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Consider a system F of n polynomial equations in n unknowns, over an algebraically
closed field of arbitrary characteristic. We present a fast method to find a point in every
irreducible component of the zero set Z of F. Qur techniques allow us to sharpen and
lower prior complexity bounds for this problem by fully taking into account the monomial
term structure. As a corollary of our development we also obtain new explicit formulae
for the exact number of isolated roots of F' and the intersection multiplicity of the
positive-dimensional part of Z. Finally, we present a combinatorial construction of non-
degenerate polynomial systems, with specified monomial term structure and maximally
many isolated roots, which may be of independent interest.
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1. Introduction

The rebirth of resultants, especially through the toric! resultant (Gel’fand et al., 1994),
has begun to provide a much needed alternative to Grobner basis methods for solving
polynomial systems. Continuing this philosophy, we will use toric geometry to derive
significant speed-ups and extensions of resultant-based methods for solving polynomial
systems with infinitely many roots.

The importance of dealing with degenerate polynomial systems has been observed in
earlier work on quantifier elimination over algebraically closed fields (Chistov and Grig-
oriev, 1984; Canny, 1988; Renegar, 1989; Fitchas et al, 1990): Many reasonable algo-
rithms for polynomial system solving fail catastrophically when presented with a system
F (of n polynomials in n unknowns) having a positive-dimensional zero set Z. Even
worse, this kind of failure can also occur when F has only finitely many roots, if F' has
infinitely many roots “at infinity”. When such failures occur, it is of considerable benefit
to the user to at least be given some sort of description of the zero-dimensional part of Z.

We will present two new techniques for handling such degeneracies. The twisted Chow
form (cf. Main Theorem 2.2) allows one to coordinatize quickly many (but not all)
degenerate Z, simply by injecting some extra combinatorics into the classical u-resultant.
Our second technique builds on the twisted Chow form and works for all degenerate Z:
The toric perturbation (cf. Main Theorem 2.4) refines and generalizes an earlier algebraic
perturbation trick used by Chistov and Grigoriev (1984), Renegar (1989), and Canny
(1990).

tOther commonly used prefixes for this modern generalization of the classical resultant (van der Waer-
den, 1950) include: sparse, mixed, sparse mixed, A-, (A1, ..., Ax)-, and Newton.
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Our refinement takes sparsity into account and allows one to replace the polynomial
degrees present in earlier complexity bounds by more intrinsic geometric parameters (cf.
Main Theorems 2.1 and 2.4). We will see in Sections 3.4 and 6 that our bounds are
a definite improvement, sometimes even by a factor exponential in n. Our framework
also allows us to work over any algebraically closed field (as opposed to some earlier
restrictions to the complex numbers) and to isolate the zero-dimensional part of Z.

We also derive four corollaries which may be of independent interest:

(1) An explicit method to compute field extensions involving the roots of F' (Corol-
lary 2.1).

(2) An explicit formula for the exact, as opposed to generic, number of isolated! roots
of F (Corollaries 2.2 and 2.3).

(3) A combinatorial construction, within polynomial time for fixed n, of F with speci-
fied monomial term structure and no roots “at infinity” (Main Theorem 2.3).

(4) A lower bound (conjecturally an exact formula) for the intersection multiplicity of
the positive-dimensional part of Z (Corollary 2.3).

Our main results are stated precisely in Section 2. We then give several simple exam-
ples of our main results in Section 3. There we also give an intuitive discussion of roots
“at infinity” and show how our results include Canny’s earlier generalized character-
istic polynomial (GCP) as a special case. Section 4 then details our aforementioned
combinatorial construction of “generic” F with specified monomial term structure. Our
main results are then proved in Section 5, and we discuss the computational complexity
of our techniques in Section 6.

2. Summary of Main Results

Before describing our results in detail, we will introduce some necessary notation: in
what follows, we will let F := (fy,..., foy1), where for all 4, fi(z) = ZaEE,- Ci oz E;
is a nonempty finite subset of (N U {0})", and z® is understood to be the monomial
term z7' ---zg~. Given the ¢; o, we will be solving for x := (z1,...,,). So the (n + 1)-
tuple E := (E1,-..,Eny1) thus controls which monomial terms are allowed to appear
in our systems of equations. An accepted shorthand is to say that F is an (n +1) x n
polynomial system with support contained in E. (This generalizes in an obvious
way to k X n systems.)

Of course, our given polynomial systems will usually be n x n, so we will let F :=
(fi,---, fn) and E := (E1, ..., E,). We also let Conv(B) denote the convex hull of (ie.,
smallest convex set containing) a point set B C R™, and let [k] := {1,...,k} for any
positive integer k. An important geometric invariant for n x n systems of equations is
M(E) — the mixed volume (Burago and Zalgaller, 1988; Schneider, 1994; Gritzmann
and Klee, 1993; Emiris and Canny, 1995; Ewald, 1996; Dyer et al., 1998) of the con-
vex hulls of the E;. For (n + 1) X n systems, we also have the following two important
complexity-theoretic parameters: R(E) := Z?:IIM(EI,...,E,-_l,Ei+1,...,En+1) and
S(E) = O(v/ne® M¥®), where M%® is the average value of M(E) as £ ranges over
all n-tuples (&1,...,&,) with & € {Ey,...,Ep41} for all j € [n]. The true definition
of S(E) depends on the efficiency of a particular class of algorithms described later in
Sections 3.2, 5.1, and 6.

By an isolated root, we will simply mean a root not lying in a positive-dimensional component of Z.
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We will usually take all polynomial coefficients to be constants in a fixed algebraically
closed field K or polynomials in K[s] for some new parameter s. Also, we let K* := K\ {0}
and A := Conv({0,éy,...,é,}), where O € R™ denotes the origin and é; € R" is the
ith standard basis vector. Finally, using # for set cardinality, let ¢4 : (K*)" — Pn’g A=l
be the rational map defined by z +— [z%|a € A]. On occasion, we will extend the domain
of ¢4 to a suitable toric variety (cf. Section 5).

2.1. FINDING POINTS IN ALL COMPONENTS IN INTRINSIC POLYNOMIAL TIME

Our first main result allows us to use efficiently exact arithmetic to find a point in
every irreducible component of Z. In what follows, O*(T") means O(T log" T') for some
constant r > 0.

MAIN THEOREM 2.1. Let F be an n X n polynomial system with support contained in E,
assume M(E) > 0, and set E,y1 = A= ANZ". Also let pa(Z) be the zero set! of F in
Pg. Then we can find univariate polynomials h,hy, ..., h, with the following properties:

(0) The degrees of h and hy,...,h, are all bounded above by M(E).

(1) For any root 8 of h, define ¥(6) := (hy(8),...,hn(6)). Then v(8) € (K*)" = ~(6)
is a root of F'.

(2) There is at least one y(8) in every irreducible component of (Z) N (K*)". In
particular, the set of points {y(0)}n(9)=0 is finite and contains all the isolated roots
of F in (K*)™.

(3) Let K be Q(ciolt € [n),a € E;) or (Z/pZ)(ci6li € [n],a € E;), according to whether
charK is zero or a prime p. Then all the coefficients of h,hy, ..., h, (and all inter-
mediate calculations thereof) are in K, or a degree [2log,((n+1)M(E))] algebraic
extension of K, according as charK is zero or p.

Furthermore, we can find h,hy,..., hy deterministically within O*(n* M(E)3R(E)?
S(E)?37) arithmetic steps and O(nS(E)?) space. Finally, at the expense of replacing E
by OUE := ({O}UE,...,{O}UE,), we can ensure that {¥(6)}n)=0 includes all the
isolated roots of F in K™ as well.

REMARK 2.1. The above time bound can be reinterpreted as “near-heptic in the number
of roots of a system closely related to F” and is clearly polynomial-time for fixed n.
Also, depending on the combinatorial data E and the algebraic data charK, the above
complexity bounds can be lowered considerably, especially if randomization is allowed.
These improvements are detailed further in Section 6. In particular, Main Theorem 2.1

already improves an earlier intrinsic complexity bound due to Giusti et al. (1995)%.

REMARK 2.2. The assumption that M(E) > 0 can actually be checked in polynomial
time, via Lemma 4.1 of Section 4. Furthermore, if M(E) = 0, then we can simply add
< n appropriately chosen points to E (within the same asymptotic time bound) to make
M(E) positive. In particular, one can also use Main Theorem 2.1 to solve k xn polynomial
systems and this is detailed further in Rojas (1999b).

tZero sets in projective space (and more general toric varieties) are defined in Section 5.
1t should be noted that Giusti et al. (1995) also deals with the more general problem of complexity
bounds for polynomial system solving in terms of arithmetic networks and straight-line programs.
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As fast algorithms for univariate factoring over algebraically closed fields are already
available (Kaltofen, 1992, 1995), our univariate reduction from Main Theorem 2.1 thus
vields a fast and general way to find a point in every components of Z. (See also
Malajovich-Mufioz and Zubelli (1998) for a fast and numerically-stable univariate factor-
ing method for K = C.) Our first main theorem thus removes a final geometric/complex-
ity-theoretic bottleneck from solving polynomial systems: earlier algorithms had larger
complexity bounds or failed to be general enough.

For example, a fast algorithm for finding approximations within € > 0 of all the roots
of F in (C*)" (within time O*(12" M(E)?loglog 1), neglecting some preprocessing) has
recently been announced by Mourrain and Pan (1998). However, their algorithm assumes
that Z is zero-dimensional and K = C. On the other hand, while the results of Canny
(1988, 1990) and Canny et al. (1989) yield an algorithm which can handle! positive-
dimensional Z, one is forced to assume K = C in order to obtain a Las Vegas complexity

3
bound of O* (nDH< D2n+ 1 ) ) . (We use respectively Dy and Dy, for the product and

sum of the total degrees of the f;.) We will see in Sections 3.4 and 6 that our algorithm
above is at least this fast, and is in fact frequently much faster. We also point out that
when Z is positive-dimensional, Grobner basis techniques for solving F suffer from a
worst-case arithmetic complexity doubly exponential in n (Mayr and Meyer, 1982).

Main Theorem 2.1 is also useful for certain rationality questions via the following
corollary, proved in Section 5.2.

COROLLARY 2.1. Following the notation of Main Theorem 2.1, suppose now that char
K = 0 and F has only finitely many roots in (K*)". Let g be the greatest common divisor
of h and [T;_, hi. Then K(G|((1,---,¢n) € (K*)" is a root of F) is ezactly the splitting
field of g.

By combining this corollary with a result of Landau and Miller (1985), it then follows
that deciding whether F' can be solved in terms of radicals can be done within time
(roughly) polynomial in the number of roots of F in K™. The proof makes use of sparse
height bounds (Rojas, 1999b) (analogous to our sparse complexity bounds) and will be
pursued in another paper.

To make Main Theorem 2.1 more precise, we now outline its underlying toric geometric
techniques.

2.2. MAIN GEOMETRIC RESULTS

First recall that there is a natural addition of point sets in R® defined by B + B’ :=
{b+b'|b € B,b’ € B'}. In the notation of Rojas (1997a, b), we can associate to any
(n+1)-tuple of point sets in Z™, E, a toric resultant Res 5(F). This important operator
is amply detailed in Sturmfels (1993, 1994,1997), Gel'fand et al. (1994) and Emiris and
Canny (1995), so let us state our first geometric construction.

DEFINITION 2.1. Let P := Y7  Conv(E;) and P := P 4 Conv(E,1). Also let A C
Z™ be any finite subset with at least two points and define f,,i(z) := Y aca UaZ®
and u := (uqla € A), where the u, are new parameters. We then call Chow 4(u) :=

fThat is, construct h,hi1,...,hn as in Main Theorem 1.
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Res(p a)(F, fny1) a twisted Chow form of F. (Frequently, we will set En41 = A and
thus P = P + Conv(A) as well.)

Note that Chow 4 (u) will be a polynomial in the parameters u,, encoding (in a manner
to be described below) the roots of ¥. Twisted Chow forms are a generalization of the
classical u-resultant (van der Waerden, 1950) as the latter simply corresponds to the
case where we use the classical “dense” resultant and let A = A N Z". For convenience,
we will frequently respectively write ug and u; in place of up and u,.

EXAMPLE 2.1. Suppose we take charK ¢ {2,3},n = 2, E; = E» = 2ANZ%, A= ANZ?,
and F = (1+2y—x2+y2, 14+-2z+2%—4y?). Then Chow 4 is simply the u-resultant, and this
polynomial in ug, u1, u2 factors (modulo a nonzero constant multiple) as (uo+%u1 — %uQ) X
(uo + 3uy + 2uz)(up — u1)?. It is also not hard to see that F has exactly three roots:
(%, —%), (3,2), and (—1,0); the last occurring with multiplicity 2. Better still, we can

coefficient of u; coefficient of ug)
coeflicient of ug’ coefficient of ugp

for each linear factor (with uwg appearing) of the u-resultant. (See Main Theorem 2.2
below.)

read this off directly from our u-resultant by computing (

Our next main theorem tells us exactly how and when we can use a twisted Chow
form to compute monomials in the roots of F. Recall that to any n-dimensional rational
polytope @ C R™ one can associate its corresponding toric variety (over K) 7(Q)
(Kempf et al., 1973; Danilov, 1978; Kapranov et al., 1992; Fulton, 1993; Gel’fand et al.,
1994; Rojas, 1999a), and this 7(Q) always has' a naturally embedded copy of (K*)". To
state our results fully, we will require some toric variety terminology, but the underlying
idea is simple: by working in compactifications more general than the projective spaces
{Pg}22:, we can make better use of the monomial term structure of our polynomial
systems.

MAIN THEOREM 2.2. Following the notation of Definition 2.1, set E,41 = A and let Z
denote the zero set of F' in T(P). Then Chow a(u) is a homogeneous polynomial, either
tdentically zero or of degree M(FE), with the following properties:

(1) The polynomial Chow 4 is indentically zero <= p4(Z) is positive-dimensional.

(2) If ¢ € T(P) is a root of F then Chow 4 is divisible by Y aca Yala, where [y,|a €
Al = pa(¢).

(3) The polynomial Chow 4(u) splits completely (over K) into linear factors. In par-
ticular, if Chow 4 # 0 and a nonzero linear form 3, 4 YaUa divides Chow 4, then
[Yala € A = @a(C) for some root { € T(P) of F.

The zero set of F' in a toric variety is formalized in Section 5. Note in particular
that assertions (2) and (3) tell us that calculating Chow 4(u) allows us to reduce the
computation of the projective coordinates [(?|a € A], for any root ¢ € T(P) of F, to a
multivariate factorization problem. Of course, this reduction only works if Chow 4(u) is
not indentically zero, and assertion (1) tells us exactly when this happens.

We also obtain the following almost immediate corollary.

tIt is not always the case that 7(Q) also has a naturally embedded copy of K™. However, with some
extra work, one can modify Q so that this is true.
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COROLLARY 2.2. Following the notation of Main Theorem 2.2, we may check if Chow 4
is identically zero (and thus whether dim p4(Z) > 0) within O*(n>M(E)R(E)S(E)*37)
arithmetic steps and O(nS(E)?) space.t Furthermore, if Chow 4(u) does not vanish iden-
tically, then we can compute the exact number of roots of F in (K*)", counting multi-
plicities, within O*(n*M(E)3R(E)S(E)%375) arithmetic steps and O(nS(E)?) space.”

Even better, by combining with Corollary 5.1 of Section 5, we can also see how many
roots lie at various parts of “toric infinity”. Corollary 2.2 thus generalizes Bernshtein’s
famous mixed volume bound (Bernshtein, 1975) to exact root counting over an alge-
braically closed field.

However, there is still another improvement to be made: it is actually possible for F
to have infinitely many roots in 7(P) but only finitely many roots in (K*)". In such
cases, sometimes the right A will permit an exact count of the roots of F in (K*)" via
Corollary 2.2. For example, it is easy to construct F, A, and A’ where Chow 4 vanishes
identically but Chow 4/ does not (cf. Section 3.3). On the other hand, those F with
infinitely many roots in (K*)" will never have a nontrivial twisted Chow form.

Our next construction works for all F and A, and begins as follows:

DEFINITION 2.2. Following the notation of Main Theorem 2.2, assume further that
M(E) > 0. Let F* be any n x n system with constant coefficients and support contained
in E, such that F* has only finitely many roots in 7(P). We then say that H(u;s) :=
Res(g,a4)(F — sF*, fny1) (where s is a new indeterminate) is a toric generalized char-
acteristic polynomial for (F, A). Furthermore, we define Pert4 g+ (u) € Klugla € 4]
to be the coefficient of the term of H(u; s) of lowest degree in s. We call Pert 4 p- a toric
perturbation of (F, A) and, when no confusion is possible, we will sometimes write
Pert 4 instead.

The polynomial Pert 4 is what we can use in place of Chows when Chow 4 vanishes
identically. We will describe this shortly, but first we digress momentarily to describe
how to construct the necessary “generic” F* above: if we simply fix the support of F*
to be E, and pick random numbers for the coefficients (using any probability distri-
bution on K#moromial terms vielding probability 1 avoidance of algebraic hypersurfaces),
Lemma 5.3 of Section 5 tells us that F* will satisfy the above hypothesis with probability
1. Alternatively, a deterministic method for constructing suitable F* is the following.

DEFINITION 2.3. (RoJas, 1994; RoJAS AND WANG, 1996) Given n-tuples D:=(D;, ...,
D) and E := (E,,...,Ey,) of nonempty compact subsets of R™, we say that D fills E
(or D is a fill of E) iff (0) D; C E; for alli € [n] and (1) M(D) = M(E). We then
call D irreducible iff the removal of any point of D causes M(D) to decrease.

MAIN THEOREM 2.3. Following the notation of Definition 2.3, suppose E; C Z™ for
all i, M(E) > 0, and D is an irreducible fill of E. Then, for any choice of nonzero
Cio € K*, the polynomial system (ZaeD1 €1,62% -3 Y aep, Cn,at?) has exactly M(E)
roots, counting multiplicities, in (K*)" and no roots in T (P)\ (K*)". Furthermore, letting

tJust as in Main Theorem 1, these complexity bounds can be significantly lowered under certain
reasonable assumptions. Also, unless otherwise stated, arithmetic steps will always be counted over the
finite extension of K described in Main Theorem 2.1.
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roots, counting multiplicities, in (K*)" and no roots in T(P)\(K*)". Furthermore, letting
m =35 #E;, an irreducible fill of E can be found within O(n?618m27+2) grithmetic
steps over Q.

Some simple examples of fills appear in Section 3.1 and we present further background
on filling in Section 4. We emphasize that while it is much more practical to pick a generic
F* via randomization, the cost of derandomizing via fills can sometimes be amortized
when one solves many F with similar monomial term structure. In particular, the selec-
tion of an F* need only be done once for a given n-tuple E, regardless of the coefficients
of F.

Toric perturbations improve on twisted Chow forms as follows:

MAIN THEOREM 2.4. Following the notation of definition 2, Pert4(u) is a nonzero ho-
mogeneous polynomial of degree M(E) with the following properties:

(1) Chows # 0 <= HM(s) has a nonzero constant term. Also, when the latter holds,
Chow 4 = Pert 4.

(2) If ¢ € T(P) is an isolated root of F then Pertn is divisible by D, o YaUa, where
Mala € A] = pa(C).

(3) The polynomial Perta(u) splits completely (over K) into linear factors. In partic-
ular, extending the correspondence of assertion (2), for every irreducible positive-
dimensional component W of Z, there is at least one factor of Pert4 corresponding
to a root ( € W.

Furthermore, we may evaluate Pert 4 at any point in K#4 within O*(nR(E)2S(E)?37°)
arithmetic steps over K and O(nS(E)?) space.t

We emphasize that the main advantage of Pert 4 is that we can pick any A we prefer and
still obtain a useful analogue of Chow 4. For instance, even if the u-resultant unluckily
vanishes identically, we can always simply set A = A N Z" and directly read off the
coordinates of the isolated roots of F' from the factors of Pert4(u) (assuming one can
do multivariate factoring over K). Indeed, Pertanz~ and assertion (3) are central to our
construction of points in every irreducible component! of Z, not to mention the proof of
Main Theorem 2.1.

Better still, we can sometimes (conjecturally always) distinguish which roots of F' are
isolated.

COROLLARY 2.3. Following the notation above, let Zy and Z, respectively denote the
zero-dimensional and positive-dimensional parts of Z. Then Zoo N(K*)" = 0 = we can
count the number of points in Zg N (K*)", with or without multiplicity, within the same
asymptotic complexity bounds as stated in Main Theorem 2.1. More generally, there is
a randomized algorithm which computes upper bounds on the cycle class degrees deg Z
and deg Zo N (K*)", and a lower bound on deg Z,, within the same complexity bounds.
Conjecturally, these bounds are all actually exact formulae with probability 1.

1 Just as in Corollary 2.2 and Main Theorem 1, these complexity bounds can also be significantly lowered
under certain reasonable assumptions.

IThe analogue of assertion (3) had been conjectured for Canny’s GCP. We have thus proved this
conjecture and generalized it to the toric GCP.
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A simple example of this final main result (and Main Theorem 2.4) also appears in
Section 3.2. So in summary, as the zero set of F in 7(P) becomes more and more
degenerate, we can successively use Corollaries 2.2 and 2.3 to count roots in (K*)" with
complete generality. We also point out that a special case of Corollary 2.3 was used in
Rojas (1998a,b, ¢} in connection with a fast general algorithm for exact multivariate root
counting in (R*)".

We can also construct the corresponding analogues of h and the h; to describe Z
explicitly, but this becomes more technical (cf. Section 5.7). The same can be said for
the analogous results in K”, and this is covered in greater depth in Rojas (1997a, b)
and Rojas (1998a,b, c). We thus obtain a first step toward an algorithmic foundation for
excess intersections. (See Fulton (1984) for a brief historical description of this problem.)
In particular, Corollary 2.3 gives a toric geometric algorithm further strengthening Shub’s
extension (Shub, 1993) of Bézout’s theorem over C (see also Lemma 5.4 of Section 5.6).

We now illustrate our results and theory.

3. Examples

We begin with two small examples of filling. We will then see applications of the toric
GCP and twisted Chow form to some degenerate 2 x 2 and 3 x 3 polynomial systems.
Finally, we will see a brief comparison of the toric GCP to the original GCP. In what
follows, we will sometimes respectively write z, y, and z in place of z1, 9, and z3.

3.1. FILLING SQUARES AND CUBES

For our first example, consider the pair of rectangles P := ([0, a] x [0,b], [0, ¢] x [0,d])
where a, b, ¢, and d are positive integers. Then it is easily verified (via Theorem 4.1 of
Section 4) that the pair D = ({(0,0), (a,b)}, {(0,d), (¢,0)}) fills P. In this case, the mixed
area of both pairs is easily checked to be ad + be. Note also that D is a pair of oppositely
slanting diagonals of our initial pair of rectangles (modulo taking convex hulls). Finally,
it is easily checked that D is indeed irreducible, since the removal of any point of D
results in a mixed area of 0.

By Main Theorem 2.3, we thus obtain that for any a;, az, 01, 82 € K*, the bivariate
polynomial system (a; + a2z%y®, B1z° + (2y°) will have exactly ad + bc roots, counting
multiplicities, in (K*)2.

For our second example, let P instead be a triple of standard cubes (so that the vertex
set of each cube is simply {0, 1}3). Then, using the criterion from Theorem 4.1 once again,
it is easily verified that the triple D = ({(1,0,0),(0,1,0),(0,0,1)},{(1,1,0),(1,0,1),
(0,1,1)},{(0,0,0), (1,1,1)}) fills P. (This is depicted in Figure 1.) Also, it is easily
checked that the mixed volume of both triples is 6. Finally, note that this D is irreducible
as well by Theorem 4.1. Alternatively, one can easily check this by brute force, using any
one of the publically web-accessible software packages for mixed volume computation by
Emiris, Gao, Huber, or Verschelde.

By Main Theorem 2.3, we thus obtain that for any a,, as, as, 81,52, 83,71, 72 € K*,
the trivariate polynomial system (a1z + ooy + asz, Sizy + Baxz + Byz, 71 + Y2xyz) will
have exactly 6 roots, counting multiplicities, in (K*)3.

In summary, Theorem 4.1 of Section 4 gives a necessary and sufficient criterion for
D to fill a given n-tuple E, and Main Theorem 2.3 tells us that we can construct some
irreducible fill for £ within time singly exponential in n (and within polynomial time for
fixed n}.



Solving Degenerate Sparse Polynomial Systems Faster 163

Figure 1. An irreducible fill of three 3-cubes.

3.2. Perty APPLIED TO A DEGENERATE 2 X 2 SYSTEM

Consider the bivariate polynomial system
F =(1+2z — 22%y ~ 5zy + 22 + 323y, 2 + 62 — 622y — 11zy + 42° + 52%y)

over any field of characteristic not equal to 2, 3, or 7. Letting E be the support of F,
the reader can easily verify! that M(FE) = 4, and that the only roots of F are the points
{(1,1),($, %)} and the line {—1} x K. So it would appear that the u-resultant (and even
Chowangzz) will vanish identically and not give us any useful information about any of
these roots. Let us see how we can use Pert4 (with A = A N Z2) to recover everything
we need to know about the roots of F.

First, via combinatorial means (Sturmfels, 1993; Emiris and Canny, 1995), we construct
a toric resultant matrix, M. This matrix has the property that its determinant is
a multiple of the toric resultant defining the toric GCP (the precursor to Pert4). With
the assistance of a Matlab program, res2.m (publically available from the author’s web-
page), we can obtain the following 17 x 17 matrix:

tFor n = 2, there is the simple formula M(E) = Area(Conv(E; + E3)) — Area(Conv(E;)) —
Area{Conv(E;)). Also, both polynomials are divisible by z + 1. Furthermore, when chark = 2, the
second isolated root becomes an isolated root lying on the z-axis.
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w, 0 O 0 0O O O O w2 0 O O O 0 0 O wo W
w wi 0 0O O O O O O w2 O O O O O O 0
0 0 wuy O 0 0 0 0 u O 0 0 0 0 0 ug O
0 0 0 wuy O 0 0 0 w w1 O 0 0 0 0 0 0
0 0 b3 bg bs O 0 0 b O 0 0 0 0 by bp O
0 0 0 b3 bs bs O 0 b b2 0 0 0 0 0 b O
0 0 0 0 b3 by bs 0O b b 0O 0 b2 0 O 0o 0
0 0 0 0 0 by by bs 0 b 0O O by b2 0 0 O
Ms=10 0 0 0 as as¢ as 0 a a 0 0 a 0 0 0 0
0 0 0 0 0 a3 a4 as 0 ag O 0 a1 a2 O 0 0
0 0 0 0 0 0 O 0 a4 a5 ag a3 0 O 0 a3z a2
az O O 0 0 O 0 0 a3 a3 O a a O O 0 a1
bo 0 O O 0 O O O b3 bsa O bg b5 0 O O b
b, b 0 O 0O O 0 0 0 b3 0O O by b O 0 b
0O O a3 a4 as 0 O 0O a2 O O O O O a0 a1 0
0 0 0 a3 a4 as O 0 a3 az O 0 0 0 0 a O
Llar a2 O 0 0 0 0 0 0 a3 O 0 a4 as 0O 0 aol

where the a; (resp. b;) are indeterminates correponding to the coefficients of f1 (resp. fa).
Note in particular that R(E) = 4 +4 + 4 = 12. As for the other complexity parameter
S(E), its true definition is the size of any available toric resultant matrix. So S(E) = 17
in the case at hand.

Now note that by Theorem 4.1, D := ({O,(3,1)},{(1,1),(2,0)}) is an irreducible
fill of E. So by Main Theorem 2.3, we can take F* = 1+ 23y, zy + =?) and apply
Main Theorem 2.4 to construct the toric GCP, H(u;s). By setting (ag,-..,as5) = (1 —
5,2,—2,-5,1,3—s), (bo, . ..,bs) = (2,6,—6,—11—5,4—5,5), and taking the determinant
of Mg, we then obtain a nonzero constant multiple of H(ug, u1, U2; 8).

However, multivariate symbolic expansions are typically slow and memory-intensive. So
to “solve” efficiently F' — that is, to find quickly a point in every irreducible component
of its zero set — we will instead compute the univariate polynomials h, by, he of Main
Theorem 1 via interpolation. The polynomial h is derived simply by specializing Pert4 at
some suitable value of (u1, u2) and then interpolating through 1-+M(E) values of uo. The
derivation of h; and hy is essentially the same but involves an additional intermediate
step described in Section 5.1. As Pert4 is in turn a coefficient of H(u; s), there is also
another level of interpolation through 1+ S(E) — M(E) values of s.

For example, setting (u1,uz) = (3, 1) (and setting ug equal to a parameter t), we easily
obtain via Maple that

h(t) = —153 + 120t + 1540¢> + 1600¢t> + 448¢*

11762 19150 114736 , 7264 4
~ 7511 T 22533° 22533 3219
ha(t) = _5881 32108 57368 o 3632t3.

7511 22533 22533 3219
As h(t) factors as (2t+3)(28t4-51)(2t+1)(4t—1), we thus immediately obtain from Corol-
lary 2.1 (and the fact that u; and ug were chosen within K ) that the zero-dimensional

part of Z N (K*)? actually lies in (K *)2, where K is the quotient field generated by
the canonical image of Z in K. Furthermore, by Main Theorem 1 (and the fact that

hi(t) =

lated roots of F' in K?) by substituting
particular, we obtain the set {(1,1), (%,
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For the curious, we can easily compute via Maple that the full expansion of H(u; 8) is,
up to a nonzero constant multiple,

(ul — ud + u} + 6ulud — dugud - 4uug)s®

+(36uu? — 20ugud — 20udug — durul — 19uf — 24uj + 6uduiuz
+36urud + 36u? — 12uoulus — 9udud + 3udul + 36uourud — duouf — 84ufuz)s’
+ 220us — 170uzu3 - 394u3uz — 98ulu3 — 98u2u1u2 - 2011.3 + 370uguo

2 (1] 1 0 0
+14uguiu? — 110uoud — 226ulud — 354u3u? + 454u} — 27duguiug + Tduyud)s
+(1008uzud — 1612udu1ug + 903uf — 624uiuf — 2632uduo — 2104uguius — 970uj
—1010u1ed + 418uduy — 2104uouiuf — 642ulud — 1547udul — 936uoud — 1557udud + 2204ui)s®
+(538u2ui uz + 1271ud + 12253u2u? + 6972u0ud + 1920u? — 3075u?wu3 + 654ducuiul

(V] (o] 0 0 1
+50u1ud + 2156ud — 960uu? — 2290ugud + 132u1ud — 5344uuiuz — 1142uius + 8708uduo)s*

Q 2 1%0 1 2
+(4384uqud — 24988uZu? — 1582uduy — 6756uf + 10884uguiud + 3802u1ud + 15438uouius
+1024ugt? + 8324ulud — 12826udug + 11270uduiuz — 6976u}

1 1%0 2 0

+7164ufud — 21326uzud — 2408u$)s®
+(3436uBus + 3800uoud + 7T756udug — 3886u1ud + 1225u3 + 17059ujug — 5984uiug
+15708ugud — 12232upuiud + 5180uf — 2091ulu3 — 6828uouius
+1316ut — 12700uuius — 4312u1ud)s?
+(384udu; — 1792uduz + 512u2u? + 1536uuiuz + 1920uguruf — 1288uoud — 768ufug
—448u8 — 2436u2u? — 384uoud + 1024uouius — 64u? + 260uiu3 + 768u1ul — 196ud)s.

(]

So our toric perturbation Pert4 p- is just the coefficient of s or s? in this polynomial,
as char K # 2 or char K = 2. Let us now examine Pert4 p- itself in detail: factoring with
Maple, we obtain that Pert4 g+ splits as follows:

—4(uo 4+ uy + U2)(28’u0 + duy + 49u2)(u0 - Uy + UZ)(4UQ —4uy + ’UQ).

In particular, given any factor above, the ratio of the coefficients of u; and ug is precisely
the ith coordinate of some corresponding root of F. Thus the first two factors correspond
precisely to the two isolated roots we already know. As for the last two factors, note that
they both give isolated points lying on the aforementioned line {—1} x K. We can then
guess that this line should be assigned an excess intersection multiplicity of 2. Of course,
we might not know at the outset which of these roots is isolated, i.e., a zero-dimensional
component of Z. However, as the constant term of H(s) vanishes, assertions (1) of Main
Theorems 2.2 and 2.4 at least tell us that Z is indeed positive-dimensional.

To distinguish the isolated roots, let us employ an algorithm from the proof of Corol-
lary 2.3: apply Main Theorem 2.3 once more to pick F** = (1 + z°y,zy + 2z%). Noting
that (due to their second equations) F* and F** will have no roots in common in (K*)?,
let us then define the double toric perturbation, Pert’, to be the greatest common
divisor of Pert 4 g+ and Pert 4 p«-.

Repeating the same calculation we used for h,hy, ho, but with Perty” instead, we
obtain new polynomials h**, h}*, h3*. Let us compute the ged, g**, of A** and h7*R3*. It
then turns out that the number of isolated roots of F is at most deg h** — deg g** (cf.
Section 5.7).

More explicitly, via Maple again, we easily see that A**(t) = (2t + 1)(2¢t + 3) and
g**(t) = 1. So the number of isolated roots in (K*)? is at most 2, and the positive-
dimensional part of Z (the line {—1} x K) should be assigned an intersection multiplicity
of at least M(E)~—2 = 2. Fortuitously (conjecturally always), our lower bound is actually
an equality.
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For completeness, we now reveal Pert4 p+- (up to a constant multiple):

11 D ST |
(uo +u; + u2)(28u0 + 4uq + 4911,2) (’U,o —ul + —\/LBAL—UQ) (uo — Uy — [——34——11,2 .

(In particular, Pert 4 - is again the coefficient of s in H(s).) Note also that the last two
factors of this toric perturbation again correspond to roots lying on the line {-1} x K.
We thus see that varying the coefficients of our perturbation of F" has moved two of our
points lying in the positive-dimensional part of Z.

Note (via Maple again) that the original GCP could have been used above, but would
have resulted in a variant of Perta of degree 16 (the product of the degrees of fi and
f2) — four times larger than the degree of our Pert4. Also, the old GCP is significantly
larger, having 672 terms, compared with 110 for our above toric GCP H(u; s).

3.3. WHICH COMPACTIFICATION FOR Chow 47

Here we show how the twisted Chow form Chow 4 can vanish identically for the wrong
A, thus giving no information about the roots of F'. Along the way, we will also obtain a
more precise visualization of the toric compacta P}, T(P),and T (P). We also point out
that while it is sometimes customary to consider the roots of F in 7(P) (as in Fulton
(1993), Gel’fand et al. (1994) and Rojas (1999a)), the construction of Chow 4 and Pert 4
necessitate the consideration of roots in 7 (P) as well.

To define our next example, set n = 3, A = AN Z3, and consider the 3 x 3 system
F = (a1yz+aszz +azzy +asxyz, biyz+bozz+ byxy - bazyz, c1yz+coxz+c3zy + C4TYZ).
Note that the mixed volume bound for this system is 1. Furthermore, it is clear that I—;ﬁ
is a linear system in {%, %, %} So by Cramer’s rule, we can express z, y, and z as ratios
of 3 x 3 determinants in the coefficients.

Combining this with the product formula for toric resultants (Pedersen and Sturmfels,
1993) (and clearing denominators) we obtain that Chow 4 is preciselyt [423){143][124]uo +
[123][143][124]u; + [123][423][124]u, + [123][423][143]us where the bracket [ijk] (Dalbec

and Sturmfels, 1995) is the 3 x 3 subdeterminant

a; aj aj
det bi b]' bk
¢ ¢ Ck

of the coefficient matrix of F. This compactly expressed resultant can be thought of as
a semi-mixed Chow form — a toric resultant of a system of n + 1 polynomials with
k < n distinct supports.

Now consider the specialization of F to (yz + zz + 2zy + 3xyz,yz + 7z + 42y + 9TY2,
yz+xz +8zy+27Tyz). It is then easily verified that F' has no roots in (K*)3, but F' does
have exactly one root T in 7(P). Also, in our particular example, 7 (P) = P} and, locally
(within (K*)"), the isomorphism is given by (z,y,2) = [£ : § : ; : 1]. In particular, using
the latter set of coordinates, our one root of F in T(P) is exactly the point [1 : ~1:0:0].

More to the point, Chow 4 = 0 for this specialization of the coeflicients of F.

tWe also need the fact that the Pedersen—Sturmfels formula, originally stated only over C, remains true
over a general algebraically closed field (cf. Section 5.3).

tif chark € {2,3} then F will actually have infinitely many roots in 7(P). So let us assume henceforth
that chark ¢ {2,3}. (It is easy to construct similar examples when chark € {2,3} as well.)
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Figure 2. One root in the lower left toric compactification (7 (P)) becomes infinitely many roots in the
other two compactifications (7(P) and T(A)).

A simple geometric explanation for this behavior of Chow,(-) is that the choice of
A defines a toric variety 7(A) into which the roots of F in T(P) are projected. (The
variety T (A) is the toric variety corresponding to a point set (Gel’fand et al., 1994), and
is simply the image of 7(P) under the morphism ¢ 4.) So depending on our choice of A,
the roots of F in 7 (P) may or may not correspond to roots of F' in 7 (A) in a well-defined
way. For instance, in our example, F' actually has infinitely many roots in 7(A), so Main
Theorem 2.2 tells us that Chow 4 must vanish.

So it is more useful to work within 7(P), as the roots of F in T(P) and T(A) are
actually images of the roots of F' in 7(P). In particular, the underlying algebraic maps
induce projections of certain faces of P (corresponding to certain parts of 7 (P) \ (K*)")
onto certain faces of P and Conv(A). Figure 2 above illustrates this, along with where
the root [1: —1:0:0] € T(P) of F “goes” within these various compacta. For instance,
note that P is a cuboctahedron, and ¢4 is constant on the portions of 7(P) \ (K*)"
corresponding to the triangular faces with inner normals —é;, —é2, —és, and (1,1,1).

Algebraically, we have the following maps:

T(P)
Py =T(P) ¢-—;-* T(A)—P

where 7 is the natural projection between compatible toric compacta (cf. Section 5),
and ¢ is the rational map (defined just on (K*)™) from 7(P) to T(A) obtained from
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z — [z%a € A]. In the case at hand, the latter map is simply the identity map between
the two corresponding naturally embedded copies of (K*)3.

To remedy the preceding trivial Chow 4, we can instead use Chow ar(u) with A’ :=
{(0,1,1),(1,0,1),(1,1,0),(1,1,1)}. (This choice is motivated by trying to pick an A’
which is compatible with P (cf. Section 5).) In particular, when the coefficients of F are
unspecialized,

a az as a4

b b
Chow 4/ (u) = det b b2 3 4
c1 C2 C3 C4

U,1,1) %(1,0,1) U@,1,0) U(,1,1)

So under our last specialization, this becomes 12u(1,0,1) — 12u(p,1,1)- Note that we now
recover our root [1: —1:0: 0] from the coordinates of our new twisted Chow form. For
example, the ratio of the z-coordinate to the y-coordinate is just —;‘j = %};T—zlr = _1—32 =—1.

Alternatively, we can simply use Pert4 and forget about cleverly chosen A’. For exam-
ple, by Main Theorem 3 (and Theorem 4.1), we can simply take F* = (yz + zyz, 1z +
zyz,xy + xyz). After an application of Maple, we then obtain that Pertangs is exactly
5u, -+ 21us. In particular, while the point [0 :5: 21 : 0] € T(A) does not correspond (in
any obvious way) to a root of F in T (P), it is the image of a bona fide root of Fin T(P)
under the morphism @ 4.

In closing, we emphasize that in practice we would never actually compute the full
monomial expansions of Chow 4(u), Perta(u), or H(u;s) — we would instead recover
the roots of F (or evaluate monomials thereof) via rapid and sophisticated interpolation
techniques, e.g. Canny (1988, 1990), Canny et al. (1989) and Diaz and Kaltofen (1995).
In particular, this is the approach of Main Theorem 1, and our calculations can be sped
up tremendously with suitably optimized code.

3.4. THE “DENSE” CASE

Our last example illustrates a simple fundamental case.

Suppose E is the n-tuple (diANZ",...,d,ANZ") where d; € N for all i. (So we are
now considering the family of all n x n polynomial systems where f; has total degree < d;
for all .} This is usually referred to as the dense case. It is then easily verified that the
system F™* = (x‘lil, ...,xd) (with support contained in E) has only finitely many roots
in T(P). Indeed, in this case, T(P) = Pg and there is exactly one root (of multiplicity
[1d:) at the origin O. Note also that our current setting is sufficiently simple that we
could find a suitable F* with just n terms, without the need for an irreducible fill.

REMARK 3.1. Letting D := [[,di and Dy := Y ;_, d; it is easily checked by the
basic properties of the mixed volume that for general E we have

M(E) < DH,R(E_') < DI'I(I +i dl)’ and S(E) < <D2n+ 1> ’
i=1 "

where d; is the degree of f; for all i. (The last inequality follows from Macaulay’s 19th
century construction of the multivariate resultant (Canny, 1987).) Furthermore, equality
occurs for all three bounds in the dense case. When these upper limits on M, R, and
S are reached, our complexity bound from Main Theorem 2.1 then specializes to the
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best bounds from Canny (1988, 1990) and Canny et al. (1989), once charK = 0 and
randomization is allowed (cf. Corollary 6.1 of Section 6).

Letting A = A NZ", we then see that our polynomial H(u; s) is simply the original
GCP (Canny, 1990), but extended to a general algebraically closed field. In particular,
our F — sF* is the polynomial system (fi —sz®,..., fn— sz%). (Note also that if we set
di = - =d, =1then H(@nt+1,0— A Ani1,15-- -5 Cntln; ) is just the usual characteristic
polynomial of a matrix.) Finally, note that 7(A) = T(P) = T(P) = Pk and the map ¢4
is the identity. So by considering the zero set of F in T (P), in the dense case, we are just
considering the zero set of F in P} in the usual way via homogenizations. Thus by Main
Theorem 2.4, Canny’s original GCP indeed finds a point in every irreducible component
of Z in Pg, as conjectured in 1990. Of course, the advantage of the toric GCP is that we
can do the same with greater efficiency for sparse systems with small M(E).

4. Filling

Here we briefly recount filling and some related concepts. Some of the material below
is covered at greater length in Rojas (1994). The results below form the basis for our
combinatorial approach to perturbing degenerate polynomial systems.

Let S*~1 C R™ denote the unit (n — 1)-sphere centered at the origin. For any compact
B ¢ R" and any w € R”, define B¥ to be the set of x € B where the inner-product = -w
is minimized. (Thus BY is the intersection of B with its supporting hyperplane in the
direction w.) We then define E* := (EY,...,E¥) and DNEY := (DiNEY, ..., D, nEY).

Recall that the dimension of any B C R", dim B, is the dimension of the smallest
subspace of R™ containing a translate of B. The following definition is fundamental to
our development.

DEFINITION 4.1. Suppose C := (C1,...,Cp) is an n-tuple of polytopes in R™ or an n-
tuple of finite subsets of R™. We will allow any C; to be empty and say that a nonempty
subset J C [n] is essential for C (or C has essential subset J) <= (0) C; # 0 for all
i€ J, (1) dim(3;c; Cp) = #J -1, and (2) dim(3_ ¢ C;) > #J' for all nonempty
proper J' G J.

Equivalently, J is essential for C <=> the #.J-dimensional mixed volume of (Cj|j € J)
is 0 and no smaller subset of J has this property. Figure 3 below shows some simple
examples of essential subsets for C, for various C in the case n = 2.

A basic fact about mixed volumes is that M(E) = 0 <= E has an essential subset,
whenever Supp(E) = [n]. However, there is an even deeper connection between filling
and essentiality:

THEOREM 4.1. (R0OJAS 1994, SECTION 2.5) Suppose D and E are n-tuples of finite
subsets of Z™ such that M(E) > 0. Then D fills E <= for all w € S"~1, Supp(DNEY)

contains a subset essential for E%.

REMARK 4.1. One certainly need not check infinitely many w. In fact, we need only check
one w (just pick any inner normal) for each face of the polytope P=>3",Conv(E;).

We also present the following important observation.
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Figure 3. The essential subsets for four different pairs of plane polygons. (The segments in the third
pair are meant to be parallel.)

?
LEMMA 4.1. Let m := Y | #E;. Then we can decide M(E) > 0 within O(mn'-®16)
arithmetic steps over Q. Furthermore, if M(E) = 0, then we can find points p1,...,pn €
(NU{0})", within the same asymptotic complezity bound, such that M({p1}UE, ..., {pn}
UE,)>0.

The first portion was stated in terms of a non-explicit polynomial-time bound in Dyer
et al. (1998, Theorem 8). To the best of our knowledge, Lemma 4.1 gives the first precise
complexity bound for the above geometric problem, so we will supply a proof.

PROOF OF LEMMA 4.1. By the translation invariance of the mixed volume, we may
assume that O € E; for all i. Let Z be the set of all pairs (¢,j) with ¢ € [n] and
j€{0,...,#E; — 1}. Also let B be the n x m matrix whose columns are the elements
of all the E;. We will let 7 index the columns of B in the most obvious way. Finally, let
G be the bipartite graph with vertex set Z where (1, j) and (i’,j') are connected by an
edge iff ¢ = 7’ and either j =0 or 7/ = 0.

There are two natural matroid structures on Z: the linear matroid and the partition
matroid (Grétschel et al., 1993, Section 7.5). The independent sets of the first (resp. sec-
ond) matroid are exactly the index sets defining linearly independent multisets of columns
of B (resp. matchings in G). It is a simple corollary of Dyer et al. (1998, Proposition 2)
that the mixed volume is nonzero iff we can find linearly independent vectors a; € E,

.., an € E,. So it suffices to know if there is a set I C Z which is a basis for both
matroids. In other words, we have reduced our vanishing volume problem to determining
whether there is an I which simultaneously defines n linearly independent columns of B
and a matching in G. This is an instance of the unweighted intersection problem for linear
matroids, and an O(mn!+1/(4=«) log n) algorithm for this problem appears in Gabow and
Xu (1996). (We use w (<2.376) for the famous matrix multiplication complexity exponent
(Coppersmith and Winograd, 1990).) So we have proved the first portion of our lemma.

As for the second portion of the lemma, there are many ways to find py,...,p,: One
naive but valid way is simply to set p; := é; for all . This takes only O(n) operations. O

REMARK 4.2. In the semi-mixed case — that is, when there are only n’ < n distinct E;

— we can easily alter th§ above argument to replace m by m/, where m' := 27;1 #E;,
and {E;[i € [n]} = {Ey|j € [n']}.

Oddly enough, filling seems to have originated from an algebraic problem: genericity
conditions for counting the roots of sparse polynomial systems. This aspect is explored
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much further in Rojas (1994, 1999a), Rojas and Wang (1996). We also emphasize that
constructing a fill need only be done once for a given family of problems, provided
E remains fixed. The situation where the monomial term structure of a polynomial
system remains fixed once and for all, and the coefficients may vary many thousands
of times, actually occurs frequently in many practical contexts such as robot control or
computational geometry.

To conclude our background, we will need the following lemma characterizing irre-

ducible fills.

LEMMA 4.2. Following the preceding notation, assume M(D) > 0. Then D is irreducible
> for any v lying in some D;, there exists a w € Q™ \ {O} such that DY = {v} and
M(DY,...,D¥ ,D¥,,.. ., DEy> 0.

ProoF. First note that the mixed volume condition above is equivalent to {i} being the
unique essential subset of D*. This follows immediately from definition 4.1 and, say, the
development of Burago and Zalgaller (1988).

The “«—" direction then follows almost immediately from Theorem 4.1: if the mixed
volume condition holds, then the removal of any point from D would indeed violate the
filling condition from Theorem 4.1. So the removal of any point from D would make
M(D) decrease. The converse implication follows almost as easily.

Suppose, to derive a contradiction, that D is irrreducible but there is some v in some
D; satisfying the following property: for all w € Q"\{O}, #D¥ > 20t M(DY,...,D{’,,
D¥.,,...,Dy)=0.Let us then consider the n-tuple D' := (Dy, ..., Di—1, D;\{v}, Dit1,
..., Dyn). Then by Theorem 4.1 once again, D' fills D. But this contradicts the irreducibil-
ity of D, so we are done. O

5. Toric Geometry and the Proofs of Main Theorems

Our notation is a slight variation of that used in Fulton (1993), and is described at
greater length in Rojas (1999a). However, we will briefly review a few important facts
and definitions.

The (inner) normal fan of a polytope @ C R", Fan(Q), is simply the collection of cones
of inner normals of faces of Q (Gel'fand et al., 1994). (For instance, the inner normal
fan of the standard unit square in the plane consists of nine cones: the four quadrants,
the four nonnegative coordinate rays, and the origin.) We will assume the reader to be
familiar with the construction of a toric variety from a fan, a polytope, or a finite point
set (Fulton, 1993; Gel'fand et al., 1994).

EXAMPLE 5.1. When A = ANZ", it is easy to derive from scratch that 7 (A) is just the
projective space Pi. More generally, if Conv(A) is a product of simplices, then T(A) is a
product of twisted projective spaces (Fulton, 1993) — hence our appelation for Chow 4.
Note also that the coefficients of Chow 4 are multisymmetric functions of {¢a({)}¢ as ¢
ranges over the roots of F in T(P).

Recall that any n-dimensional toric variety 7 over K has a (K*)"-action extending the
natural action of (K*)™ on itself. Let us now list our cast of main characters:
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Figure 4. The inner polytope is compatible with the outer polytope. Also, the corresponding “outer”
toric variety can be obtained as a deformation (or image under a proper morphism) of the “inner” toric

variety.

DeFINITION 5.1. (FULTON, 1993; R0oJAS, 1999A) Given any w € R”, we will use the
following notation:

= The algebraic torus (K*)".
QY = The face of Q with inner normal w.
ow = The closure of the cone generated by the inner normals of Q¥.
o= The dual (or angle) cone {w' € R™w' -y >0 for all y € 0, }.
Uy, = The affine chart of T(Q) corresponding to all semigroup homorphisms' oY
z" — K.

Oy = The T-orbit corresponding to the relative interior of QY.
Eo(Q') = The T-invariant Weil divisor of T(Q) corresponding to a polytope Q'.
Div(f) = The Weil divisor of T(Q) defined by a rational function f on (K*)".
Do(f, Q') = Div(f) + £o(Q’) = The toric effective divisor of T(Q) corresponding to

(£, Q")
Do(F,P) = The (nonnegative) cycle in the Chow ring of T(Q) defined by ﬂle Dy
(fi, P), whenever P = (Py,..., Py).

We say that P is compatible with @ iff every cone of Fan(Q) is a union of cones of Fan(P)
(Khovanskii, 1977; Fulton, 1993; Rojas, 1999a). (So P compatible with Q == P has at
least as many facets as Q.)

Finally, whenever F is a k X n polynomial system with support contained in E, we
will define the zero set! of F in 7(Q) to be the toric cycle Dgo(F,P), where P :=
(Conv(E4),...,Conv(Ey)). Toric infinity is then defined relative to Q: it is simply the

set 7(Q) \ (K*)™

EXAMPLE 5.2. (ZERO SETS IN P§) Suppose @ = a + FA, for any a € Q" and any
rational § > 0. Then 7(Q) = Pg canonically. As for explicitly defining the zero set of
F in T(Q), we can do the following: (1) Define vectors py,...,p, € Z" such that for all
i, P f; € K{z] is not divisible by any z;, (2) define fi(z) := :cggz”if(f:, ooy ) for
all 7, where d; is the total degree of zP: f;. Then [2z; : --- : 2, : 25) € PE is a root of F
iff fl(z) == fn(z) = 0. In particular, note that this toric definition differs from the

tNote that the domain and range spaces are respectively semigroups under the natural operations of
vector addition and field multiplication.
When necessary, we will also use the underlying scheme structure.
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classical definition of “zero set of F in PE”, due to the extra step (1). For instance, our
toric definition might omit some affine roots, for certain E and F. However, note that
step (1) is unnecessary when O € E; for all 4.

REMARK 5.1. By Rojas (1999a, Section 6.1), the zero scheme of F' in K" embeds natu-
rally in Dp(F,P) (and Dp(F,P)) when we replace E by O U E. Hence the introduction
of OUE in (and A = ANZ" in the proof of) Main Theorem 1.

The following result will provide some necessary geometric intuition for specializing
resultants. The lemma immediately following then gives a more explicit algebraic analogy
between the faces of @ and the affine charts of 7(Q).

VANISHING THEOREM FOR RESULTANTS. (ROJAS, 1998B) Suppose Fisan(n+1)xn
polynomial system (over K) with support contained in E. Then, provided M(E,...,
Ei1,Eit1,---1Eny1) > 0 for some i € [n+1], Resz(F) = 0 <= Dp(F,P) # 0, where
P := (Conv(E1),...,Conv(Eny1)) and P =" Conv(E,).

LeEMMA 5.1. (RoJas, 1999A, SECTION 4.2-5.1) Suppose F isa kxn polynomial sys-
tem over K with support contained in a k-tuple of integral polytopes P := (Py,.. < Pi)
in R™. Assume further that Q is a rational polytope in R™. Then the defining ideal in
Kz®la € o) N Z"] of Uy N Do(F,P) is (z% f;| for all i € [k] and b; € Z" such that
bi + Pz Q 0’1\[/)> .0

Lifting (or projecting) from one toric variety to another is an important fundamental
idea we will also use. The following lemma follows directly from the development of
Fulton (1993).

LEMMA 5.2. Suppose @ C R™ is an n-dimensional rational polytope, and B is either
a nonempty finite subset of Z" or a rational polytope in R™. Assume further that Q
is compatible with Conv(B). Then there is a natural (surjective) proper morphism 7 :
T(Q) —» T(B). In particular, 7(Do(F,P)) = Da(F, P), where the latter cycle is the
image of Dconv()(F, P) under the natural proper morphism from T (Conv(B)) to T(B).
Furthermore, m(Oy) = Oy, where the corresponding T-orbits are considered in their
respective domains, and nt|g-y~ = id.

REMARK 5.2. Following the notation of Main Theorem 1, it easily follows that if A =
ANZ" then the multiplicity of any root of F' in (K*)™ is preserved under the map ¢ a. 1f
A = dQNZ™ for some rational polytope compatible with P,and d € Nis sufficiently large,
then the same will be true of any root of F in T (P) (Fulton, 1993). In general, thanks
to the functoriality of Chow forms (Dalbec and Sturmfels, 1995), Chow 4 is precisely the
Chow form of the subscheme ¢ 4(Z) of IP;E A-1

Another immediate corollary of our last lemma. is the following result on the meaning
of the projective coordinates [(*|a € A].

COROLLARY 5.1. Following the notation of Main Theorem 4, let ¢ € T(P) be an isolated
root of F and fiz a vertex of v € Conv(A) with inner normal w. Then wa(C) lies in the
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affine chart Uy, of T(A) <= the coefficient of u, in the corresponding factor of Pert 4 is
nonzero.

EXAMPLE 5.3. Suppose we take A = ANZ" as usual. Then 7 (A4) =~ P canonically, and
there are exactly n + 1 affine charts of 7(A) corresponding to vertices. These charts are
respectively isomorphic to Pg minus the hyperplane at infinity, and P \ {z; = 0} as ¢
runs through [n]. For example, given a factor of Pert4 such as ug + u3, we know that it
corresponds to a root image ¢ 4(¢) which lies in n — 2 of these affine charts and outside
of 2 others, i.e., pa(¢) =[0:0:1:0:---:0:1] lies on the z3-axis. Similarly, if all the
coordinates of ¢ 4(¢) are nonzero, then {,pa(¢) € (K*)".

Finally, we will need a version of the fundamental fact that F' generically has exactly
M(E) roots in (K*)". The case K = C first appeared in Bernshtein (1975), and the
general case is an immediate corollary of Rojas (1999a, Main Theorems 1 and 2).

LEMMA 5.3. Let Cg be the vector of coefficients of F and define #F := S #E;. Then
there is an algebraic hypersurface Lp C K#F such that C € K#P \Xg = F has no
roots in T(P) \ (K*)"™. Moreoever, the latter assertion implies that F has ezactly M(E)
roots, counting multiplicities, in (K*)".

With all our technical background complete, we can now prove our main theorems.

5.1. POLYNOMIAL ALGEBRA AND THE FIRST HALF OF MAIN THEOREM 1

Our proof of assertions (0)—(2) of Main Theorem 1 will rely on two main constructions:
the toric perturbation Pert onz» and an extension of Canny’s constructive version (Canny,
1988) of the primitive element theorem. We thus emphasize that while Chow 4 and Pert 4
permit one to reduce polynomial system solving to multivariate factorization, we will not
use factoring to build & and hy,..., hy,.

Algebraically, the idea is as follows: our techniques allow us to find a set of points
Z' C (K*)" intersecting every irreducible component of the zero set of F in (K*)"™. Con-
sider the field extension L := K (Z'), obtained by adjoining all the coordinates of all the
points of Z'. Then L is a finite extension of K, and by the primitive element theorem
(van der Waerden, 1950), L = K'(8) for some 6 € L. Furthermore, by the same theorem,
we should be able to recover the coordinates of every point in Z’ in terms of rational
functions (with coefficients in K) of 6. As K(8) = K|[t]/h(t) when h is the minimal poly-
nomial of 6 over K, we can further simplify the preceding rational representation to one
in terms of polynomials in 6 with coefficients in K. Our algorithm for Main Theorem 2.1
will explicitly construct this encoding for us.

To describe our algorithm, we will first need a bit of subresultant theory: for any
univariate polynomials f(t) = ap + a1t + - + ag,t% and g(t) = By + it + - + Ba,t%,
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consider the following (d; + da — 2) X (d; + d2 — 1) matrix

"B -+ Ba O - 0O ow
0 Bo - Bay O -+ O
0 0 fBo - Bay
0O 0 .- 0 po Ba,
Qo a4, 0 -+ 0 0
0 a - ag O 0
0 -~ 0 a - ag O

LO 0 1] o ad, |

with d;—1 “8 rows” and dy—1 “a rows”. Let M (resp. M) be the submatrix obtained by
deleting the last (resp. second to last) column, and let Ri(f,g) := det(M}) for i € {0,1}.
Finally, define the first subresultant of f and g to be Ro(f,g) + Ra(f,9)t. It is then a
classical fact that if ged(f, g) = a+bt with b # 0, then § = g—(;(% (Gonzélez-Vega, 1991).
We will make heavy use of this fact in our proof.

Recall also the following algorithmic facts about polynomials over any field (Bini and
Pan, 1994):

(a) Given the values of a univariate polynomial of degree d at d + 1 distinct points, the
coefficients of the polynomial can be recovered within O*(d) field operations.

(b) The ged of two univariate polynomials of degree O(d) can be found within O*(d)
field operations.

(¢) The coefficients of the square-free part of a univariate polynomial (of degree d) can
be found within O*(d) field operations.

(d) The subresultant of two univariate polynomials of degree O(d) can be computed
within ©*(d) additions and multiplications.

We now proceed with our proof of the first half of Main Theorem 2.1.

PROOF OF ASSERTIONS (0)—(2). To simplify matters slightly, we will first derive a Las
Vegas version of our algorithm for Main Theorem 2.1. The announced time bound will
then follow from a simple derandomization. The construction of h,hi,...,h, will follow
from evaluating Pert 4 (u) at various specializations of u, thus reducing to O(n) univariate
polynomial interpolation and ged problems. In particular, our algorithm can be outlined
as follows:

Step 0 Set A= ANZ" and fix generic values in K for uy,...,Up.

Step 1 Define h € K[t] to be Perta(t, u1,. .. un).

Step 2 If n = 1, set hi(6) := 6 and stop. Otherwise, for all i € [n], let ¢; (t) be the
square-free part of Perta(t,us, ..., %i—1,%;i — 1, %ig1, - - ) U )

Step 3 Let « satisfy either a =1l ora(a+1) =1 according as char K # 2 or charK =
2. Then define ¢} (t) to be the square-free part of Perta(t,uq,...,%i—1,%; +
@, Uig1,.--,Un) for all i € [n].

Step 4 For all i € [n] and j € {0,1}, let r; ;(8) be the reduction of R;(a; ), q; (o +
1)8 — at)) modulo h(6).

Step 5 For all i € [n], define h;(8) to be the reduction of —6 — :—:*% modulo h(6).
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Note that assertion (0) thus follows immediately from Steps 1 and 4, thanks to the
beginning of Main Theorem 2.4. Let us now verify the correctness of our algorithm,
clarifying the genericity assumption of Step 0 along the way.

Using Main Theorem 4 once more, we know that the factors of Pert, define for us a
set of points Z = {¢D};¢(n}, with N < M(E), such that Z intersects every irreducible
component of p4(Z). In particular, we see that the roots of h are exactly {99)};cn-,
where §00) = ~ " Ci(J)ui, Z" = {(W}jen' = ZNK", and (VW) = (ij),...,(,’,(f)) for
all j € N'. Furthermore, it is easy to check that for all but finitely many [ug : -- - : uy),
j # 3§ = 09 £ 60U (In which case, via Remark 5.2 from Section 5, the multiplicity
of any isolated root () € (K*)" of F is exactly the multiplicity of the root 8@ of h.)
Similarly, for any i € [n], j # j' == 0(7)+Cz~(]) # 0(j1)+Ci(j,) and O(j)—aCi(J) # 0(11)—a<l-(]'),
for all but finitely many [u; : --- : u,]. The avoidance of these 1 + 2n finite sets of
[w1 ¢ --- 1 up,] is precisely our genericity condition for Step 0. Furthermore, by checking
square-free parts, we can check our genericity condition with negligible overhead (via fact
(c))-

Now note that if § = §U) for some j, then for all i € [n], ¢; (t) = ¢/ (( + 1) — at) =
0=t=060 4+ g,.(" ), Furthermore, by construction, this common root has multiplicity 1
for both ¢;” and ¢. It is then easily checked that hi(t‘)(j)) = Cl-(J ),

Recalling that the zero scheme of F in (K*)" is exactly Da(F,P) N (K*)" (Rojas,
1999a, Section 5.1), we at last obtain assertions (1) and (2) of Main Theorem 2.1 by an
application of Lemma 5.2. (In the case at hand, w = p4.) O

REMARK 5.3. The probability of failure in our Las Vegas algorithm above is 0, assuming
any probability distribution on the coefficients of F yielding probability 1 avoidance of
algebraic hypersurfaces in K#monomial terms

5.2. CONCLUDING THE PROOFS OF MAIN THEOREM 1 AND COROLLARY 2.1

We begin by checking the complexity of our Las Vegas algorithm from the preced-
ing section. First note that by Main Theorem 2.4, each evaluation of Pert4 (for con-
stant uo,uy,...,us) takes O*(nR(E)2S(E)?37) arithmetic steps over K. So by ob-
servation (a) above (and assertion (0)), we can find h via interpolation within time
O*(nM(E)R(E)*S(E)?37). Similarly, by (a), (b), and (c), we can find each ¢; and ¢}
within the same time bound. So the construction of all these polynomials thus takes a
total of O*(n? M(E)R(E)?S(E)?%76) arithmetic steps over K.

Finding the coefficients of ¢} ((a+1)8 — ot) takes time O*(M(E)?) via another simple
interpolation step. So by (d), we can then find Ay, ..., h, still within the latter asymptotic
time bound. As for space, we only need to keep track of O(nM(E)?) coefficient values,
and this falls well within the O(nS(E)?) space requirement of Main Theorem 2.4.

To conclude, we need only derandomize our algorithm. This can be done as follows:
replace the generic selection of uy, ..., u, above by u; = €' for i € [n]. We then obtain that
at our genericity condition is violated iff the point (1,e,...,e") € K**! lies in at least

2

one of (2n+1) hyperplanes depending on the input F. From the box principle,

and the well-known properties of the van der Monde matrix (Bini and Pan, 1994), this
can happen to at most n(2n +1) (M) (E) 2 distinct values of €. So we can derandomize
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by repeatedly running steps (1)—(3) with new ¢ at most n(2n+1) (MéE)) times, thus

finally accounting for our aforementioned deterministic time bound.

Moving on, we must now further refine our algorithm so that our arithmetic is over
K (or a small algebraic extension thereof) instead of K. This can be done as follows:
If char K = 0, then there are enough choices for € in K to derandomize our algorithm
(since K will be infinite). Otherwise, we simply choose ¢ in an algebraic extension of K
of degree [log,((n + 1)2M(E)?)], so that we have more than enough ¢ to choose from.
Assertion (3) is now proved.

To conclude, Remark 5.1 tells us that the zero scheme of F in K* embeds naturally in
Dp(F,P) (and Dp(F, P)) if we replace E by OU E. So this introduction of extra points
into our supports indeed guarantees that Z’ includes all the affine roots of F'. O

REMARK 5.4. We have thus improved the complexity of finding all the affine roots
(roughly) from polynomial in []d; to polynomial in M(O U E). However, one can im-
prove this even further to polynomial in SM(E) — the stable mixed volume (Huber and
Sturmfels, 1997; Rojas, 1998a, b, c¢) of E. (In particular, SM(E) < M(OUE) < [ld;
and the gaps between can be quite large (cf. Example 6.1).) To make this final improve-
ment, it is necessary to use a more refined resultant operator — the affine toric resultant,
denoted AffResz(F) (Rojas, 1997a,b). This is covered at greater length in (Rojas 1997a,
b, 1998a, b, c), and this new operator also allows us to extend Corollaries 2.2 and 2.3 to
K™ minus an arbitrary union of coordinate hyperplanes.

PROOF OF COROLLARY 2.1. It follows immediately from our proof of Main Theorem
1 that the fields K[¢; | (C1,-- -, Ca) € (K*)™ is a root of F] and K[0]h(6) = 0,]] h: # 0]
are identical when u;, ..., u, are chosen from K. (So the assumption that charK =0 is
actually stronger than necessary.) As the latter field is exactly the splitting field of g, we
are done. O

5.3. THE PROOF OF MAIN THEOREM 2

We first note that the well-known results on the degree of Resg(f1,. .., fnt1) with re-
spect to the coefficients of various f; (Sturmfels, 1994) remain true over any algebraically
closed field. This follows easily from the formulation of the resultant for a collection of
invertible sheafs on a projective variety (Gel’fand et al., 1994). In particular, Chow 4
should indeed be either be identically zero or a homogeneous polynomial (in the u,) of
degree M(E).

To prove assertions (1)-(3), we can then simply invoke the Vanishing Theorem for
Resultants and Lemma 5.2 (since P is compatible with Conv(A)). For instance, we obtain
that @ 4(Z) is positive-dimensional iff Chow 4 has infinitely many distinct divisors of the
form Y ,c 4 Vala- So assertion (1) follows immediately. Assertions (2) and (3) follow
similarly. O

5.4. THE PROOF OF COROLLARY 2.2
Let w (<2.376) denote the famous matrix multiplication complexity exponent

(Coppersmith and Winograd, 1990) and set Eni1 = A. Tt then follows immediately
from Coppersmith and Winograd (1990) and Emiris and Canny (1995, The Division
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Method) that for any choice of constant coefficients in K, Resgz(F) can be evaluated
within O*(nR(E)S(E)~) arithmetic operations over K, using O(nS(E)?) space.

The first part of Corollary 2.2 then follows immediately from a van der Monde type
argument, as in the proof of Main Theorem 2.1. In particular, via interpolation, it suffices
to evaluate Chow 4(u) at exactly 1 +nM(E) distinct points of the form (1,¢,...,e") to
see if Chow 4 is identically zero.

To then count the roots of F in (K*)" when Chow 4 is not identically zero, we can begin
with a variant of the algorithm from Main Theorem 2.1 where we evaluate Chowanz-
instead of Pertanz~. From our previous observations, we can thus construct A and
h1, ..., hy, within time O*(n* M(E)3R(E)S(E)*) and space O(nS(E)?).

We then use the following trick: compute the gcd, g, of A and H?=1 h;. By Remark 5.2
of Section 5, we immediately obtain that deg h — deg g is exactly the number of roots of
F in (K*)" counting multiplicities. (In fact, the roots of g tell us precisely which ¢¢) lie
out of (K*)".) By the same argument, we can also count the number of distinct roots
simply by replacing h with its square-free part. By facts (b) and (c) of Section 5.1, and
because the degree of [];-, h; is at most nM(E), these computations cause a negligible
growth in our asymptotic complexity bounds. So we are done. O

5.5. FACET SEARCHES AND THE PROOF OF MAIN THEOREM 3

The first portion of this result follows immediately from Lemma 4.2 and Rojas (1994,
Corollary 3). The second portion is a consequence of the following algorithm:

Step 1 Compute the facet normals of P and the vertices of all the Conv(E;).

Step 2 Find a vertex v of some E; such that for any facet normal w of P, v € EY =
[(#EY > 2 or M(Ey,...,Fi_1,Eit1,...,E,) = 0]. If no such v exists, stop.
Otherwise, delete v from E and go back to step 1.

By Lemma 4.2, the above algorithm will eventually stop with an irreducible fill of
E. As for its complexity, note that the number of facets of P is O(m?"), and we can
find the normals to these facets within that many arithmetic steps over Q (Gritzmann
and Sturmfels, 1993), given the convex hulls of the E;. Furthermore, this asymptotic
bound dominates the complexity of finding the convex hulls of all the E; (Preparata
and Shamos, 1985; Chan, 1996). So the complexity of Step (1) is O(m?"). Step (2) thus
amounts to nO(m?") checks for zero mixed volume per vertex. So by Lemma 4.1, this
takes O(n2616m2n+1y arithmetic steps over Q. These steps will be executed at most m
times, so we are done.

5.6. ALGEBRAIC HOMOTOPIES AND THE PROOF OF MAIN THEOREM 4

Main Theorem 2.4 is the cornerstone of our approach to solving degenerate systems of
equations, so we will precede its proof by illustrating one of its underlying constructions:
explicit algebraic deformation of degenerate zero sets.

More precisely, following the notation of Main Theorem 2.4, we will construct a family
of curves C, fibered over the projective line, whose fiber over a particular point is a zero-
dimensional variety Z C Z encoding the multiplicities of all the irreducible components
of Z. To do this, we begin with the following lemma, which follows easily from the
development of Rojas (1999a, Section 5.1) and Fulton (1984, Section 11.3).
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LEMMA 5.4. Following the notation of Definition 2.2 and Main Theorem 2.4, let Zo be
the zero-dimensional part of Z. Also let Z* be the zero scheme of F—sF* in T(P)xPg.
Then Z = Z* N (T(P) x {0}). Finally, let C be the algebraic curve (possibly reducible)
defined by the union of all one-dimensional components of Z* with surjective projection
onto the second factor of T(P) x Pg. Then C has the following properties:

(1) 2Xn(T(P) x {so}) =CN (T(P) x {so}) for almost all so € Pg.

(2) Z := C N (T(P) x {0}) is a subscheme of Z consisting of ezactly M(E) points
(counting multiplicities). Furthermore, 2o 15 a subscheme of Z.

(3) Let W be any irreducible component of Z. Then Z has at least one point in W and,
for a generic choice of F*, the number of points of Z in W (counting multiplicities)
is ezactly the cycle class degree of W.

We can now begin our most important proof.

PROOF OF MAIN THEOREM 2.4. Similar to the beginning of the proof of Main Theo-
rem 2.2, the results of Sturmfels (1994) (generalized to arbitrary algebraically closed K)
immediately imply that the degree of H as a polynomial in s should be S M(E, -,
Ei1,Eiz1,..., En, A) < R(E). Also each coefficient of H(s) should be a homogeneous
polynomial (in the u,) of degree M(E). These two assertions of course include the open-
ing statement of Main Theorem 2.4 (on the degree and homogeneity of Pert 4), but they
will follow only upon showing that H is not identically zero.

To see this, note that Lemma 5.1 and the Vanishing Theorem for Resultants readily
imply that the coefficient of the highest power of s in H is precisely Resg,4)(F™, Frng1)-
(Simply check the zero set of F — sF* in T(P) at s = oo, via the homogenization
s'F — sF*.) By Definition 2.2, and the Vanishing Theorem once more, we see that this
polynomial in the u, is not identically zero. So H # 0 and we have finished the simplest
part of our proof.

Part (1) of Main Theorem 2.4 follows similarly: one need only consider the unspecialized
resultant polynomial Res(g 4)(F, fn+1) and observe the terms of degree 0 in s as we
specialize coefficients to obtain FF—sF™*. In particular, Chow 4 (u) is precisely H(u; 0). Note
then that (2) and (3) also follow almost immediately, provided Chow 4 is not identically
zero.

To handle the cases of (2) and (3) properly, where we are actually working with a
non-trivial toric perturbation, we now invoke Lemmata 5.2 and 5.4 to establish a precise
correspondence between the factors of Pert 4 and the points of Z.

Letting Z;’ + be the zero set of H(u; 8) in ]P’IféE A=t x Pk, note that if j is the least exponent

of s in H, then Z:, + and the zero set of %} in ]P’;é A=l P} differ only by the presence of

the hyperplane ]P’]ﬁ A=l {0}. The second zero set does not contain this hyperplane, so
let us call the second zero set Z . By Lemmata 5.1 and 5.2, and the Vanishing Theorem
for Resultants, we then derive that dim[Z* N (7 (P) x {so})] = 0 implies the following
equivalence: H(H, ,(¢); S0) =0 <= (€ Z* N (T (P) x {so}), where Hy, is the hyperplane
dual to the point p.! By assertion (1) of Lemma 5.4, dim[Z* N (T(P) x {so})] = 0 for
almost all so € PL. So CV is an open subset of Z, where we define CV := {(y, s0)|y €
Hy, o) ; C€CN(T(P)x{so}); so € Py}. Therefore, as ¢4 is a proper map, K must

1So0 if p i= [pala € A] € P¥A™1 then Hy := {[yala € Al € P¥A 7T (¢ 4 Paya = 0}.
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vanish on all of CV. In particular, via Remark 5.2 of Section 5,

Perta(u) = a - 11 (Z 7<,aua>,

CECN(T (P)x{0}) a€4

where a € K*, [y¢,qla € 4] := 9 a((), and the product counts intersection multiplicities.
Continuing our main proof, assertions (2) and (3) follow immediately from our last
formula and our preceding observations. As for the complexity bounds, these follow
immediately from our earlier fact (a) and the Division Method (Emiris and Canny, 1995)
to compute Res,(-): to evaluate Pert 4(u), we simply find the coefficients of H(u;s) by
evaluating H(u; s) at R(E) + 1 distinct values of s and then interpolating. O

Note that our algebraic proof avoids the use of limiting arguments that were present
in Canny (1990). Thus our result holds for any algebraically closed K, instead of just
C.

5.7. DOUBLE PERTURBATIONS AND THE PROOF OF COROLLARY 2.3

The first portion of our final corollary follows immediately (thanks to Main Theo-
rem 2.4) by simply replacing Chow, with Perts in the algorithm from the proof of
Corollary 2.2. In particular, we obtain that the exact number of roots of F in (K*)"
(counting multiplicities) is exactly deg h* —deg g*, where h* (resp. g*) is the correspond-
ing variant of h (resp. g), using the notation of the proof of Corollary 2.2. The number
of distinct roots can of course be recovered by using square-free parts (as before), thanks
to Remark 5.2 of Section 5. Also, by Main Theorem 2.4, the complexity of this algorithm
is just the complexity estimate from Corollary 2.2 multiplied by R(E).

As for the second portion of our corollary, we make a slightly more sophisticated variant
of the preceding replacement of Chow 4.

DEFINITION 5.2. Let F* and F** be n X n polynomial systems with support contained
in E such that (1) F* and F** each have only finitely many roots in 7(P), and (2) F*
and F** share no common roots. Following the notation of Main Theorem 2.4, define a
double toric perturbation of F', Perty, to be the greatest common divisor of Pert4 p-
and Pertg pes.

It is then clear (via Main Theorem 2.4 once again) that using Pert’y’ in place of Pert 4 in
our preceding algorithm will lead to a new estimate, deg h** —deg g**, for deg(Z,N(K*)").
Furthermore, by the above definition, it is clear that deg h** — deg g** < deg h* — deg g*.

As for estimating deg Zy and deg Z, our preceding theory tells us that we can simply
respectively use deg h** and M(F) — deg h**.

REMARK 5.5. Our algorithm thus requires a generic choice of F* and F**. Just as in
the construction of Pert 4, we can derandomize via combinatorial means: We simply use
an irreducible fill (as in Main Theorem 2.3) to construct F*, and then simply perturb
a single coefficient of F™* to construct F**. This is the trick used in our earlier example
in Section 3.2.

REMARK 5.6. The basic idea behind the double perturbation is that the points in Z :=
{7(8) }n(6)=0 lying in positive-dimensional components of ¢ 4(Z) will move as we vary F*.
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Thus, assuming that F** is such that the new Z overlaps the old Z only on the isolated
roots of F, we should be able to pick out these isolated roots simply by computing
the ged of Perta g+ and Perts p--. We hope to address this “motion of points within a
deformation” in future work.

6. Computing Toric Resultants and the Complexity of the Sparse Encoding

Let us first recall some important facts on the computation of toric resultants.

As of 1998, the main method for computing Resg(F) is to first construct an S(E) x
S(E) toric resultant matrix, My, whose nonzero entries are certain coefficients of F'.
This matrix is specifically built so that det(Mp) is, for generic choices of the coefficients
Ci,a, @ nonzero multiple of Resg(F).

REMARK 6.1. So S(E) is actually a parameter depending on which algorithm we use for
constructing Mz — hence our earlier use of an asymptotic bound, instead of an explicit
formula, for S(E). The aforementioned bound is actually a simple estimate on the number
of lattice points in the interior of the shifted Minkowski sum 6 + Zi":ll Conv(E;), where
6 € Q" is chosen generically. The derivation follows easily from Stirling’s estimate for the
I'-function, the n-dimensional identity M(P, ..., P} = n! Vol(P), and the multilinearity
of the mixed volume.

Via some clever interpolation tricks (Canny and Emiris, 1995; Emiris and Canny, 1995;
Emiris and Pan, 1997), one can recover the exact value of Resg(F') after interpolating
det(Mg) through several-many specializations of the coefficients of F. One such funda-
mental technique, which uses n + 1 versions of M, is known as the Division Method
(Canny, 1987; Emiris and Canny, 1995). In general, the matrix Mg is highly structured
(it is quasi-Toeplitz (Emiris and Pan, 1997)) and, when char K = 0, this permits Resg(F")
to be computed much faster than would be expected.

In practice, the cost of building My (or several versions thereof) can be amortized
when one works with many F with support contained in the same E. (In fact, via the
Cayley trick (Gel'fand et al., 1994), it reasonably follows from standard results on tri-
angulations (Preparata and Shamos, 1985; Chan, 1996) and lattice point enumeration
(Barvinok, 1994) that the complexity of constructing h, hi, ..., h, dominates the prepro-
cessing complexity.) Furthermore, when randomization is allowed, the results of Canny
and Emiris (1995), Emiris and Canny (1995) and Emiris and Pan (1997) tell us that this
preprocessing is actually negligible.

As for the complexity of computing Resz(F) itself, we state the following additional
facts:

I (Emiris and Canny, 1995, The GCD Method) When charK = 0, we can compute
Resg(F) (for any choice of constant coefficients in K for F) within O*(S(E)!**)
arithmetic steps and O(S(E)?) space.! However, we have the added benefit that we

can also compute H(u;s) (for any constant v € K#4) within the same complexity
bound.

tThe restriction on chark is due to a use of effective Hilbert irreducibility, which actually fails in
positive characteristic (Lang, 1983).



182 J. M. Rojas

II (Emiris and Pan, 1997) If we assume char K = 0 and allow randomization, then
we can accelerate the Division Method (resp. GCD Method) to obtain a Las Vegas
time bound of O*(n2R(E)S(E)?) (resp. O*(nS(E)3)). Furthermore, either of these
improvements requires only O*(nS(E)) space.

1T If Resg(F) = det(Mpg), then S(E) < R(E) and we can reduce the deterministic
time bounds of the Division and GCD methods to O(R(E)*), regardless of char K.
Furthermore, if we also allow randomization and assume char K = 0, then we can
further improve the time bounds of (I) and (II) to O*(R(E)?). However, character-
izing when Resz(F) can be expressed as a “small” determinant is an open problem.
(See Weyman and Zelevinsky (1994) for some interesting partial results, including
some cases where the Newton polytopes are products of scaled standard simplices.)

The last fact is actually a simple corollary of the development of Emiris and Pan (1997).
In particular, in the situation of (IIT), we can skip an interpolation procedure that would
have multiplied our time bound by O*(R(E)).

Let us now state and prove the best current speed-ups for all our preceding algorithmic
results.

COROLLARY 6.1. Suppose charK = 0 and we allow randomization in our algorithms.
Then our main algorithmic results can be sped up as follows:

| Sequential (Las Vegas) Time Bound = O*(:- )

Main Theorem 1 P M(E)R(E)?S(E)? or n? M(E)S(E)3
Corollary 2.2 (First Bound) n*M(E)R(E)S(E)? or nM(E)S(E)?
Corollary 2.2 (Second Bound) n*M(E)R(E)S(E)? or n? M(E)S(E)3
Main Theorem 4 n?R(E)2S(E)? or nS(E)?

Furthermore, the space bound for each of the above algorithms is O*(nS(E)). Finally, if
we also have that Resg(F) = det(Mp), then the four pairs of entries in the right-hand
column (from top to bottom) can be replaced by the following sequence: nM(E)R(E)3,
M(EYR(E)?, nM(E)R(E)?, M(E)R(E)3.

REMARK 6.2. As before, the probability of failure in all our Las Vegas algorithms above
is 0, assuming any probability distribution on the coefficients of F yielding probability
1 avoidance of algebraic hypersurfaces in K#monomial terms The total number of random
choices of elements in K (or a small algebraic extension thereof) needed is n+R(E). (This
is just the number choices needed to construct h and a variant (Emiris and Pan, 1997)
of M E‘)

REMARK 6.3. Our algorithms are also well-parallelizable. In particular, all of the prob-
lems considered in Corollary 6.1 can be shown to lie in the complexity class PSPACE
(and in NC for fixed n). While this was known for the first problem (e.g. Ben-Or et
al. (1986), Canny (1988) and Fitchas et al. (1990)), our techniques enable us to derive
a much sharper deterministic parallel time bound of O*(log S(E)) (using a number of
processors polynomial in S(E)) for all of these problems (Rojas, 1999b).

So in summary, we can solve any n X n system, over an algebraically closed field of
characteristic zero, in Las Vegas time near-quartic in the number of roots of a closely
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related system.” Furthermore, our algorithms are well-parallelizable, and we can go even
faster when we have a sufficiently compact toric resultant matrix. Before proving the
above corollary, we will briefly explain what we mean by a “closely related system”.

First recall that M(E) is precisely the cycle class degree of the toric divisor Dp(F, P)
(Fulton, 1993; Rojas, 1999a). Put more simply, if we simply perturb the coefficients of F,
we can expect F to have exactly M(E) roots in 7 (P). Thus, the quantity M3 defined
earlier can be reinterpreted as follows: it is the average number of roots of an n x n system
of equations with support contained in (£1,...,&,), as we let the £; independently range
over {Ej, ..., Ept1}, and we assume generically chosen coefficients. So the quantity S(E)
can also be interpreted as a weighted average of a set of cycle class degrees. Similarly,
note that the generic number of roots of the (n+ 1) x (n+ 1) system (F — sF*,s — sp) is
exactly M(E; x {0,1},..., E, x {0,1},{0,é,+1})- So by the multilinearity of the mixed
volume, the last mixed volume is exactly R(E).

Let us now prove our above corollary.

PROOF OF COROLLARY 6.1. The key bounds to begin with are those of Corollary 2.2.
In particular, the first bound of Corollary 2.2 is the complexity of determining whether
Chow 4(u) vanishes identically. As this can be accomplished by evaluating Resz(F) at
M(E) + 1 random points, facts (I)-(III) above immediately imply our asserted bounds.

As for the second bound of Corollary 2.2, this is the complexity of running a variant
of the algorithm of Main Theorem 1, where Pert 4 is replaced by Chow 4. As Chow 4 is
just a specialized resulant, and because this algorithm boils down to evaluating Chow 4
at O(nM(FE)) distinct points, facts (I)-(IIT) immediately imply these bounds as well.

From the proof of Main Theorem 4, we know that the bound from Main Theorem 4 is
simply the complexity of evaluating Resz(F) at R(E) + 1 different specializations of s.
(Remember that s occurs only in the coeflicients of fi,..., f,, and all other parameters
are assumed to be constants.) So this bound follows easily from facts (I)-(III) as well.

To conclude, the bound from Main Theorem 1 is simply the complexity of evaluating
Pert 4 at O(nM(E)) distinct points. From the bound of Main Theorem 4, we are done. O

Are the above sequential complexity bounds the best one can expect for solving poly-
nomial systems specified in the sparse encoding?! Neglecting the precise values of the
exponents (which we have seen range somewhere between 4 and 7.376, if not better), the
answer is “yes”. This is due to the fact that a generic F will have exactly M(FE) distinct
roots in K, regardless of the number of terms present. Thus, it is really M(E), not the
number of terms, which governs the complexity of global polynomial system solving over
an algebraically closed field. So the quantities in the “base” of our bounds can not be
any smaller (asymptotically) than M(E). As for the exponent, we so far only have the
obvious worst case lower bound of 1.

However, the question of whether the number of terms more strongly governs the
complexity of solving over a non-algebraically closed field, or solving for a single root, is
quite open. For example, while Khovanskii has shown that the number of real roots of
a sparse system of equations is singly exponential in the number of terms (Khovanskii,
1991), the complexity of real solving is not yet known to fall within such a bound, even
when n = 1. Similarly, while a recent algorithm of Ye (1994) for e-approximating a

tWe conjecture that this can be done in positive characteristic as well. The main current obstruction is
the use (in current fast algorithms) of algebraic identities for recovering elementary symmetric functions
from power sums, which fail for small positive characteristic.

{That is, when we specify polynomial systems as a list of exponents and coefficients.
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single dth root of a € R has sequential arithmetic complexity O((log d) loglog %), the
complexity of finding a single root of F in K" is quite open. It is also interesting to
note that in spite of recent successes for fewnomials over a number field (Lenstra, 1997a,
19XX), it is still unknown whether a single real root of a degree d univariate trinomial
can be e-approximated within time polynomial in log(d) and log(%). We hope to address
these finer points of sparse algebraic complexity in future work.

We now close with a brief example of how M(E) can be smaller than Dy (the product

of the total degrees of fi,..., fn) by an exponential factor.

EXAMPLE 6.1. (WELL DIRECTED SPIKES) Consider the system of equations F' defined
by

d _
a11+a12%1 + -+ a1 pTno1 te11(@1 0 Tn) + oo+ erd(T1 - TR) =0

d
an,1 + An 2Ty +---+ AnnTn-—1 + cn,l(xl o mn) +---+ cn,d(l'l o 'xn) = 0.

In this case, the Newton polytopes are all equal to a single “spike”, and this spike is
equivalent (via an integer linear map with determinant 1) to a standard n-simplex scaled
by d in the z;-direction. So it is easy to check that M(E) = d. However, the product of
the total degrees of F is clearly nd™. (It is also not hard to see that the best multigraded
Bézout bound (Wampler, 1992) is n!d™.) Generating infinite families of such examples
is easy, simply by picking Newton polytopes which are n-dimensional, but “long” in a
suitable fixed direction.

REMARK 6.4. The construction of toric resultant matrices is an area of active research
and it can be reasonably expected that our earlier asymptotic estimate on S(E) will be
significantly improved in the near future. In particular, a significant first step would be
to find an algorithm which always constructs a toric resultant matrix of size O(R(E)).
Looking even further ahead, there is also hope for general algorithms which construct
even smaller matrices, via the use of entries which are nonlinear polynomials in the
coefficients of F.
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