of monomial terms which appear in at least one f;.

It is also interesting to note that the tech-
niques involved in our proof of Main Theorem 1,
when combined with other recent results of the au-
thor [Roj99a), also yield similar improvements on
the complexity of quantifier elimination over real-
closed fields. This will be pursued in a forthcoming
paper of the author.

1.2 Superfast Real Solving for Certain
Fewnomial Systems

The complexity of solving systems of fewnomials
(polynomials with few monomial terms?*) has only
been addressed recently. Indeed, the vast majority
of work in computational algebra has so far been
stated only in terms of degrees of polynomials, thus
ignoring the finer monomial term structure. No-
table exceptions include [CKS99] (solving a single
univariate fewnomial over Z in polynomial time),
[Len98] (solving a single univariate fewnomial over
Q in polynomial time), and [Roj98, MP98, Roj99a]
(“solving” polynomial systems over R or C within
time near polynomial in the degree of the underly-
ing complex variety®).

An important open question which still remains
is whether the complexity of “solving” fewnomials
can be sub-linear in the degree of the underlying
complex variety. (We will clarify what it means to
“solve” momentarily.) As an example, can one &-
approximate the roots of a univariate fewnomial of
degree d, in the interval [0, R], using significantly
less than ©(dloglog g) arithmetic steps? Doing

this even for binomials (i.e., quickly finding dth
roots) is nontrivial [Ye94]. The preceding complex-
ity limit, up to a factor polylogarithmic in d, is the

‘Results on fewnomials usually hold on a much broader
class of functions: the so-called Pfaffian functions [Kho91].

5Joos Heintz and his school have a similar result over C
with a larger complexity bound which, however, is applica-
ble to the more general setting of straight-line programs
[GHMP95].

best current bound for solving a general univariate
polynomial of degree d [NR96].

Our next main theorem gives an affirmative an-
swer for certain fewnomial systems and univari-
ate exponential sums over R. More precisely, if
f(z) = 3 ,cacaz?®, where A C R finite and the
coeflicients ¢, are all real, we call f an expo-
nential k-sum. We define the degree of such
an f to be mymax,qea{a — a’}, where my :=
max{1, m} and the minimum is over all a
and a’ with ¢;,¢,r > 0. (If f has only one posi-
tive coefficient then we set my:=1.) We also say
that f has j sign alternations iff there are j dis-
tinct a € A such that czcpr <0 and AN (a,a’) =0
for some a’ € A with @’ > a. So, for instance,
472253 - 10.32°% — 7 — 10273 — 275 has one sign
alternation but z3 — 2z 4+ 2 has two. Also, when
ACZ, we simply call f a k-nomial.

Main Theorem 2 Let f be any ezponential k-
sum of degree d with at most one sign alterna-
tion. Then, given an oracle for evaluating x” for
any z,7 € R, one can e-approzimate all the roots
of f in (0, R) using O(k(logd + loglog g)) arith-
metic operations over R (including oracle calls).
In particular, restricting to k-nomials and remov-
ing the oracle, we can still do the same using
O(klogd(logd + loglog -?—)) arithmetic operations
over R, with d agreeing with the ordinary degree of
a univariate Laurent polynomial.

Remark 2 We point out that even the trinomial
case is difficult. For example, while one can count
the number of real roots of a trinomial of the form
z% + az + b within O(log d) arithmetic operations
[Ric93] (regardless of sign alternations), doing the
same for general trinomials is still an open prob-
lem. From a more numerical point of view, even
the use of Newton’s method is subtle for trinomials:
deciding whether a given initial point converges
quadratically to a root of x — 2z 42 is undecidable
in the BSS model over R [BCSS98, Sec. 2.4]. Nev-
ertheless, this need not stop us from finding some
good starting point, as we will soon see.

Our algorithm, aside from an algebraic trick,
closely follows an algorithm of Ye [Ye94] which effi-
ciently blends binary search and Newton’s method.
By combining these ideas with a few facts on the
Smith normal form of an integral matrix [11i89],
we can also derive the following complexity result
on binomial systems.

Main Theorem 3 Let cy,...,c, ER\{0} and let
[d;;] be any n X n matriz with nonnegative inte-

ger entries. Finally, let f; = :L';l“ ---m‘f;'" + ¢; for



all i. Then we can c-approzimate all the roots
of fi = -+ = fo = 0 in the orthant wedge
{z€R™| z1,...,2, >0, 27 <R} within

O((n + log max{|d;;|})¢3") bit operations,
followed by

0 (log |det[d;;}| [n3 log2(n max{|d;;|}) + loglog g])

rational operations over R.

If the above binomial system has only finitely
many complex roots, then their number is exactly
| det[d;;]]. This follows easily from Bernshtein’s
theorem [BKK76]. It is also interesting to note
that for our preceding example, the fastest previ-
ous general (sequential) algorithms for polynomial
system solving over R or C are only known to run
in time polynomial in |det{d;;]| [MP98, Roj99a]
— that is, super-linear in the degree of the under-
lying complex variety.

One can of course solve slightly more general
systems of fewnomials by threading together the
algorithms of Main Theorems 2 and 3. We will
say more on the likelihood of farther-reaching ex-
tensions of our last two results after first discussing
an intriguing result relating complexity classes and
singularities.

1.3 Obstructions to Superfast Degeneracy
Detection

The preceding two algorithmic results circumvent
degeneracy problems in simple but subtle ways.
For instance, Main Theorem 2 clearly deals with
equations having at most one positive real root,
while the binomial systems of Main Theorem 3 are
easily seen to have no repeated complex roots (cf.
section 3). Thus, the respective hypotheses of these
results (restricting sign alternations and/or num-
ber of monomial terms) allow us to approximate
roots without stopping for a singularity check.

It seems hard to completely solve a system of
equations without knowing something about its de-
generacies, either a priori or during run-time. So
let us present a result which gives solid evidence
that detecting degeneracies may be quite difficult.
In what follows, unless otherwise mentioned, we
use the standard sparse encoding for multivari-
ate polynomials [Pla84, Koi96]. Thus the size of
a polynomial like z¢ + z — 47 will be ©(log d) and
not ©(d), whether in the Turing model or the BSS
model over C.

Main Theorem 4 Suppose any of the following
problems can be solved in polynomial time via
a Turing machine (resp. BSS machine over C).
Then P=NP (resp. NPCBPP).

1. Decide if an input polynomial f € Z[z1] (resp.

feC[z]) vanishes at an n2 root of unity.

2. Decide if two input polynomials f,g € Z[zy]
(resp. f,g9€Clx1]) have a common root.

3. Given a nonzero input polynomial f € Z(x, z2)
(resp. f € Clzi,x2]) decide if the curve
{(z1,22) € (C*)? | f(z1,22) =0} has a sin-
gularity.

4. Given input polynomials f, g€ Z[z1, z2, T3, T4)
(resp. f,g € Rlxy, x2,%3,24]), in the straight-
line program encoding, defining a surface S C
R*, decide if S has a singularity.

5. Given any finite subset ACZ? and a vector of
coefficients (cq | a € A) € Z#* (resp. €C*4),
decide if the A-discriminant of the bivariate
polynomial )¢ 4 cax® vanishes.

Furthermore, problems (1)-(3), and the natural ex-
tension of problem (5) to ACZ"™, can all be done
within AM.

Remark 3 Note that in problem (4) we are al-
ready given that S is a surface. Determining
whether this is true or not turns out to be NP-hard
(resp. NPgr-complete) in the Turing model (resp.
BSS model over R) [Ko0i99].

For any A C Z", the A-discriminant, Dy, is
defined to be the unique (up to sign) irreducible
polynomial in Z[e, | a € A] such that fa(z) :=
> acACa®® has a singularity in its zero set (in
(C*)") = D=0 [GKZ94]. This important oper-
ator lies at the heart of sparse elimination the-
ory, which is the part of algebraic geometry sur-
rounding this paper.

The A-discriminant in fact contains all known
multivariate resultants and discriminants as special
cases, and also appears in residue theory and hy-
pergeometric functions [GKZ94]. Thus, a corollary
of our last main result is that sparse elimination
theory, even in low dimensions, might lie beyond
the reach of P.

Remark 4 It is interesting to note that nontrivial
lower bounds on the complezity of computing A-
discriminants in the one-dimensional case A CZ
are unknown. However, it is easy to show (via
[GKZ94, pg. 274]) that one can at least find D4
in polynomial time when A C Z" has less than
n+ 3 elements.



We now prove our main theorems in order of
appearance.

2 Binomial Fiberings and Main Theorem 1

Remark 5 Throughout this section, “nonsingu-
lar” (or “smooth”) for a real algebraic variety will
mean that the underlying complex variety is non-
singular in the sense of the usual Jacobian crite-
rion (see, e.g., [Mum95]). Also, we will let k de-
note the number of monomial terms which appear
in at least one of f1,..., fp4s-

We begin with the following important special
case of Main Theorem 1. This lemma is also fre-
quently significantly sharper than many earlier re-
sults and may be of independent interest.

Lemma 1 Following the notation of Main The-
orem 1, suppose p = 1, s = 0, and S 1is
smooth compact hypersurface. Then S has at most
mVOIn(Q') connected components, where Q'

is the convez hull of the union of {O} and the set
of all @ with z® a monomial term of fi.

Proof: The main idea will be to show that (for
n > 2) the number of connected components is
bounded above by half the number of critical points
of a projection of a perturbed version of S. This
idea is quite old, but we will introduce an unusual
projection which permits a much sharper upper
bound than before.

In particular, consider the function z* with
a € Z"\{O} to be selected later. The case n=1
of our bound is trivial so let us now assume n>2.
Clearly, any connected component of S (not ly-
ing in a hypersurface of the form z® = constant)
must have at least two special points: one locally
maximizing, and the other locally minimizing, z°®.
Since there are only finitely many connected com-
ponents (by any earlier bound such as [OP49]), and
every component is (n—1)-dimensional, there must
therefore be an a € Z"\{O} so that every compo-
nent (not lying entirely within the union of coordi-
nate hyperplanes) contributes at least two critical
points of z*. Pick a in this way, subject to the
additional minor restricition that the g.c.d. of the
coordinates of a is 1.

Now consider f := f; + & for some § € R to be
selected later. By Sard’s theorem [Hir94], there is
a set W CR of full measure such that 6e W —
Ss = {x € R® | f =0} is nonsingular. Also, via
a simple homotopy argument, S and Ss are both
smooth compact hypersurfaces and have the same
number of connected components for |§| sufficiently

small. (Much stronger versions of this fact can be
found in [Bas96].) Furthermore, note that for all
but finitely many 8, no connected component of Ss
lies inside the union of the coordinate hyperplanes.
We will pick 60 so that all these conditions, and
one more to be described below, hold.

Note that the critical points of the function z*
on Ss are just the solutions in R™ of

o 0f . _0f_
O

= 0,
0y2

where the y; are new variables to be described
shortly. Our final condition on § (which is eas-
ily seen to hold for all but finitely many §) will
simply be that all real solutions to the above poly-
nomial system lie in (R*)":=(R\{0})" Note that
a corollary of all our assumptions so far is that all
complex solutions of (x) will be nonsingular and,
in particular, the number of complex solutions is
finite.

We are now essentially done: The number of
connected components of S and Ss are the same,
and the latter quantity is bounded above by half
the number of critical points (on Ss) of the function
z®. This number of critical points can be computed
in terms of polytope volumes as follows: Via the
Smith normal form [Smi61], we can find an invert-
ible change of variables on (R*)" such that y; :=2°
and yo,...,Y, are monomials in the z;. Further-
more, this change of variables induces the action
of a unimodular matrix on the exponent vectors of
f. In particular, f can be considered as a polyno-
mial in R[yE!, ..., y*'] and the number of mono-

mial terms (and Newton polytope volume) of f is
preserved under this change of variables. Thus,
up to a monomial change of variables, the criti-
cal points of the function z® on S5 are exactly the
solutions in (R*)"™ of (%).

The key to our new bound is to finish things
off by picking a bound other than Bézout’s theo-
rem here. In particular, by Bernshtein’s theorem
[BKK76], the number of solutions in (C*)" is at
most the mixed volume of )’ and n — 1 other
polytopes with translates contained in @’. By the
monotonicity of the mixed volume [BZ88], the lat-
ter quantity is at most the mixed volume of n
copies of Q' and, by the definition of mixed vol-
ume, this is just Vol, (Q’). B

We point out that a key new ingredient in our
proof is that the monomial change of variables
we use (as opposed to the linear changes of vari-
ables used in most earlier proofs) preserves spar-
sity. This allows us to take full advantage of more



powerful and refined techniques to bound the num-
ber of real roots, and thus get new bounds on the
number of real connected components. For exam-
ple, substituting Bernshtein’s theorem for Bézout’s
theorem in the older proofs would not have yielded
any significant improvement.

However, we need not have been so heavy-
handed and only used tools over C. We could have
also used the following alternative bound on the
number of real roots.

Khovanski’s Theorem on Real Fewnomials
(Special Case) [Kho91, Sec. 3.12, Cor. 6]
Suppose that for all ¢ € {1,...,n}, fi €
Rlzy, ..., Zn, my, ..., mg] has total degree g;, where
the m; are monomials in x. Assume further
that the variety S defined by fi,..., fn is zero-
dimensional and nonsingular. Then S has at most
(14 3 g)*2FE=1)/2 ] ¢; connected components in
the positive orthant. l

We call any set of the form {z € R™ | =+
Tq,...,%xz, > 0} a closed orthant. When all
signs are positive we call the corresponding closed
orthant the nonnegative orthant. The analo-
gous constructions where all inequalities are strict
are, respectively, an open orthant and the posi-
tive orthant.

As an immediate corollary, our proof above
yields the following alternative upper bound on the
number of components of a smooth compact real
algebraic hypersurface.

Corollary 1 Following the notation and assump-
tions of lemma 1, the number of connected compo-
nents of S is also at most 2"~ (n + 1)k+12k(k+1)/2,
In particular, S has at most 1(n 4 1)k2k(k-1)/2
connected components contained entirely within the
positive orthant.

Proof: Following the notation of our last proof,
note that multiplying any equation of (%) by a
monomial in yi,...,y, does not affect the roots
in (R*)". Thus, we can assume (x) has only k + 1
distinct monomial terms. Also note that the mono-
mial change of variables z — y maps orthants onto
orthants, and that the case n=1 is trivial. The first
portion of our corollary then follows immediately
from our last proof (using Khovanski’s Theorem
on Fewnomials with ¢y = --- = ¢, = 1 instead of
Bernshtein’s Theorem), upon counting roots in all
open orthants. The second portion follows even
more easily, upon observing that we do not need &
if we only want to count critical points in an open
orthant. B

Returning to the proof of Main Theorem 1, the
next step is to prove a slightly more general upper
bound. Again, the following result is frequently
much sharper than many earlier bounds and may
also be of independent interest.

Lemma 2 Following the notation of Main Theo-
rem 1, suppose now that s=0, so that S is a real
algebraic variety (not necessarily smooth or com-
pact). Then S has at most 2"~'Vol,(Q) connected

componernts.

Proof: The main trick is to reduce to the case
considered by our preceding lemma. In particu-
lar, define Fs.:=fi + -+ f2+e*(X2}) — 8% €
R[zy,...,Z,] and let S5, be the set of real zeroes of
Fs¢. 1t then follows that for sufficiently small (and
suitably restricted) §,& >0, S5 is a smooth com-
pact hypersurface and the number of connected
components of Ss. is no smaller than the num-
ber of connected components of S. The proof of
this fact is standard and a very clear account can
be found in [BCSS98, Sec. 16.1].

In any event, the number of connected compo-
nents of S;. is clearly at most %Voln (Conv(2Q)' U
{2é1,...,2é,})), thanks to our preceding lemma.
Since the last quantity is just %2"Voln(Q) we are
done. W

We can combine the proof of lemma 2 with Kho-
vanski’s Theorem on Fewnomials to obtain the fol-
lowing generalization of corollary 1. This result,
while giving a slightly looser bound than an ear-
lier result of Khovanski [Kho91, Sec. 3.14, Cor. 5},
removes all nondegeneracy assumptions from his
result.

Corollary 2 Following the notation and assump-
tions of lemma 2, the number of connected compo-
nents of S is also bounded above by

4"'_%(277, + 1)k+12k(k+1)/2'

Proof: Combining the proofs of lemmata 2 and 1,
and since we are only counting roots in (R*)", we
see that the number of connected components is at
most half the number of solutions in (R*)" of the
following polynomial system:

(%) Fre=yo—7= =y =0,

where Fg,e is the variant of Fj5. where we substi-
tute 3 y2 for }_ z2. (It is asimple exercise to verify
that the proof of lemma 2 still goes through with
this variation.) Now simply note, via the chain
rule of calculus, that every polynomial in () is of



degree at most 2 in yy, ..., Y, and the set of mono-
mials appearing in fi,..., f,. Also note that the
polynomials in (%) are polynomials in a total of
k 4+ 1 monomial terms. So by Khovanski’s Theo-
rem on Real Fewnomials, and counting roots in all
open orthants, we are done.

We are now ready to prove Main Theorem 1.
Proof of Main Theorem 1: We reduce again,
this time to lemma 2. The trick here is to
note that every connected component of S is in
turn a connected component of S’ where S’ :=
{z € R" | filz) = --- = fp(2) = 0, frpa(e) #
0,..., fp+s(z) # 0}. Every connected component
of S’ is in turn a projection (onto the first n co-
ordinates) of a connected component of S”, where
S" c R™*!is the real zero set of the polynomial sys-
tem (f1,..., fp,—1+ szf;_l_l ;). This reduction
is not new and appears, for example, in [BCSS98,
Sec. 16.3].

Now lemma 2 tells us that the number of con-
nected components of S” is at most 2" times
the (n + 1)-dimensional volume of Conv(P; U
(Py X én41)), where Py (resp. P,) is the union
of {O,é;,...,6,} and the Newton polytopes of
fiooen fp (resp. the Minkowski sum of the New-
ton polytopes of fot1,..., fp+s). However, it is
a simple exercise to show that P, C P; where
P3 is the union of {0,éy,...,é,} and the New-
ton polytopes of foy1,..., fp+s, scaled by a fac-
tor of s. Now note that P, C Q, P3 C s) and
Conv(Py U (P2 X €,41)) CConv(Q U (sQ X én41)).

If s > 1 then the last polytope is in turn con-
tained in a pyramid P with apex at (0,...,0, ﬁ)
and base @ X é,41. So we obtain that the num-
ber of connected components of S is at most
2"Vol,41(P) =2"2t1Vol, (sQ)=21}2"5" Vol (Q).

If s=1 then Conv(QU (sQ X €,41)) =[O, én41] X
@. So, similar to the previous case, the num-
ber of connected components of S is at most
2"Vol,+1(P)=2"nVol,(Q).

Now note that the number of connected com-
ponents of S will always be at most min{n +

1, #23275"Vol, (Q), with the possible exception of
the case (n,s)=(1,2). So we need only check this
final case. However, this is almost trivial, separat-
ing the cases p>0 and p=0. &

We can give an alternative version of Main The-
orem 1, solely in terms of n, s, and k, as follows.

Theorem 5 Following the notation and assump-
tions of Main Theorem 1, the number of con-
nected components of S is also bounded above by

475 (s + D)™M2(n + 1)(s + 1) + 1)F+12k(+1)/2

The proof is very similar to that of corollary 2,
save only that we substitute the polynomial system
from the proof of Main Theorem 1 into the con-
struction of Fs.. In particular, we eventually ob-
tain a system of n+1 polynomials of degree 2(s+1)
in a total of k41 monomials, thus allowing yet an-
other application of Khovanksi’s beautiful theorem
on fewnomials.

3 Alpha Theory and Proving Main
Theorems 2 and 3

The proof of Main Theorem 2 hinges on alpha
theory [BCSS98], which gives useful criteria for
when Newton’s method converges quadratically. In
particular, we will need the following elementary
analytic lemma.

Lemma 3 For any monotonic function ¢ : R —

R, let ay satisfy supy I%%;[ﬁ < QT"’. Then, for
¢(z) =z", we may take oy equal to [|r]], 2 or 1,
according as r € (—oo, —1)U(1,00), r€(0,1), orr€
(=1,0). More generally, if =1 + ¢ with ¢; and
@2 both convex and either both increasing or both
decreasing, then we can take oy = max{og,, @, }.

The first part is a simple exercise while the second
part is a proposition from [Ye94].

We are now ready to sketch the proof of Main

Theorem 2.
Proof of Main Theorem 2: We begin by chang-
ing our function f slightly. First let M be largest
exponent occuring in the k-sum f and let m be
the smallest real number so that 2™ is a monomial
term of f with positive coefficient. (We assume,
by multiplying by —1 if necessary, that the lead-
ing coefficient of f is positive.) By dividing out by
2™ we may assume that m = 0. Via the change
of variables z=y'/M we may further assume that
M =1. In particular, we now obtain that f is a sum
of two increasing convex functions: one a positive
linear combination of powers of z (with exponents
n (0,1]), the other a negative linear combination
of powers of z (with exponents in (—o0,0)).

By our preceding lemma, we may take oy =d
(the degree of f) since d is no smaller than the
degree of our original f. We now invoke the hy-
brid algorithm from [Ye94, Theorem 3]: This algo-
rithm allows us to e-approximate the real roots of
fin (0, R) using O(log ay + log log ¢ By=0(logd +
log log 5) function evaluations and ar1thmetic op-
erations. To conclude the first part of this main
theorem, inverting the change of variables we made



requires another O(log d+loglog %) operations via
the same algorithm (since taking nt® roots is the
same as solving an exponential 2-sum). However,
we may have decreased the accuracy of our e-
approximation. So we just begin by solving to ac-
curacy min{eM~™ ¢} instead to obtain the first
part of our main theorem. (Note also that evalu-
ating f requires k uses of our oracle.)

To obtain the second part of our theorem, we
simply use the same algorithm without the oracle.
This simply introduces another factor of log d since
monomials can now be evaluated by the usual re-
peated squaring trick. l

Main Theorem 3 only needs a special case of
Main Theorem 2. In fact, [Ye94] contains a slightly
modified algorithm for the binomial case with an
even better complexity bound of O(log dloglog £),
which we will use below. However, we will also
require some refined quantitative facts about the
Smith normal form of a matrix.

Lemma 4 [Ili89] Let A=[a;;] be any n X n matriz
with entries only in Z and define hy to be

log(2n + max{|a;;|}). Then, within

O*((n+ ha)®37%) bit operations, one can find ma-
trices U, D, V with the following properties:

1. U andV both have determinant +1 and entries
only in Z.

2. D is diagonal and has entries only in Z.
3. UAV=D

4. det A is the product of the diagonal elements
of D and hy, hy =O(n®(ha +logn)?).

Proof of Main Theorem 3: We begin by im-
mediately applying the Smith normal form to our
matrix [d;;]. (This accounts for the bit operation
count.) Clearly then, we have reduced to the case

of n binomials of the form x'lil — VY1, .,x‘f[‘ = Yn-
The real roots of this polynomial system can then
be e-approximated by n applications of Main The-
orem 2. Since Y logd; =log[]d; = |det[d;;]|, this
accounts for almost all of the second bound.

To conclude, note that we must still invert our
change of variables. By lemma 4, computing this
monomial map is almost the final contribution to
our second complexity bound. The only missing
part is the fact that we may have needed more ac-
curacy at the beginning of our algorithm. Lemma
4 also tells us how much more accuracy we need,
thus finally accounting for all of our second com-
plexity bound. B

4 Smale’s Theorem and Main Theorem 4

We begin with the following result of Plaisted.

Plaisted’s Theorem [Pla84] Deciding if an in-
put polynomial f € C[z,] vanishes at an nt root of

unity is NP-hard. B

In the above (and in what follows) f is given in the
sparse encoding and n is also part of the input.

The following unpublished result of Steve Smale
gives an intriguing extension of Plaisted’s result via
computations over new rings.

Smale’s Theorem Suppose we can decide if an
input polynomial f € C[z,] vanishes at an nth root
of unity within polynomial time, in the BSS model

over C. Then NPCBPP.

Proof: Given any complexity class C over the Tur-
ing model, consider its extension Cc to the BSS
model over C. It is then a simple fact that C is
contained in the Boolean part of Cc, BP(Cc)
[CKKLW95]. However, we will make use of an in-
clusion going the opposite way: BP(Cc) C CBFF
[CKKLW95]. Applying this to the problem at
hand, we thus see that the hypothesis of our the-
orem, thanks to Plaisted’s Theorem, implies that
NP C BP(Pc) = PBPP = BPP. So we are done.
|

The first part of our final main theorem then
follows from some simple reductions to problem (1)
from the statement. The second will follow from a
result of Koiran [Koi96] and a technical result on
the vanishing of .A-discriminants [Roj99a).

Proof of Main Theorem 4: We will first prove
the lower bound portion of our main theorem.

First note that the assertion concerning problem
(1) follows immediately from Smale’s Theorem and
Plaisted’s Theorem. It thus suffices to successively
reduce (1) to special cases of all the other problems.

The assertion for (2) is then clear, since via the
special case g(z) = 2™ — 1, any polynomial time
algorithm for (2) would give a polynomial time al-
gorithm for (1).

On the other hand, a polynomial time algo-
rithm for problem (5) would imply a polynomial
time algorithm for problem (2). This is because
problem (2) is essentially the decision problem of
whether the sparse resultant of f and g [GKZ94]
is zero. Via the Cayley trick [GKZ94], the A-
discriminant for A=P U (Q X é;) (where P and Q
are respectively the supports of f and g) is exactly
the sparse resultant of f and g. So this portion is
done.

Note also that (3) is just a reformulation of (5).



As for (4), via the Jacobian criterion for singu-
larities [Mum95] applied to the real and imaginary
parts of the input to (3), a polynomial time al-
gorithm for (4) (using the straight-line program
encoding for the input) would immediately im-
ply a polynomial time algorithm for (3) (using
the straight-line program encoding for the input).
Such an algorithm would then immediately be
a polynomial time algorithm for (3) with inputs
given in the sparse encoding.

To conclude, note that Koiran’s result that
Hilbert’s Nulistellensatz is in AM [Koi96] almost
implies that our extension of (5) lies in AM. The
key difference is that the vanishing of resultants
measures degeneracies in a particular toric vari-
ety, not in C* [GKZ94]. However, via the results
of [R0j99a], we can reduce checking the vanishing
of an A-discriminant to a polynomial number of
instances of Hilbert’s Nullstellensatz. So our ex-
tension of (5) lies in AM.

That problems (1)—(3) now lie in AM follows
easily from our preceding reductions. l
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