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1. Introduction

We develop an algebraic system designed for computation with subspaces of a
( finite-dimensional vector space over an arbitrary field. based upon two operations.

which we call join and meet. The join is the same as the wedge product in exterior
algebra. and the meet roughly corresponds to Grassmann's regressive product,
with one important difference. Whereas Grassmann and all other authors up to
and including Bourbaki defined the regressive product by means of the duality of
vector spaces, we introduce a special device which enables us to define the meet
directly. This device is the notion of Cayley space. namely, a vector space endowed
with a non-degenerate alternating multilinear form, called the bracket. It seems
astonishing that this notion shouid not have been previously singled out, as it is
the basic tool—recognized or not—of classical invariant theory. A Cayley space
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186 Peter Doubilet, Gian-Carlo Rota, and Joel Stein

should be thought of as a natural companion to Hilbert space and symplectic
space.

The present definition leads to the derivation of a complete set of identities
holding between join and meet. an undertaking that in the past would have been
notationally impossible to carry out. We call these identitics the alternative laws.
The body of this work consists in various applications of the alternative laws. We
show that these laws easily yield the classical identities holding among minors of
a matrix, as well as a systematic procedure for translation of universal theorems
of synthetic projective geometry into identities. The main application we derive of
the alternative laws is the straightening formula: this can be considered to be the
end product and the definitive version of a train of thought which began with
Clebsch, was developed by Gordan and Capelli, and later by Young and Turnbull.
The straightening formula can be interpreted as giving the solution of a word
problem. It is a central result in the characteristic-free theory of the projective
group: in fact it holds over commutative rings.

As an application of the straightening formula we obtain a characteristic-free
version of the classical theory of representations of the symmetric group, as well
as two elementary proofs of the First Fundamental Theorem of invariant theory
over arbitrary fields. The only previous work on this subject is Igusa'’s.

Various other applications, which we hope to further develop elsewhere, are
sketched throughout the paper. These will include a thorough treatment of classical
invariant theory over arbitrary fields. as well as of the symmetric group.

2. Cayley spaces

Throughout this work V' will denote a vector space over an arbitrary field. A
bracker, written
[X;.. ..x,. wherex eV,

18 & non-degenerate (that 1s, not 1dentically zero) multilinear alternating torm.
taking values in the field.

A Cayley space is the pair consisting of the vector space V. together with a
bracket.

A stundard Cayley space 1s 3 Cayley space over a vector space v of dimension n,
whose bracket has the additional property that for every vector x in V. there
exist vectors x,.. ..x, such that

B T

is not equal to zero. In a standard Cayley space the length of the bracket equals
the dimension of the space. and conversely. Unless otherwise stated. ail Cavley
spaces occurring in this work will be standard.

The exterior algebra of a standard Cayley space is constructed by imposing an
equivalence relation on sequences of vectors. Given two sequences of vectors of
length k. we shall write )

dy...uay ~h, . b,
when for every choice of the vectors x,.,...... X, we have
layovapox oo ox = b e -
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An equivaience ciass under this relation will be called an extensor, or decomposable
k-vector. and will be written as

ayVa, V---Va,.

The operation V is called the join (and is elsewhere written A : our departure from
customary notation is well motivated). Note that the join is non-zero if and only
if {a,.....a,} is a linearly independent set.

A non-zero extensor is of step k if it is the join of k linearly independent vectors.
If1tis of step zero it is called a scalar.

The extensors of }'span a vector space of dimension 2", calied ¥. whose elements
are called antisymmetric tensors. The algebra of ¥ together with join is the exterior
algebra of V. It is an antisymmetric associative algebra with identity (the scalar.
one) with the usual properties which will not be recalled here.

The extensors of step n form a one dimensional sub-space of V. Choosing a
basis {a,.....q,} of V., whose bracket [a,.... .a,] equals one. or a unimodular
basis. we may construct a basis for this subspace. the element

E=a, V. - -Va,.

E is called the integral.

We shall frequently indicate tne join of extensors by simple juxtaposition of
symbols.

ab =aV b

Also. if A and B denote two extensors the sum of whose steps is #. we shall write
(A, B} = [AB] for their bracke:.
Every extensor A4 defines a unique subspace of the vector space V. namely

A = spania,.....q,}
where {a,.. ... a,} 1s any set of vectors such that
a, V... Va = A

The subspace A4 is called the support of A. If 4 and B are extensors, then 4 V B
is non-zero if and only if A~ B = 0, in which case the support of 4 V B is the
sub-space 4 U B spanned by 4 and B.

A linear transformation T of V into itself is said to be unimodular if it preserves
the bracket.

Given an extensor 4 of step n-k in a standard Cayley space. we define the
bracker relative to 4 by

[y x 0. =[x;...x, 4].

A relative bracket is an alternating k-linear form on a vector space of dimension n.
Conversely. any alternating k-linear form on an a-dimensional vector space
defines a unique relative bracket. The pair consisting of a vector space V with a
relative bracket is a non-standard Cayley Space. called the contraction of the
standard Cayley Space by the extensor 4.

in a non-standard Cayiey space on ¥, a vector in ¥ is said to be of rank zero
when for all choices of the vectors x, . . .. LX_,in ¥V

[x.x,....x,_, ] =0
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188 Peter Doubilet, Gian-Carlo Rota, and Joe! Stein

Otherwise it is said to be of rank one.

3. Splits and shuffles

A split of the linearly ordered set, or sequence 4 = ¢.. be... de.. fisa partition
of 4 into blocks which are intervals of 4, namely

B, ={(a,...,b) B, ={c...., d)....

If B; contains i, elements for each j we call the split the (iy,. .. i )-split of A.

A shuffle of the (i, .. .. i,)-split of A is a permutation ¢: 4 — a(A4) of the elements

of A with the property that each block of the(i . .. . . i,)-split of 6(4) is a subsequence
of A. That is, the linear order of 4 is preserved in each block of o(A).

A bracket product is an expression of the form

lay...a)lb, ... b)) [ey...c,Jd, V... Vd

p

for some arbitrary number of brackets.
Let

Gy...a;, b,...b,...

i ! i

o0 dyoood

Lal

denote a subsequence of the vectors in a bracket product. We define the split-
sum of their (i, . ... k.m)-split as the expression

Y.sgnia)lela,}).. ataja;., ,...a,)alb,). . alb)b,,,...5,]...

< {oley) . oolege,y.cp)old) . ald)d,, ., oo d,

where the sum ranges over all shuffles of the above split. Alternatively, we write
this as

a

I 4 7 ] "o H
Wy df diyy g, l{b5 B b b

KoY o A R A 7 LA 4 o

H mo ey r

The split-sum is thus formed by applying to the sequence of variables marked
by the superscript ¢ in a bracket product, the shuffles of the split whose blocks
are determined by the brackets.

One can iterate a split-sum. When the sets are disjoint. iteration reduces to an
interchangeable doubie summation. In the general case. split-sums are not
commutative,

As an example.

et def Vg heiikl]
denotes the split-sum of the (2. 1)-sphit of a4, b, g either followed or preceded by
the split-sum of the (2. 2)-split of ¢.d. h.i. However.

[d*" b Pdef (g Wik}

denotes the (non-commuting) sphit-sum of the (3. 3)-split of «. b. ¢, g. h.i tollowed
by the split-sum of the (2. 1)-split of the sequence #(a). O(b). O(g).
In a single split-sum. we often replace the superscripts by dots. Thus,

[a"bed][efgh) = [abed)[ofgh).
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The use of dots to indicate split-sums will be called the Scottish Convention after
H. W. Turnbulil who used it informaliy.

4. Cayley algebras

We now define a second operation on a Cayley space, called the meet. Let
A =a,.. .aqand B=b,. .. b, beextensorsof indicated steps satisfyingk + p > n.
We define their meet

ANB=a,...aqu Nb,. .b,

i

by the expression

ANB= ngn(ﬂ)[aq(i)anlh"'ua('t'p)bl . byJa

a

ain—p-~ l""an(kv

where o ranges over all shuffies of the (1 — p. k — n + p)-split of a, ... q,. Alter-
natively, we mav write this as

ANB=1{a,...a, ,b,.. .bla,_,. . ..4,.

where the dots indicate the split-sum of the (n — p,k — (n — p))-spiitof a,...a,.
H %k + p < nthe meet is defined to be zero and in either case it is extended by
linearity to all linear combinations of extensors.

PrROPOSITION. The mveet satisfies the identity
[, ay by b Jag ey d = b b ay o ab, e by

The verification 1s a simple consequence of the alternating property of the
bracket.

THEOREM 1. The meet is associative and anticommutative following the rule
BA A= (=l nn=Rig AR

where 4 is an extensor of step k. and B of step p.

The verification is a straightforward computation.

The Cayvley algebra of a Cayley space is the algebraic structure obtained by
endowing the exterior algebra with the additional operations of bracket and meet.
Thus. a Cayley algebra is the vector space ¥ endowed with three operations in the
sense of universal algebra: meet. join and bracket.

CoroLLARY. The integral E is an identity for meet in the Cayleyv algebra. that is.

ENA=ANE = 4

Jor all A.

The meet of two extensors has an important geometric interpretation:

PROPOSITION. If A and B are extensors of step k and p, supporting subspaces A
and B of a standard Cayley space over V, and the span A w B equals V. then the
meet 4 A B supports the intersection A n B.

Proof: Take a basis ¢, ...e, of V' such that ¢,.... ¢, is a basis of 4 ~ B,
¢y.....e,abasisof dand e, ,.....e,.e,.....¢, abasis for B. We mav therefors
write. for some scalars ¢ and d.

B=yde,  ..e,e ., ,...¢,

cey ... ¢,




- s

o L]
®o
o oo
s &
66680
ce0
e 0o
X
¢ ¢ 9
s8
190 Peter Doubilet, Gian-Carlo Rota, and Joel Stein
Expanding 4 A B, we get
ANB=ocdle, ... ele, .. . e,. q.e.d.

COROLLARY. The meet of two or more extensors is an extensor.

5. Duality

Let 4,,..., 4, be extensors of step n — 1 in ¥, which we call corectors. We
define a new alternating multilinear form on covectors in V, called the double
bracket, by setting

;... 4] =A4, A AA,

We infer from the properties of meet that the double bracket is non-degenerate
and of step zero (that is, a scalar). Thus, since the vector space spanned by covectors
is of dimension n. the double bracket defines a Cayley space on covectors. The
associated Cayley algebra is called the dual Cayley algebra. A Cayley algebra and
its dual are isomorphic. The role of join and meert are interchanged under the
canonical isomorphism.

A set of covectors 4,... ... 4, with non-zero double bracket constitutes a basis
of covectors. In such a case, a corresponding basis of vectors dy.....u,can always
be found satisfying

A, =d,...4;.. .«

ne

where 4; indicates that g, is delewed. !t is verified in Section 7 that
A4 .....4 ) ="la,.....a,]" *.

an identity known as Cauchy’s theorem on the adjugate. By duality and Cauchy's
theorem, we may construct from every identity between joins and meets, another
identity where the roles of join and meet are interchanged, step k is replaced by
step n - k, and suitable powers of the bracket appear as multipliers to restore
homogeneity
For example. if 4 is an cxtensor of step k and the b, are covectors. the identity
ANVAby A Ab g = by A AV A AL, A A by

is immediate. as it is the dual of the identity

Brta, vV, =@, V- Va)A(BVa., Vv - Va
where B is an extensor of step n — k and the g, are vectors.

The principle of compiementary minors which associates with every identity
holding among the minors of 2 matrix another identity holding among the com-
plementary minors of the adjugate matrix, is a special case of the duality between
jomns and meets.

By introducing the analogue of the contraction of a bracket by an ¢xtensor A.
1 the dual Cayley algebra. we may construct in the given (ayley algebra the gual
operation, cailed the co-contraction or reduction by A. Thus. if A is of step k and the
X; ure covectors. write A4 as the meet of n — k covectors and define the reduction
by 4 as

peih
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The notions of contraction and reduction i the Cayvley algebra correspond
g roughly to the meanings these terms have in combinatorial geometry.
q.ed.

6. Identities in the Cayley algebra

We present a sampling of identities which describe how joins and meets

are
distributed through each other. or alternative laws.

c..ors. We We begin with some notatior. Juxtaposition of vectors denotes join and juxta-

the double position of covectors denotes meet. The inner product of a vector a and a covector v
1s defined as

. alxy = @ N ox.

iegenerate

covectors Siraiiarly, if extensors 4 = q, . .. @ and X = x; A .. A x, are given, where the

ctors. The a; are vectors and the x; are covectors, we define their inner product of length k

gebra and as

under the

CAIX > = Cay . aix, . x0

X
wzbasis =lap.oa) Mxyooox),
awwall s
o THEOREM 6.1. Let a,

Ifk > < then

..... a, be vectors and x, ... . X, be covectors.

lay ca) Ay ox) = ayin, s agxa, .o

If & < s. then

tacca) Vaxg o oxy=x,..0%, . X a ).
Cauchy’s
.. anottier Proof”: We verify the first identity. From the definition of meet.
>laced by (@@ Axix) = <aflx el ad) A e, v
o restore ‘
= atlx >l @y o afy A (x, <)
> identity
Here o ranges over the split-sum of the (1. k — [)-splitofa, ... «,.0ranges over

the split-sum of the (1. k — 2k-splitof u,,,... a,,,.and so forth. But by an elemen-
. iary coset argument this is equal to the split-sum of the (1. .. L.k — s)-split of

dy ooy, !

. THEOREM 6.2. Let a, .. .. .a, bevectorsand x ... ... X, be coreciors.
ide If k > s then ‘
the com- ’ '
between far. . a) A (x. .. Xo) = ... adxy .. x) . '
/. P . . N
ensor A’ "fl\ < thon X {d; .. R ST O SN PR .\S>a.\.+1 « .. dp.
the dual o
and the ldpoap) Vvo(x,oox) = Xy X <a a;. N T A
duction . . .
N AT Y
Proof: By the associative jaw.
o M X = g A EX A A ciey AW
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whence proceed as in Theorem 6.1. The second expression is derived similarly.
CoroLLARY L. Let C,..... C, be extensors of stepn — i,....n —~ j,n — | and let
k=1i+ - +j+ 1 Then

@@y AMCyA - ACY=Ta,...4,C\).. [dievjer . 6,C.]

If A=a,...0,and X = x,...x, are vector and covector decompositions of
flats we shall sometimes employ the notation

A=a,...4, and X =%,...x,.

COROLLARY 2. Let A j and X be extensors of complementary step for each j.
Then

(A, V.- VA /\(Xx A A X)) = <Alle>'--<Ak|Xk>Ak+l
(A Vo V APV X Ae A X1)=Xk+1<Ak1Xk>---<A1|X1>

THEOREM 6.3. Let A;, B,, C,. D, X, _ 1y, and Y, _p+q be extensors of indicated
steps. Then

(AVX)ABCADV Y)=+(AV B AX)VICVD)AY)
Proof:

(AVXYANBCADV Y)= +[4BX]IC A(D V Y)
*(AVBAX)CADVY)
+{(A V B) A X)[CDY]
+((AV B A X)V((CV D)AY)

il

]

THEOREM 6.4. If A V B is of step n. then
AVB=(4AABVE

where E is the integral.

The proof is a simple verification.

We now present the main result of this section.

THEOREM 6.5. Let C'"). .. C" be extensors of step n — g,.....n — 4, and ler
k+s=y, + - +yq, Then

i oaby by ANCEA L ACY = bV Y (e e

. b . ~tl) .. L
< Vay..o.oa, o CP0oA Ay, -, -

il

el ’jkC(r's

where the integer (1,,. ., i) is specified below.
Proof: For simplicity of notation take s < g,. By Theorem 6.2, we have, calling
the left side 1.

=1 5 O ; (2) ; - :
I'=la,...a,Ca, . ...a,.,C". (4, .. el &b B O
The permutations actingin this equation may be separated into classes according
to their effect on the b's. Thus, a given permutation positions, say, i, of the b’s in
the bracket containing C'"', . . .. i, of the b’s in the bracket containing €. Affixing
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the appropriate sign,
I= % (=Y blal.. ad _, CM]

M Tl 1
iy e+ =g

] 8 4 (21
L LR R N (TR R ERY. A o DO
[ 8 .0 tr)
X (B evitygr e baf,, -, + SR S PR N i)}
Here 6 ranges over the split-sum of the (i ..., i,)-splitof b, ... b , and o ranges

over the split-sum of the (¢, — i,.....q, — i,)-split ofa, ... a.
We first evaluate (i,..... i):

WG+t G =)+ iylgy o+ g = s+ i)+ ifg, — s+ iy i)

1l

g i)+ goliy + ) + - 4+ g li, + - + L) —sliy + - +10)

) sty ) A g 4+ i)
=g ) E gyl + iy + o+ gl & )+ hotiy .. .1,
where fi(i, .. i) is the homogeneous symmetric function of degree two on

fpooood,.
We now factor out the b’s using Theorem 6.2. This gives the desired identity.
We conclude this Section with two examples which illustrate the correspondence
of theorems of projective geometry with identities in Cayley algebras.
DESARGUES'S THEOREM. The corresponding sides of two collinear triangles intersect
in collinear points if and only if the joins of corresponding vertices are concurrent.
Proof: Let a. b. ¢ be vectors and x, y, z be covectors in a Cayley space of three
dimensions. Juxtaposition of vectors denotes join and juxtaposition of covectors
denotes meet. The identity

ahe A Tta v y2) Adb Vo zx) Ade Voxy)] = xaz A [(be 2 xi V oica A VI Vi(ab A z)]
is easiy verified. Now let x = #'¢’. v = c'a’. z = a'h’ so that xyr = {a’b'c"2
This gives

{bc A B¢’y V(ca A c'a’) V (ab A a'b’)] = [(ad’) A (bb’) A (cc))[abc][a'b'c’).
Desargues’s theorem for triangles whose vertices are a,b,cand &, b, ¢ is then the
statement that one side of this identity is zero if and only if the other side is zero.

PAPPUS’ THEOREM. If a. b. ¢ are collinear. and a’. b'. ¢’ are collinear and if all six

points are distinct, then ab’ A a’b, be’ A Ve, and ca’ A c'a are also collinear.
Proof: The theorem is a restatement of the identity

B (/ p)'d
(he” A DYV olea N c'ay Votab’ A o'hy o on
= laa’b’l{bb’¢’][cc’a’ [abc] ~ fabb’][bec' [caa’}[a'h'e’). {l2stt 2 ‘//

Note that the algebraic version of each of these theorems is the stronger one,
s it includes the geometric result as well as degeneracies.

7. Determinant identities
Identities betweer minors of matrices find elegant verification in the ianguage
of Caylev algebras. We illustrate with some examples.
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Let {e,.....e,} be a unimodular basis of vectors. With it we associate a basis of
covectors {1.... n! by setting j = X;=¢;...&...¢.* Thus any extensor A of
step K may be uniquely expressed as a linear combination of monomials of the
form i, ...i, . wherci, < - < I,_y€1l and juxtaposition indicates meet. It is
easily verified that {1, .. -.nj is also unimodular, that is. that 1 .. .7 is equal to
unity.

Given an extensor 4 = a,... g, of step n we may re-express its determinant
la; ..a,]in coordinate form by applying the alternative laws to 4 A | n:

ANT...n=1a,...a,]= (ai) o Kayay

where <alj> = a; A jis the j-th coordinate of a; relative to e, e,,. .. . e,.
A similar procedure may be used to coordinatize a flat of any step. Thus, if 4
is of step k we may write
A=ANey e,=6. (A Nhe., . ¢)
or

A=AV =% X (AN%5 L. %),

The first expansion represents a covariant coordinatization while the second
represents the associated contravariant coordinatization. The numerical coeflici-
ents occurring in these expansions are the well known Pliicker coordinates of the
flat relative to the indicated basis.

Given a determinant A = [q,, dz,....,4,; the adjugate of A is the determinan:

A*:an/\an—! /‘\”-/\ al

where a; = ay ... 4, . u, The adjugate 1s thus the determinant of (n— 1y x
(n — 1) minors of A. Many determinant identities describe the relationships
between these two determinants.

We begin with the expansion of A due to Laplace.

() The Lapiace expansion . This describes how to expand A in terms of the set of
minors of A in a given subset of 1dy. ... d,;. Thus by Theorem 6.2,
A=uy  u, ANL..on
=dde )Ny AN+ 1
= .‘.ukli...l&)(ak‘l...anik ~ ... ")
The Laplace expansion 1s thus a ronsequence of one of the alternative jaws,

(2} Cauchy's Theorem on the adjugate: The adjugate is the (n - {)th power of
the original determinant. Bv the associative law for meer.

A% = (i big A L s a,
dy..od) Maydyooa) N Aqay Sy )

= ={- W dlday ) Aolayase, Uai AN Ny ay

= AT

* Note our unconventional usige of integers as variables
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(3) Jacobi’s Theorem on the adjugate : A minor of order r of the adjugate is equal to
the complementary minor in the original determinant multiplied by the
(n — r — D)th power of A.

We illustrate with the case r = 2. Consider the identity

ag A - Na, =aa,dy...a, A a1a,a,4, ...a, A --. Aaa,...a4
- (_)(n-z)(n-3)/2

@a;laaxay...a,].. [a, ... a,_,4j

— (_)(n—ZJ(n—I&)/ZalaZAn—S.

Now meet both sides with

Lo

ij=€l.., .é}'...e"‘

This gives
<@,...ale, . b8l = A" a,a,jij>,
which is the desired result.

14) The Bacin-Reiss-Picquet Identity: Starting with Cauchy’s theorem on the
adjugate. meet both sides witha b... ¢ Qi+ ... a,. This gives
la b..c a., calay . a
=[d a,..a,][ab 43...a,]la,a,...¢ a,(H.,.a,,][al...('J,H.i.,.a,,].v.[a,...c':,,]
SO that
la b.c a,,. . . a]a! = fdaq..,a,,][a,.‘}.‘.a,,]...[a, Ll ay],

L 2

as desired.

5) Sylvester’s Theorem on Compound Determinants - Form the set of monomials

4, ... ay wWhereiy < ... < | from the sequence-{a,,...,a,} and order them lexico-

graphically as {4,,..., A(,,)}. Also, let the set {X,,..., X(,,)} be formed from the
k k

set [i....,niof covectors, in the same way. The determinant

A= <A1]X1>--'<A(:)ix(l’:)> -

is called the k-th compound of A. Sylvester’s theorem states that A, = A(“" .

n—1
We illustrate the method for the case n = 4 and k = 2. so that (k ) =3

By Cauchy’s theorem,
labed]® = (abe) A (abd) A (acd) A (bed)
= (ab [acbd]} A ([adbel o)

= (ab V {ac A bd)) A {(ad A be) V cd)
Similarly.
[12341° = (12 V (13 A 24)) A ((ta » 23) v 34;

Now substitute for [abcd]? and (12347 on the left hand siqe of
[abed] V 123473 = [abed)?

and expand the resulting expression oy the alternative laws. This gives the resuit.
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Sylvester’s identity shows how to construct a Cayley space on the extensors of
step k.

8. The Straightening Formula

We now derive the basic result of the theory of Cayley algebras. In its simplest
form, it can be viewed as stating that a set of vectors is a basis of a certain vector
space. It can also be interpreted as the solution to a word problem in the Cayley
algebra, (see Section 12).

Our main application of the Straightening Formula is a characteristic-free
proof of the First Fundamental Theorem of invariant theory. We also sketch
applications to the classification of identities in associative algebras and to the
theory of symmetric functions.

Some of the results below can be extended to spaces of arbitrary dimensions,
but we have preferred to preserve the more elegant approach by Cayley algebras.
The finite-dimensional case proved here is actually the stronger.

Let K be a field of arbitrary characteristic and let Ry be the polynomial ring over
K obtained by adjoining mn transcendentals (ajx;) where ie {i.....m) and
Jeil .. n}

Leta = (x,.....4,)and B=(By,....5,)be sequences of non-negative integers,
We define

Ve

to be the vector space over K spanned by all monomials in the {a)x;) which coniain

a; occurences of a; and B; occurrences of X;, or all monomials of content (o, ) for
shor:.

A doubie tabieau of content (2, p) is denoted by the double matrix

[dir o Ay, Xypo X1a.d

f \
I !.
T e ( : P ’
\aﬂ...a“.’ Xop oo X, ]
wheren> 4, > .. > 4s and where the elements a;; of the left tableau are chosen
from {a,.....a,} and the elements x;; of the right tableau are chosen from
{x,.... » Xn}, such that each a; occurs with multiplicity «; and each X; occurs with

multiplicity B;.
The tableau T is defined to be the expression
T = (g
where we set
aj ... Aj Xy X;,) = Z Sgn(U)(Ujllxja(l)) S (aﬁ,'xjau,))’

the above sum extending over all permutations ¢ of the sequence 1,. ., 4.
Assign to the ¢, and x; the linear orderings

O A SRR STV NN I/ clg Xy Xeah

4y < <a, and x, <X,

Relative to these orderings, a double tableau js said to be stundard when in each
tableau the entries in each row are increasing from left to right and the entries in
each column are non-decreasing downward.
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The shape of a double tableau T is the row length vector

ATl =0k 0.

*s
Shapes of tableaux are ordered iexicographically by » > 4 when A; > yu; and
4=, for j < i
Using this ordering on shapes we now linearly order all tableaux. Associate
with T the sequence

T = : )
nliT] = Ari- i3 @0 G Ny X

and order the set of these sequences lexicographically.

If'S denotes another double tableau then set T > S if A[T] > /[S], or if
2[T] =7IS and n[T] < n{S.

Remark: Identities in a Cayley algebra between inner products may be inter-
preted in Ry. To do this. substitute for each inner product (q, ... alx; ..x;
the double tahleau (@, ...a,lx; ... x;) Conversely, any identity in R, may be
interpreted in a Cayley algebra over the integral domain Ry. and we shall use the
(WO notations interchangeably.

LEMMA i, Let k > ! and

B=b . b_, Vo= 'y

C=1c.,...¢q Z==z,...3
where the b, and ¢, are vectors taken Jrom the set la, .. . a.! and the yiand z; are
covectors from (X, ... «}. Then the expression

I'=(Bb,... bJY>é, ... ¢,Clzy

is equal to a sum of products of pairs of inner products. each pair containing one
inner product of length at least k + 1.

Proof: By Theorem 6.3 we have
I'=(+}BV Y)A (b;...b, Cro ey ATV 2Z),
Setting b, ... b, ¢, ... ¢; = D. we now use Theorem 6.5 to distribute B through
the other factors. This gives
J-1
P= ()Y A Y (=)(b].. b))V D} A b by V(CV Z)
s=0

Distributing Z by the duai of Coroilar 1 to Theorem 6.2, this becomes
g 3 Y

j=1

I=(2)F (=)

{67 B0y A Y A (2o 200)) VB, b]_ Oy A (2502 2k
or
! , {1] hD Y
[=(%) ) (=)l .
s=0 b;k bj__le-S-z Z

which conciudes the proof.
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~ . . . . Cc
THECREM 1. iStraightening Formula) The double standard tableaux of content
{w. By span V.
\ Proof: Any monomial of step zero equals a linear combination of monomials .
of the form Wb
exy
TR tat
/ : <
- str
h!y
) ( CaixsLblyy L {2y = aE /
. el
We show that any double tableau equals a linear combination of double Th
standard tableux. We proceed by induction on the linear ordering of tableaux, tal
and show that every non-standard double tableau T of content (x. 8) equals a :
linear combination of greater tableaux of content (x. f8). Since there are only
finitely many double tableaux of content (a. ) iteration of this argument must oy
then eventually express T as a linear combination of double standard tableaux. me
Iftwoentriesin T satisfy t,, = 1, ., ort,;, > 1., call thisa violation of standard tio
formin T .
Assume a violation occurs n the left tableau. If it is a row violation. u,, > «, .
then set T ~ -8 where S is obtained by reversing the positions of u,, and o, ., us
in T Note that (T} > #(S sothat § > T
; Now assume a column violation a;; > 4, . ; occurs.
‘ Let T, denote the firsti — | rows of T. T, denote the next two rews of T. and T,
denote the remaining rows. We are primarily concerned with T;. which we display ac
ds b\
: to
( I B bj.‘.b,\[) :
; ' ey, O0Z ar
where
(AN
B=b,...b_, Y=y, Vi cl
Co=¢.., ¢ Z =z hof
Consider the expression
[ |B b, 45“)'\ a
'TUNTUREN G Z}' ot
Since any indicated permutation o. except the identity. cxchanges elements from
the first row of [ with elements from the second row. and since
T VI -TIE U I
. » al
1t must be truc that atc,) > n(b/j. Thus we have that
=T, + Y 58 h
T
where ¢(S) are integers. By Lemuma 1 we also have o
I= Z Q@ L
Q=7

AT AL W ST DR 474 T oW
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Combining these results gives
T,= Y «QiQ+ Y «S)S
0T, SoT,
which expresses T as a linear combination of greater tableaux. Appending this
expression for 75 to T vields an expression for T as a linear combination of greater
tableaux. Similarly. if violations occur in the right tableau of T. they may be
straightened by an analogous procedure

This completes the proof

In the course of the proof the following result has been implicitly established :

COROLLARY. Let P and Q be elements of Vg and let

P o= (a; - agix; ox 0.
Then P equals a linear combination with integer coefficients of double standard
tableaux. whose first rows are of length s or greater.

Theorem | has an interpretation in a Caviey algebra over K.

Tueores 2 (Straightening Formula for Cavley  Hgebrasi, Anv monomial of
content (2. Y of step zeroin the vectors a; and the covectors v built out of joins and
meets i the Cavley algebra of a vector space of diniension d equals a linear comhbina-
tion with ntezer coetficients of double standard tableaux of content (. B). whose
rovws are of lenath ar most d

We next establish the linear independence of the double standard tableaux.
using a new kind of polarization. We begin with some definitions.

The set-polarization operator

DMb.wr = D!

hy

acts on a4 monomial in 3, by replacing it by the sum of the monomials obtained
by replacing in turn every subset of k entries equal to a by a subset of k entries equal
to b, If the given monomial has p occurrences of the symbol a. then the result of

i

applying the operator Dj, is the sum of(z ,terms. if the monomial has fewer than &

occurrences of the symbol a, the result is 0. For k = 1 the operator D'(b. a) is the
classical polanization operator.
The substitution operator

Sthoay = §,,

acts on monomials in 1, by replacing each occurrence of the symbol « by an
occurrence of the symbol b,

Now extend set-polarization and substitution to all of ¥, , by linearity.

Thefollowing combinatorial lemma is easily proven by the pigeonhole principie

LeMMa 1 Let S and T be single tableaux of the same content with AST < /T
If in each tableau the entries in each row are strictly increasing. then one of two
alternatives occurs:

i Sand Tare of the sume shape. and the entries in each column of T are obtained
by permuting the entries in the coreesponding column of S, or

2
ot §.

We are now ready (0 prove ine finear indepeadence of the aouble standard
rableauxin X,

Sonic cow 6f T eontains Gt least two entries which appear it the same column
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THEOREM 3. The double standard tableaux of content (x. p) Jorm a basis for Vip.
Proof: It suffices to produce for any double standard tableau {T\IT,} a linear
transformation P(T|T,) from V. 1o some vector space satisfying

PLITHTIT) = w
P(Tlsz){Dljsz = 0

™)

for w £ 0 and where {D,|D,} is any other double standard tableau {D,|D,} of
shape > 4. where 4 = shape of {T\|T,}. For then, if the double standard tableaux
were not independent, there would be a non trivial linear combination % of
double standard tableaux equalling zero, and if we were to take a tableau {TITy}
of least shape with non zero coefficient in ¥ (say the coefficient of ITIT} is d)
then applying P(T}|T;) to £ would vieldd - w = 0 which is impossible since
and w # 0. Hence the double standard tableaux w

Let My be the polynomial rin

]

d#0
ould have to be independent.
g over K obtained by adjoining transcendentals
{si;lty) and (b,ly,) where indices range over finite sets of sufficient size
the following constructions. Let W denote the vector space with the
(bpiyq) as a basis,
In the double tableau (T, et 2;; be the number of entries equal to g, in
column j of T, and let B:; be the number of entries equai to x; in column j of T,. Set

DT Ty) = [ D*Asy. a) [] DPoit,,. x
ij

ij

to perform
{s;lt,,) and

i)

1

Now let
SITUTy) = []S(b;. s,;) [1S0;.1,.
ij if
By the above definitions. the operator

PITIT,) = S(T,| Ty D(T,|Ty)
is a linear operator which maps V, , into W.

To see that P(T,|T,) satisfics (*). we begin by computing D(T,|T,){ Ty| T,!. This
18 a sum of the form

DITIT)ITIT,, = 1 TyTy) + LAY

where | T7(T, ) is obtained by replacing the %;, entries - the /-th column of T
which are equal to d; by 5, and simultancously replacing the Bi; entries in the j-th
column of T, which are cqual to x; by t,,. Each term ¥ Va) has the property that

it may not be obtained from (TS by permuting the elements within a column.
We claim that

P T = (THT) £ 0,

where ail entries n the jth coiumn of TV or T cquais byory,. respectivery. Clearly
(TUTS) is one term 1n AT Ty) | T T, since it is the image of [ T%! under
S(T,iT;). But by the ubove property of the other terms VFiVa ) and sinee D( T
preserves the shape of a double tableay. we have by the preceding lemma that
S(T‘H‘Tl)l'vll;l'“} =0

Now consider any other double standard 1ableay GGy of shape 4,
DITHT)IG G, s 2 sum of terms c1 D of shape >4 which are not equal to
1 T1TY,) or obtained from by rearranging elements within 4 ~viumn. Hence by
the Lemma PTT)!G,G,! = 0. This completes the proof.
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The Straightening Formuia for Ry states that V5 has two bases. the monomials
of content (x. ) and the double standard tableaux of content (x. §). This result can
be related to an identity in the theory of the symmetric group.

Lei M(x.f) be the dimension of ¥, ;. and note that this number equals the
number of matrices with non-negative integer entries and with row sums (2, %,,.. .}
and column sums (f,,f,....). Let K{x ) be the number of single standard
tableaux of content x and shape /. Then the above yields the identity

fix. p) = ZK(a AK(B. )

as / ranges over all partitions of the integer n.

We now extend the linear independence of the standard tableaux to a more
general ring. We begin by motivating our construction with imprecise but, we
hope, suggestive language. In a vector space of dimension d, monomials in the
inner products {a;x;> are not always linearly independent. This leads to con-
structing a homomorpmc image of Ry which is isomorphic with the ring of inner
products ol vectors and covectors in d1mensnon d.

Consider the ideal J, in R generated by the elements

det(ajx,)

iel

heK
as { and K range over all subsets of d + | elements of [1..... miand {1..... ni.
where d is a given integer.

The ideal J, is invariant under permutation of the variables a; and x;. Further-

more, every double tableau having one row longer than d belongs to J,. By
Theorem 3. these double standard tableaux are independent. and by the Corollary

rableaux cach of whith hasa R or ;.,:::; w2 mave proved the

Lemyia, The ideal J, has a basis mns:’srwg 0_1 al.’ doubic siandard iableaux in the
entries a; and x; having at least one row of length greater than d.

We can now state the main result of this Section:

THEOREM 4. In the quotient ring GAK) the double standard tableaux whose rows
are of length at most d form an integral basis.

Proof: By the preceding lemma. taking the quotient by the ideal J, amounts to
setting to zero all double standard tableaux having one row longer than d. and
only these. Hence. the conclusion follows from Theorem 3.

Finallv we note the remarkable fact that by Theorem 4. even though monomials

in the (a;x;) are not independent. nevertheless the double standard tableaux are.

9. The First Fundamental Theorem

We now apply the Straightening Formula to derive the main results on vector
invariants over arbitrary fields. The technique is simpler than the ones classically
used, which apply only to fields of characteristic zero.

Let V be an n-dimensional vector space over & feld K. and lex

Fix,.....xy)=Flx,.....iyier.... . e

be a polvnomual funcuon of the coordinates of the vectors x;..... xy relative to
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the basis of covectors ¢1---.. ¢, Since the jth coordinate of the vector x; may be
written as

TN, =X Al = (xfe) = (X,
the function Flx, . xy) equals a [
vectors x; and the covectors e,

A polynomial is invaria
on |,

near combination of double tableaux in the

1t when for every non-singular linear transformation 7

F(Tx,..... Txyie,.. .. €)= AT)Fix,,. . Xy e
where /(T) is some scalar function.
Since T induces through its adjoint T*_ non-singular linear transformation
On covectors satisfying

< Txile,‘> =<x|T* €0

and since F depends only on the <xje;>, we may alternately define an invariant as
a polynomial which satisfies

Flx, ... . . Xy THe, o T*e) = T )F(x, . .

for ail non-singular lincar transformations T* acting on <ovectors,

We also define 4 formal incariant as a polynomial FIx,. .0 .xy) which is an
invariant when considered over the extension field Kixi oo oxy,h where K s
the ground field of V' and the coordinates X;; are transcendentals.

We shall prove the following result over an arbitrary field.

THEOREM |. £ ery invariant (or formal invariant when the field K is finitey in the
tectors xy, .. Y s expressible as a linear combination of producrs of brackers in
the x, . where vuch summand has the same numbper of brucket factors. In other words.
every invariant is a word in the Cuyley algebra. built our of joins und meers of x| xy
alone with no explicit reference ro Cro s Cqinwhich every summand i of the same
total degree.

Proof’ As noted F may be writien as a linear combination of double tabicaux.
and thus. by the Straightening Formula, as a linear combination ¥ — Yoo D,
of double standard tableaux. We must therefore show that the rght tableau of
cach summand in ¥ g given by writing j in place of ¢,

/]2 TS

where D has (3ay) g rows,

We begin by showing that cach right tableau in
€1+¢2.. ... ¢, the same number of times. From the definit
considering the linear transformation

contains each variable
1on of an invariant, by

'/‘*('v =g
’I-*L’, = VN
for some scalar C.

We may conclude that each Integer i occurs the same number of
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times. say g;. in each right tableau in ¥ Now by considering the linear transform-
ation

T*e.

i J

* —
T*e; = ¢,

]

T*e, = ¢, k ..

we conclude that g; = g; for all i and j. and call the common value g.

Let us now analyze the possible order of the entries in a right tableaux D,.
more particularly in the rows. If in each row of every D;. every integer j is
immediately followed by j + 1, then the proof is concluded. We may therefore
assume that there is a smallest integer j and a first row, say the (k + 1)th. such that
jis not followed by j + 1 in this row. The rows with this property will be adjacent
and below the kth. Say there are Q such rows. R, ... .. R, .o Then there are
Q entries equal toj + 1 out of position. They cannot be in any of the rows preceding
R, .,. because these rows already contain an entry equal to j + 1. Hence they
must lie in the rows following R, ,. Let R be one such row containing an entry
equal to j + 1. Then j + 1 must be at the left of this row. For it cannot be to the
right of the jth place. otherwise the tableau would not be standard in the corres-
ponding column. and it cannot be between the first and the jth place, otherwise
the minimality of j would fail.

Hence. following row R, ., there are Q further rows Ry.g4+1..-- . Riszg for
each of which the left entry isj + 1.

Thus, the tableau must be of the following form:

(1 2 g oj+t1
kmwle 2 .. j j+1 .
I
[] r IR T RS B
1 2 g,
Q rowsy{:
(1 2 ...+
+1
Q rows
JH1

*
*

*

where the stars stand for entries greater than j - 1.
Since this analysis accounts for all {j -- 1)’s cut of position. we must have
Q = g — k. Thus. since k was chosen to be minimal Q is the maximal number of

[}

J's not followed by j + | in any D,. Say this occurs in the tableaux {C,iD!. ...
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{C.ID,} of &, so that

F =Y Ai{CID;} + other terms.

i=1
Consider the linear transformation

., _
Tre;=e¢; +¢,,

T*e, = ¢, istj

Under T*, each tableaux {C,|D,} is sent into the sum of the tableaux obtained
by replacing in turn every subset of Q or fewer entries equal to jbyj+1. Of
course the resulting tableaux may not be standard or may even equal zero.

Let us see what happens to the first o tableaux by this substitution. Replacing
the Q entries equal to j in rows Rkﬂ,...,RHQ by j + i we obtain standard
tableaux with Q fewer entries equal to j. These standard tableaux have fewer J's
than necessary. and must be cancelled out by tableaux obtained from other
substitutions. By the maximality of Q and the linear independence of the standard
tablzaux this is impossible. We have thus reached a contradiction which concludes
the proof.

We now give an alternative version of the First Fundamental Theorem valid
for all fields.

The following lemma is a simple consequence of the multinomial expansion :

LEMMA 1. Let F(x,. ... z) be a homogeneous polynomial function, of degree g, of the
coordinates of the vectors x...., z. Then Jor any scalars 4. ..., H; and vectors
Xii....Z; we have

. - N P
FIY Zxi. .. PITES ED S dOARAR b
i i iy.dg... kiky..
F‘ixix...,klklu.(xl X2 Iy 20

where the sum ranges over all i, .. . .. ky,...such that

Zz’j+---+k}-=g

and the F,;, ... are homogeneous of degree g.
The proof is omitted, as the result is well-known.
LEMMA 2 Ina Cayley space of dimension n, let F(x,,x,,....x,) be a scalar valued

Junction of vectors x,,... . x, which is invariant under all non-singular linear
transformations T. that 1s. such thar for some scalar function A{T).

FTx, . Tx,. .. Tx,y = ATF(x,.....x,)
Then

Flx,, x4, .. Xn) = [X Xy, X, [

Sor some constant ¢ und integer g.
The proof is omitted, as the result is weil known to hold cver an arbitrary fieid,

and an easy consequence of the fact that the determinant is an irreducible poly-
nomial.
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LEMMA 3. Let F(x,....,xy) be a homogeneous invariant of degree g Then the
polvnomial

IXpoo o X, BF(xy .. xy)

equals a polynomial in the brackers BT T
Proof: Since the function F is homogeneous of degree g.

[y X BF(xy L Xy
= F([xl.....x,,]x,“...[xl,«...x,,]xn,[xl,,.,,x,,]x,,,l,...,Lxl,...,x,,]xN).
Using the identity

n

(XXX = ) (X s Xam o X Xag g e 4 X ] X
k=1

and expanding as in Lemma i. we find that

* Iy . EF(x L XN} = ) CpFlxy xp. <)
m

where the subscript m ranges over a set of muiti-indices. and the coefficients ¢,
are products of brackets of the form

h; = I O I T R o

Note that for j > n the b, are algebraically independent (in the case of finite
fields of p elements, after making the reduction x? = x). This follows from the
algebraic independence of the {xile;.

Because of Lemma 2, the proof will be concluded if we can show that each of
the F,(x,.....x,) is an invariant. Since multiplying an invariant by a product of
brackets preserves invariance. we may conclude that

[Xy. . %, JfF(x ... xp)
is an invariant. Thus
[Tx,... Tx,BF(Tx,... Txy) = ATy . x,JFF(x, ... xx)
Substituting in (*) we get, since the c,, are also invariants.
2l Txy . TXOE(Tx, ... Tx,) = w(T) D Xy X F(xy . x,)
Since both sides are polynomials in the b;, and since the b; are algebraically
independent. their coefficients must coincide. This gives
Fo(Txy ... Tx,) = AT)F,(x,...x,) ]

which concludes the proof.

THEOREM 2. (First Fundamental Theorem of Invariant Theory). Every homogeneous
invariant in the vectors x.....xy is expressible as a word in the Cayley algebra,
built out of joins and meets alone.

Proof: By Lemma 3, there is an integer g such that

Doy x JBF(x LX)

is a polyromial in the brackets, that is, a linear combination of double tableaux
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of the form As
Z {TID’ minim
i right .
where the pr
12 . x for al
‘ Pro
, D= : prope
12 ... nf. and (t
C o o o in S o
r We wish to show that it is possible to cancel [xy.....x,J* while retaining the comb
, rectangular form of the right tableaux. By the Straightening Formula, F may be Par
] : )
written as Part ('
F=5%{UjV. any
: S row 0
a linear combination of double standard tableaux. Let An
' One !
Xy X, /l .. ny side h
/ . : etc. T
, : :
Ui = ~ Vi= : . symm
X, X, 1 n showr
U, / v symm
By
where vertical dots indicate that a total of g rows have been placed above each of are sy
U,and ¥, as shown. U] and ¥/ are clearly standard. Now note that goubi
T £ Crrrpyon from
[xXy..... S JSF(x, L0 X, = z v, antil 1
. . - ‘ . . . Y . In '
( We have thus written [x, ... . v, J%F(x, .. ... x,) as 2 linear combination of doubie invari
standard tableaux in two different ways. By the linear independence of the double reduc
standard tableaux these must agree. giving The
Vi =D algebr
: .
' _ the de
It follows from this that }; is also rectangular with rows equal to .. n which Let
conciudes the proof n, <
variak
A, =
i0. Time-ordering (skcrci) Su.
We consider here the space V,.; introduced in the statement of the Straightening
Formula. and now assume that the entries of the vector f are ail cqual to zero or where
one: thatis. that there are no repeated covectors in any monomialin ¥, ,. We now Ace
. . . . A AN
treat V. ; as a module over the group-ring of the Symmetric group acting on the
set of covectors. The proof of the Straightening Formula. considered in this
context. says that every submodule of b, which is invariant under permutauons in the
of vectors is spanned by linear combimations of double standard tableaux linear

We shail begn by determining the structure of minimal submeduies. In charac-
teristic zero. these give anarreducible representation of the symmetric group: but
these representations make sense over any field. although they mayv not be irreduc-

ible.

where
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4 submodule M of Loy which is spanned by inner products of the form {x, dX D s
minimal if and only if rhc set of double standard tahleaux in M is the set of (111 poswnlc
right tableaux of some fixed shape 7., adjoined to one left tableau L of shape ;. with
the property that the vectors in row i + 1 of L are a subset of the vectors in row i
for all i.

Proof: We need to show {a) that a submodule of 1, , which has as a basis any
oroper subset of S 15 no longer invariant under the given permutation group,
and (b) that if the covectors in the right tableau of any double standard tableau
m S are permuted. then the resulting double tableau may be written as a linear
combination of tablcaux in 8.

Part (a) is true since the set M is transitive under the given permutation group.

Part (b) 1s a consequence of the straightening algorithm. since upon straightening.
any tableaux of higher shape which occur will have repeated elements in some
row of the left tableau.

An example of minimai invariant module is associated with shape /. as follows.
One takes the set S to be the set of all tableaux whose first column on the left
side has all entries equal to x|, whose second column has all entries equal to x,.
cte. These tableaux give explicitly the matrix units of a representation of the
symmetric group which in characteristic zero is always irreducible: it can be
shown that one obtains in this way all the irreducible representations of the
symmetric group.

By extending the above reasoning one can ciassify all submodules of ¥,y which
are spanned by double standard tableaux. A submoduic 4 of b, spanned by
double standard tableaux is spanned by ithe set of all standard tableaux obtained
rom a given set S of standard tableaux by iterating the straightening algorithm
antil no further standard tableaux may be obtained.

In characteristic zero. one obtains in this way the complete reducibility of
invariant submodules. However. the algorithm gives an analog of complete
reducibility for arbitrary fields.

The preceding 1dea can be applied to the study of submodules of free associative
algebras which are invariant under arbitrary permutations of the variables, by
the device of entangling and disentangling. which we now describe.

Let 7 be a partition of the integer n which we write as n = n, + - - + m, where
7y <o < m.and let W be the submodule of the free associative algebra in the
variables v,.... .. v, spanned by all monomials whose content is the vector
o, = (n m,) for some permutation ¢ of {1.2,....k}.

Such a monomial is of the form

g

ATRP v

where the multiplicities of the x; are the integers 7, ... .. 7, in some order.
Associate with this monomxal 'the product

ol g g
. , N P , . i s 4 e N, T . el N N -
in the commutative varables {x; |i).....{x; |ny. This association extends tc a

tinear operator F. the entangling operator. irom W, to the vector space

= ZZ Vg

2 B

where we sum over ail f# such that § has n ones and all other entries zero.
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Conversely, given an element of V.. we can recover an element of W, by applying
the disentangling operator F~'. For example, from

D512 = Cx2)4x,01)
we obtain. by disentangling, the element
of W,. In other words, the Roman numerals in the brackets of ¥, indicate the
positions of the variables x; in W..
Now, any set of commutative symbols (x| j> can be interpreted as inner products
of vectors x; and covectors j. We can theréfore apply the Straightening Formula,
and by the entangling and disentangling operators express every element of W,

in a canonical way as a linear combination of the polynomials obtained in this
way from the double standard tableaux.

In this way, the classification of identities In associative algebras is reduced
under suitable homogeneity assumptions to the classification of the identities
defined by double standard tableaux. Consider an associative algebra A in the
variables x, ... . ¥y . An identity holding in 4 is an expression of the form

Z iy i Xqy - X, =0,
where the a; , are elements of the field F which are invariant under any permuta-
tion of the variables x,...... vy This identity is associated with the submodule
generated by the monomials

¥ a;

L l,A..i,,xal-Z,y--- xnu‘,.)
i, in€{l ... N}

as o ranges over all permutations. Upon applying the entangling operator. this
submodule is mapped into a subspace V.. The Straightening Formula now vields
a basis of double standard tableaux. The image of this basis under the disentangling
operator F ™' vields a canonical set of monomials in 4 which generate the sub-
module. For example, the tableau

CXpx 1200 0
gives after disentangling the standard identity
d(signo)x, x,;, ... x,,.
a

An interpretation of the First Fundamental Theorem in this context gives some
pertinent information.

i1. Symmetric functions (sketch)
The classical :dentitics between symmeltric functions can bé obtained from identities
in a Cayley algebra.
Let the field F be obtained from a base ficld K by adjoining as many trans-

cendentals (variables) as will be needed in the sequel. Choose a doubly infinite
sequence of vectors
X xt® a3

and
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and covectors
U(li U{Z) U(J)

in an n-dimensional vector space V over F. and assume that all coordinates,
relative to a coordinate system which will remain fixed from now on, are indepen-
dent transcendentals x{” and U!".

Let K be the field obtained from K by adjoining n transcendentals 4; and let L
be the linear map of the field F into K, defined as follows

Lx®UW) = 6,4,

e
L(x:l}’Ui-,“fo)U}f’. L xPUR) = L(xﬁ}’UE}’)L(x}f’U}f’). . LixPU)
and so forth, where the indices are not necessarily distinct. Other values of L on
monomials are set equal to zero. Note that
L(xW A UV = Z A dy;
K

The polynomiai
LY xRty
equals k'a,, the kth elementary symmetric function in the variables Ay

We shall carry out the proof only for the case k = 2. the general case being
similar. Thus. in terms of the given basis e, ... ¢,, and dual basis E,. . .E,

(M) W21 (D (2) _ (2 ithy,
XV X = 5 (xVx® — x{PxMe; Ve,
i<

Um A U(Z) = Z (US“U(jz) - UEZ)UT))E! A Ej
i<j

so that the induced inner product becomes
<x(l)x(2)| Uil\U(Z)> — Z (xgl)x(jﬂ _ st)x(j”)(UEl)U}Z) _ U%DU(j”).
i<j
Appiying the linear functional L. this becomes
Y LxIx@UOUR 4+ x@xOyu@un),

i<j
as the other two terms vanish when L is applied. But it is sesn from the definition

of L that the above equal 2'a,. as desired.
The polynomial

L((x“’ A U(Z)) v (X(Z) A U(SJ) Voo (x(k) A U“’))

equal s, the power-sum symmetric function in the 4;.
Again we carry out the proof for k = 2. where we find. upon expanding,

f
L((X(“ A U(Z)) \ (x(Z) A U“))) = L(Z Xﬁ-UU?)X}Z)U(i”
() b
all terms with i # j vanish. by the definition of L, and this reduces ic

Ly xf.“Uﬁ-”x5-2>U§2’) =y i,
i i

as desireq.
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Every polynomial in the inner products {x“|U“"S which contains as many
occurrences of the vector variables v as of the covector variable U" for each i,
equais a symmetric function of the Ay

Indeed. every such polynomial can be written as a sum of products of disjoint
cveles as in (%), and each such cycele equals a symmetric function 5.

Identities for symmetric functions may have analogs in the Cayley algebra.
The anaiog of Newton's formula, expressing the 4 in terms of the s, is obtained
as follows. Expanding the inner product defining 4. we find

xyxdUy U = Uy ) XU, .Uy
+ Z * <—\’i‘L’r1><-\'1~-"Qr'--~\‘k‘U2"' U

i> 1

’a._}

he second term on the right is further expanded. giving & —
orm

! summands of the

*) G AUV (g, AUV <£1x2-'--i-i-“xk'OlL':’-" U,... U

as well as other terms. The remaining terms are further expanded, giving terms of
the form

(**) (x; AUV (x, A U Vix, AUYV (Inner Product)
as well as other terms. Clearly terms of the form (*) correspond to Sybg-5, and
terms of the form (**) to products s;a, _,. etc.

Waring’s formula, expressing the a, in terms of the S¢. Is even easier. It reduces
to the remark that the determinant

X

Is a sum of terms. cach of which s
indices.

Uy U = detdyy oy
plits into disjoint cycles of a permutation of the

We can define the Schur functions e, corresponding to a tableau of shape u 10
%e L applied 10 the symmetrized tableau {v. below) of shape 4 1n the variables X,
and U, It s then not difficult to derive the determinant expression for the Schur
functions in terms of the clementary symmetric functions a,. Various results on
characters of the symmetric group can be derived and extended by the present
approach.

12. Further work
We sketch some lines of work indicated by the
intended to display applications of the present te
might be turther pursued

present investigations. Some are
chnique: others are topics which

(1) The Gordan-Capelli formuly

The Gordan-Capelli formula is 2 vonsequence of the Straightening Formula .
we state 1t without proor - and in greater generality thdn is found in previous
work —-avoiding the use of polarization operators which distract from the
combinatorial simplicity of the result,

By changing the lincar ordering of the variable vectors i all possible ways. and
adding the corresponding expressions, one obtains an expansion which is inde-
pendent of the choice of a linear order. and in some w ays simpler. The drawback
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of such an expansion is that it holds in general oniy in characteristic zero, unlike
the Straightening Formula.

Define a symmetrized tableau o(T,|T,) as the sum of all the double tableaux
obtained by permuting all the elements of each row of T, inturn and independently,
repetitions allowed. Thus if a row has k entries. these will be k! terms. even if the
row contains repeated entries.

One can show that in characteristic zero the symmetrized tableaux form a basis
for V, ;: this is. in the case of distinct variables. the Gordan-Capelli expansion.

(2) Strength of identities

The Birkhofl-Witt theorem can be read as stating that. in an associative algebra,
the product x3 can be recovered from the bracket Xy — yx:in other words. the
bracket is sufficiently strong to give back the product. On the other hand. it is
known that the Jordan product xy + yx is in general not strong enough to give
back the product. The question can be posed more generally when a given non-
commutative polynomial is strong enough to vield another. We hazard the
conjecture that these questions can be attacked by the time-ordering device, where
vy — vx becomes (x3]12). together with the Straightening Formula.

(3) Syzygies
The Cayley algebra analog of the Second ¥undamental Theorem of invariant
theory is the problem of finding a set of identities on joins and meets which, in a
suitable sense, form a basis for the set of all identities.
More important is the problem of the identities between identities. or syzygies
of the second order. Little work has been done on this difficult subject.

{(3) Other groups

There are analogs of the Straightening Formula for the orthogonal and the sym-
plectic groups. which could not be included here. For the orthogonal group it is
closely related to identities for spherical harmonics and Hermite polynomials.
For the symplectic group. the result is similar to the Straightening Formula.
except that determinants are replaced by Pfaffians. One obtains a systematic
way of deriving and proving identities for Pfaffians, as well as an explanation
of the oft-noted analogy between the two.

(5) Invariants

The age-old problem of the computation of projective invariants for sets of linear
varieties can be attacked by the present techniques. and we shall limit ourselves
to a remark here. Plethysm can be reinterpreted in the Cayley algebra as the
relationship between the induced Caylev aigebra built on exiensors of step K
endowed with the bracket obtained from Sylvester’s identity. and the given
Cayley algebra.

(6) Word problems and invariant theory

The version of the Straightening Formula given above is not the most general:
we have chosen it because the proof requires fewer notational artifices. A more
general version is concerned with words in the Caylev algebra built out of vectors
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and covectors. and not necessarily of step zero. The result is similar. except that that <
one requires double standard tableaux where the left and right side are not neces- follow
sarily of the same shape. In this more general version, the Straightening Formula we fin
can be viewed as the solution of the word problem in the Cayley algebra for words
containing at most vectors and covectors. Several generalizations are suggested by
this viewpoint. One may ask in which cases other word problems in the Casley where
algebra are solvable. for words containing symbols for extensors of all steps in
prescribed numbers. This problem seems not to have ever been previously treated.

( While 1t 1s possible that all such word problems may be solvable. there is one
subclass which lends itself 10 a more straight-forward treatment. This 15 the word where
\ problem for sets of extensors whose supports generate a semimodular lattice of Ifg
flats in projective space. adjoin
1<i:
(7Y Hopf algebras the ses
We have neglected the coalgebra structure of the exterior algebra. However, the of B.¢
Hopf algebra structure 1s indispensable for a better understanding of some of the
problems mentioned here especially for syzygies of higher order. The symbolic
method of invariant theory is a Hopf algebra technique in disguise.
(8) Muatching Theory The &
We have stated elsewhere that matching theory can be systematized by the © algebr
methods of linear algebra. In support of this contention we sketch a proof of mthc
Philip Hall’s Marriage Theorem. Thus. given a bipartite graph G on 4 - B with onin
the property that every subset of k vertices in 4 connected 1o at least k vertices in ‘h's h
B. we must show that there exists an injective function {4 - B such that fo: : time |
every d € A {a.fia 15 an edge of the graph The function f iy called a matching doxicc
of 40 R mvarn
( We detine a ring F(G). called the free ring ol the graph 6. following an 1dea that order
goes back to Frobenius. Let K be the free extension of the rational ficld K ob- We
tained by adjoiming independent transcendentads ta, \ j as o, TANECs OVer 1he st A spacer
and v over the set B and let £1G) be the homomorphic mmage ol A7 obtained by A\' B
setung by = O whenever the pair (¢, v)) is not an edge of the bipartite graph G times
We can find a vector space Fooand in it vectors o, and covectors v such thar The
s {diy) assert:
The Marrnage Theorem states (assuming for simplicity that there are as many “.’
vectors as there are covectors) that the matnx of the (w,jx ) is non-singular under sectio:
the stated hypotheses, or equivalently. that the vectors u, as well as the covectors \ (2)
form a basis under the stated hypothesis. geom.
Proct: Suppose the conclusion fails Then we can tind 4 minimal dependent set Le:
SLAeCtors ay. Luposay. such that ayds a0 Let X be an extensor of step !am(fi
J - 1. Expanding Insoia
N oAtauay o oa =0 Joins .
' sente:
by the alternative law. we find that : space
call
S Tody 4., ujiX/u, = {) (") (a
o ' word:
Since «;.. a; -y are independent, we can find covectors x, .. .. X, - 1. say, such , value
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that {a,...a;_ix(...x;—» # 0. Since a,.....q; is a minimal dependent set, it
follows that {a,...d;...ajx,...x;_,» s Ofor all i. Expanding in the field F(G).
we find

ay...4;...ajx, Xy = det(akixp) = ¢

where ! <k <jwithk#iand1 <p <j~— 1. Thus

j
Z C"(ai|.\‘q) = 0.

i=1

where ¢, # 0 for all i.

If g = j and (a;ix,) # 0 then (afx,) is transcendental over the field obtained by
agjoining the ¢, to K. Hence the above equation can hold only if (aix,) = 0 for
1 <i<jandj < ¢ < n, where nis the dimension of the space. We conclude that
the seta, ... a; of vertices of A is related at most to the j — | vertices x,,....x;_
of B. contradicting the hypothesis and ending the proof.

{9) Translating Geometry into 4lgebra

The 1dentities developed in Section 6 indicate that the formalism of Cayley
algebra should yield a technique for verifying geometric statements by algebraic
methods. Such a hope was indeed the moving force behind much of the work
oninvariant theory carried out during the Nineteenth Century. Strangelv. however,
this hope remained unfulfilled. and treatises on invariant theory written at the
time limit themselves to a few generalities, such as Gram’s theorem. This para-
doxical situation, which contributed in some measure to the downfall of classical
invariant theory. 1s partly due to the lack of a ciearly developed system of first-
order logic in which to express geometric statements.

We confine the discussion to joins and meets of subspaces. If 4 and B are sub-
spaces of a projective space S then we write A n B for their intersection, and
A U B for their sum. that is. for the smailest subspace spanned by A and B, at
times aiso called the join.

The problem of translating an assertion of projective geometry into an equivalent
assertion 1n the Cayley algebra can be subdivided into two headings:

(1) Develop an algorithm for verifying whether an identity involving inter-
sections and sums {that1s,a word in w and n) of subspaces of projective space holds.

2} Develop a decision procedure for the first-order theory of proiective
geometry.

Let L(V) be the iattice of subspaces of the vector space V. where lattice-joins and
lattice-meets are written U and n. We shall be concerned with translating, and.
insofar as possible, verifying a first-order logic statement in the algebra of lattice-
joins and meets. into the language of Cayley aigebras. We only consider universal
sentences. These are sentences constructed from identities in the lattice of sub-
spaces ustng the logical connectives "and”. “not” and “implies™. which we shali
call propaositions.

{a) Let the variables a.b,....c¢.x,y,....z denote generic vectors; in other
words, any identity in these variables states tnat the identity hoids no matter what
values are given to the variables. it follows from the Straightening Formula that
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the ring of brackets whose entries are generic vectors is an integral domain: it T
follows further that the word problem for any conjunction of identities in the that
algebra of brackets is solrable. Indeed. the proof of the Straightening Formula fact.
gives an explicit algorithm for the solution of the word problem (see remarks ' Just
under Word Problems). Thus. if a given proposition can be shown to be equivalent yield
1o an identity in the algebra of brackets. then the truth of the proposition can be (h,
decided. COOT:
(b) It has been shown by Scarpellini and Whiteley that everv true proposition brac.
( in an integral domain is equivalent to the conjunction of equalities and Inequalities. ineq:
This result is a logical equivalent of Hilbert's Nullstellensatz. It Is not known . explc
whether, in the speciai case of the algebra of brackets. the equivalence can be alget
obtained from an explicit algorithm,
An identity involving sums and intersections can be shown to be equivalent to
a conjunction of identities and inequalities in the algebra of brackets by the The
following steps. mger
(¢) An identity of the form ;:on..
4>B can
_ i o basic
in the lattice L(V) can be “translated " into an identity in brackets as follows. Let intre
4 and B = bh, ... b, be extensors supporting 4 and B. The above identity is not :
equivalent to the conjunction of the k identities their
hVA=0. i<ic<k gene:
since

Completing to brackets tf necessary, we see that this is equivalent to a conjunction It
of bracket identities.

To t
(d) An identity of the form OCLO}
1=B0C.  AB.CeLw) short
Our
( can be iransiated into an identity in brackets as follows. The above is equivalent whici
to the proposition: unde;
or every Y, to th.
(*) X2B und ¥>¢ ifand onlyiifl X » 4. T}
i defin
Each of the conwinment relations is constructively cquivalent to a conjunction infor
of bracket identitics by (c): further. by (b) the implication is equivalent to a bracket not f.
identity. A o Tr
”(c) An identity of the form Turn
") A=B8B~C Rota
{s translated similarly. Th
f) A lattice-identity (or ineauality) is decomposed inio a succession of 1dentitics tthp
of the form (¢). (d}. and (o), Dy introducing extra variables if necessary. ih
(g) An alternative approach to steps (d) and (e} 1s the following. In :he special Edm
case when B = Uthen the verification of (**) becomes trivial. as it reduces to TI"
checking that 4 = B * ¢ This can be done constructively. by (Cl verifving table
A2B-Cand 4= BC (i turn. B o C o 4 then we can use the reduced
bracket module a generic oxtensor Y. Then 4 = B~ Cifand only if 1 is equivalen:
o B A € modulo cvery extensor X, The definition of B~ ¢ depends on the AlThL:
choice of X BOURE

T TS e P NI . 0 R 2 O W Sl TR T BN A A e A AR RSB IG  Cd La T e w6 s g



al domain: it
‘ntities in the
1ung Formula
{see remarks
be equivalent

on can e

2 proposition
3 inequalities.
is not known
:lence can be

equivalent to
ickets by the
¢

H follo{ . Let
-¢ identity is

. conjunction
is equivalent

conjunction
to a bracket

(

of identities
v

1 the special
t reduces to
>L verifving
he reduced
s equivalent
nds on the

S Ty IR T A Al A AT Idl T HIRAAT Y A AT UL AT UTg U aulopaucos £ 19

The verification can be cut down to a finite number of extensors X by a process
that can be considered as the Cayley algebra analog of Herbrand's theorem. In
fact,areduced bracket can be considered as the Caviev algebra analog ofa quantifier.
Just as in Herbrand's theorem. the reduction to a finite number of X does not
vield a decision algorithm.

(n) 1If a proof of a lattice proposition is available which uses ordinary projective
coordinates, then this proof can be translated step by step into the algebra of
brackets. and be made to yield constructively a conjunction of identities and
inequalities which is equivalent to the lattice proposition. This idea was partially
exploited by Whiteley. but can be made very simple in the language of Cayley
algebras.

[3. Acknowledgments

The idea of a standard tableau made its first appearance with Clebsch. who gave
ingenious applications to geometry. With him appeared also the device of polariza-
tion. further developed and sharpened by Capelli in the celebrated expansion
bearing his name. However. Capelli did not recognize the importance of Clebsch's
basic idea. Alfred Young. after careful study of the ideas of Clebsch and Capelli.
introduced in 1901 the tableau expansion that bears his name. However. it was
not until Young's third paper. published in 1927, that standard tablcaux made
thetr reappearance. In this paper one finds the first version of what--suitably
generalized --we have called the straightening algorithm. which has been used
since in several circumstances.

It seems that Young may have had an inkling of the Straightening Formula.
To be sure. double tableaux were used by him for the representations of the
octohedral groups. but are nowhere else mentioned in his work. Turnbull. in the
short appendix added to his book for the second edition. sketches Young's ideas.
Our work grew largely out of trying to understand some of Turnbull’s ideas,
which are often purely heuristic. The machinery of Cayley algebras was developed
under this stimulus. Our statement and proof of the Straightening Formula is.
to the best of our knowledge. the first correct and complete one.

The detinition of Cayley algebra is new. as is. to the best of our knowledge. the
definition of meet. The Scottish convention is inspired by Turnbull, who used it
informally. Of the alternative laws. several special cases were known. but we have
not found the general case (Theorem 6.5) in the literature.

The brief treatment of symmetric functions was also inspired by some work of
Turnbull and Wallace. combined with & iinear functional device introduced by
Rota.

The time-ordering device was introduced by R. P. Fevnman in another context :
the present treatment was motivated by the work of P. M. Cohn.

The proof ol the Marriage Theorem was arrived at by anaivzing some work of
Edmonds.

The proofs of the First Fundamental Theorem and of independence of standard
tableaux are rew.
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