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A set S of n points in Euclidean d-space determines a convex hull which can be triangulated A

into some number m of simplices using the points of S as vertices. We characterize those sets § «

for which all triangulations minimize m. This is used to characterize sets of points maximizing R M

ipe volume of the smallest non-trivial simplex.
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1. Introduction

Consider a set S of n points in d-dimensional Fuclidean space E% If no
byperplane contains S we call S d-dimensional. We consider the d-dimensional
umplex T' of smallest positive volume with vertices in S. Then we consider the
ratio of the volume of T to the volume of C(S), the convex hull of S. We are inter-
ord in f;(n), the maximum value of this ratio for all sets S of n points. In Section
3 we show that it is exactly (n—d)~, and we characterize the sets .S which achieve
this bound. To do this we use the characterization of sets S with only ‘minimal
triangulations’ (see sections 3 and 4 below).

For d=2 this is related to the Heilbronn conjecture, recently shown false
by Komlés, Pintz and Szemerédi [4]. In the Heilbronn conjecture the points of
S are required to be in general position (no three on a line) and the ratio under

unallest circle containing S. For this situation (the points in general position) the
maximum value of the ratio, call it g(n), is at most O(n-*) for some p=>1, and
st least O(n~2log n). (See [3], and also Problem 6.4 in section 6 below.) (If f*(n)
i the maximum value of the ratio of the minimum area of a triangle of S to the
fea of C(S) for sets S with points in general position then f* (m=0(g(n)). See
[21.) Erdgs, Purdy and Straus [2] considered the closely related problem of the ratio
of the area of the smallest to the area of the largest triangle in S. Since the ratio
of the area of the largest triangle to that of C (S) is bounded below by a constant
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(see [2]), this problem also
in [2] is 1/[$(n—1)].) (For a
see Problem 6.5 below.)
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qmplicial d-sphere, the ‘boundary complex’ of C(n+1,d+1), denoted by
4(n+1,d+1). For any simplicial d-sphere &, let f,(%#) denote the number of
"_faces, O§l§d.

For fi=f(&¥), 0=i=d, f_,=1, we define hi=h(%) by

L(d+1—j i .
2.1) h‘=,§o(d+1_iJ(‘l) fi-r 0=i<d+l |
The following relations hold ([5]): N
_ap d+1—j] )
2.2) f“jé',( d—i Jl 0si=d I
2.3) hi=hyrsy 0si=d+1 )

Finally, for £=A4(n+1,d+1),
_(n-+1 . 1 )]_
fi(d(n-f-l,d+1))—(i+1) 0§1§[7(d+1 1.

fi(d(n+1,d+1)) i=[(d+1)/2] can be determined

(2.4)

The remaining values of
from (2.1)—(2.4).

Theorem 2.1 (Upper Bound Conjecture). [6] for any simplical d-sphere &,
[ =fi(d(n+1,d+1)) O0sisd |

In order to use Theorem 2.1 we imbed 7 in a d-sphere in E%*+L Let the
points of S be X;=(xy, ..., x,,0), 1=i=n Let Sy be the unit sphere in Ed+1
with center at the origin. Let ¢>0, and form a set S’ by replacing each point %,
‘lifted” point %/ =(xy, ..., x4, g). Let 8" be
the projection from the origin of S’ onto Sg4. S” has the property that the points
(%1, ..., X341) on the ‘equator’, x;.,=0, are exactly the projections of the points
of § on the boundary of C (S). The other points of S” are in the ‘northern hemi-
where’ x,.,>0. S” determines a d-sphere where the faces correspond to the ;
umplices of J, top.ther with the (possibly) non-simplicial face in the equatorial |

plane x,,.,=0. This face can be subdivided by adjoining to S” the ‘south pole’,
©....,0,1).

For each (d—1) face on the equator (the projections of the boundary faces “
of I we adjoin (0, ..., 0, 1) to form a d-face. The resulting complex is a' simpli- i
cial d-sphere 7. |

We can now apply Theorem 2.1 to 9~ and obtain
@5 177 = fi(4(+1, d+1)).

But from our construction T’ =
9 the boundary of C (S). Since

26)

|71+1, where I is the number of (d—1)-faces
the number is at least d+1, we get

| 71 = 17| ~1 = |77~ @+, .
Theorem 2.2, | I=fu(d(n+1,d+1))—(@+1). |
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Corollary 2.3. [T |= 0 (nt@+D/3)),

Proof. If #=4(n+1,d+1) we have for 0=i<[(d+1)/2]—1 f;=0(nl@+V]y
(2.4). Then h,= O (nl@+/) for i=[(d+1)/2] by (2.1) and for i=[(d-+1)/2] by (2.3
Then (2.2) implies fi=0(nl“*V/2) also for i=[(d+1)/2]. Hence in particuls
fa=0(@“*D%), and by Theorem 2.2, |7 |=0(nil4+vr) " g

As an example we consider d=3. By applying (2.1)—(2.4) and Theorey
22 we get

|7 = 4.

(n+1)(n—=2)

2
For n=4,5,6, we get upper bounds respectively of 1, 5, 10. For n=4 the boung
is exact. For n=35, the maximum value of (77| is 4, and for n=6 the maximun
value || can have is 8.

If we remove any vertex from a simplicial d-sphere, the resulting polympe()
can be thought of as a triangulation of a set in E? (by using sterographe projection”
onto EY). So if we take the maximum case, which is 4(n+1, d+1), then this ha,
(n+1)(n—2)/2 d-simplices for d=3 using (2.1)—(2.4). Consider a vertex v of
minimum ‘degree’, that is a vertex meeting a minimum number of d-simplices.
Since each simplex has 4 vertices, and there are n+1 vertices, the average degree

is ((n+1)(n—2)/2) 4/(n+1). Thus v has degree no larger than that, and removing
v will yield a triangulation with at least

(221 - ey

simplices. For n=4,5,6, this gives 1, 3, 6, respectively. These are lower bounds

for the maximum of |77|. That is, the maximum T, of |7 satisfies

n—-3)y(n-2) -7 = n+1D(n-2)
7 =hE——p—t

for d=3.

3. Sets with minimal triangulations

We first observe that since our hypothesis states that C(S) has a nonempty
interior, it follows that C(S) remains connected if we delete all (d—2)-simplices
whose vertices are points of S.

Call this deleted set Co(S). Now for any triangulation J and any two sim-
plices T, T;€J there exists a path in Cy(S) which joins an interior point of T;
to an interior point of T;. This path must correspond to a path of G(7). We have
thus proved )

Lemma 3.1. The triangulation graph G(J') is connected. |

Since G(7") is connected we can order the vertices Ty, Ty, ...; Ty so that
each subgraph induced by {Ty, Ty, ..., T,,} is connected, 1=m=N.
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|7 =n—d

sith equality if and only if G(T) is a tree.

proof. Let T={Ty, Ty, ..., Ty} be a triangulation so that the subgraph induced
by (T1> Too oo T,)} is connected for every m=N. Then the set of vertices Vm
. 4 is the union of the vertices of Ty, Ta, -vr» T satisfies

whic
(i) Winsal = Vil +1
gnce Tmsr has at Jeast d vertices in V,,. Thus

n= Vel = @+D+WN-1)=d+\7|

which proves @3.1.
If G(J) is a tree, then T, is joined to exactly one T;, 1=i=m and there-

fore le+1l=]Vm\+1 for all m and (3.1) becomes an equality.
If G(J) contains a cycle and T4y IS the last vertex in that cycle, then all
the vertices Of Tins1 lie in ¥, and |Vpy+1|=[Vml|- Thus inequality (3.1) is strict in

this case.
We can now characterize all trees which arise as triangulation graphs.

Theorem 3.3. A tree T is a triangulation graph, if and only if it has n—d vertices and
no vertex has valence greater than d+1.

Proof. The necessity of the first condition was proved in Theorem 3.2 and the ne-
cessity of the second condition is obvious since a d-simplex has only d+1 faces.
Now order the vertices Ty, .., Tymg of T 50 that {73, ---» T,.} induces a connected
subtree for each m=n—d. We can now construct a set S so that C(S) has a tri-
angulation {71, .., T,.;} with graph 7 as follows:

U]

(i)

Assume the vertices of the simplices Ty, ..., T, Bave been picked so that
they all lie on the boundary of their convex hull C,, and that all faces of Cp,
are faces of these simplices. Now if T4 is connected to T,, 1=i=m then
one of the faces F; of T; is a face of C,, and we choose a point v, exterior
to C,, but so close to the centroid of F; that the convex bull C,p41 Of CpU {¥m+1}
has all the faces of C,, with the exception of F,. We now identify Ty a8 the con-
vex hull of F,U {v,,41}. Then the triangulation graph of Cpi1 corresponds to the
induced subgraph {T3, ---, T, .1} of . This completes the proof by induction. ' |j

Pick the vertices of a simplex T.

Next we characterize those triangulations J of C(S), if any, for which
G(9) is a tree.

Lemma 3.4, The graph G(J) of a triangulation T ={Ty, Ta, ..., Tn}_is a tree, if
and only if no (d—2)-face of any of the T intersects the interior of C(S).

g
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Proof. Assume that G(J") contains a cycle {T;, T, ..., T}}. This cycle can
resented by a polygonal path P in the interior of C(S) whose vertices
centroids of the faces T;NT,., (where T,;,=T;), and whose edges are the line
segments joining successive vertices. If we consider the hyperplane H determine
by T;NT,, then we see that P must meet both the interior of 73N 7}, and the ox.
terior of T3 T, in H since P is closed. Now if P shrinks to a point it remajng in
the interior of C(S). But at some stage it will intersect one of the boundary (41 -
faces of TyNT,. Thus this (d—2)-face meets the interior of C(S).

Conversely, let F be a (d—2)-face of a simplex T¢J and let p be in the
intersection of the relative interior of F with the interior of C(S). Consider a Circle
C with center p lying in the 2-plane perpendicular to the plane of F and radiy.
so small that it is interior to C(S) and its relative interior does not intersect an.
(d—2)-face other than F. Then the simplices T; , which intersect C in cyclic order
form a cycle of G(7). ||

be rep.
-are ik,

Corollary 3.5. If C(S) has a triangulation with n—d simplices, then S lies on ihe
boundary of C(S).

Proof. If a point s€S lies in the interior of C(S) then every triangulation of C(s,
has a simplex T with vertex s, and all (d—2)-faces of T which contain s meet the
interior of C(S). |

Corollary 3.5 is by no means a sufficient condition for the existence of ;
triangulation J for which G(J) is a tree. For example, every simplex T which
is a leaf of G(J) must contain a vertex » of C(S) so that all the incident 1-faces
of C(S) are 1-faces of T. In particular the number of 1-faces at » must be d. Thus
for example, the regular octahedron has no tree triangulation since all vertices
have 4 edges. (All the graphs are 4-cycles).

As a consequence of Lemma 3.4 we get a characterization of those S where
all triangulations of C(S) contain n—d simplices.

Theorem 3.6. 4!l triangulations of C(S) contain n—d simplices if and only if al
(d—2)-simplices with vertices in S lie on the boundary of C(S).

Proof. This requires only the observation that any (d—2)-simplex of S contains
a (d—2)-face of one of the simplices of a triangulation of C(S). We see this induc-
tively, starting with n=d+1, for which there is only one simplex. For n>d+1
let D’ be any set of d—1 points of S forming a (d—2)-simplex. C(D’) then con-
tains a subset D of d—1 points of S forming a (d—2)-simplex which is minimal
in the sense that C(D)NS=D (D=D’ is, of course, possible). Let xéS—D be
an extreme point of C(S) (i.e. x¢C(S—{x})). By induction there will be a tri-
angulation 7’ of C(S—{x}) including D as a (d—2)-face of one simplex. Now
we simply adjoin to J all simplices exterior to C(S— {x}) which are formed by
x together with a (d—1)-face of a simplex of 7. | -

As mentioned in (1.2), for d=2 the condition in Theorem 3.6 simply means
that S lies in the boundary of C(S). For d=3, Theorem 3.6 means that every
two points of S can ‘see’ one another on the boundary of C(S). According to
a theoremof Buchman and Valentine [1] this means that C(S) is either a cone
whose base is a convex (n—1)-gon (not necessarily strictly convex) or a convex
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. lar prism (in the projective sense; that is, the triangular bases are not nec-
y parallel, and the lateral edges lic on parallel lines or on concurrent lines)

‘ ‘Sssni,_6 points (other than the 6 corners) lie on the lateral edges of the prismz: ..

(There is 2 degenerate case of the prism where one of the bases is a single point.)

4. Characterization of sets S for which G(9) is a tree for every
triangulation of C(S), d=3

From Theorems 3.2 and 3.6 we know that the equivalent property that
s must satisfy so that all triangulations are trees is:

Fd):Sisa d-dimensional set with all of its (d—2) simplices on the boundary of C(S).

Then the generalization from the d=3 case mentioned above is:

Theorem 4.1. For d=3 S satisfies F(d) if and only if S has one of the two follow-
jng Structures:

(A): C(S) is a ‘prism’ in the projective sense: U={uy, ..., uah V=115 o) v4} are
wo ‘bases’ and C(S) is the convex huil of UUV, where the lines u; are either all
paralel or all concurrent at a single point. In this case all the points in S —(UUr)
lie on the ‘ribs’ of the prism. (The degenerate case of |U|=1 or [V|=1is possible.)
(B;): C(S) is a ‘cone’: all points of S except one lie in a hyperplane H, and for
d~3 HNS satisfies A4 o1 By_1, and for d=3 C(HNS) is a convex polygon
with HNS on its boundary.

Corollary 4.2. A necessary and sufficient condition that every triangulation J of
C(S) be a tree is that S satisfies Ay or By.

Proof of Theorem 4.1. The proof will be by induction on d. For d=3 the result
is due to Buchman and Valentine [1], as mentioned above. Thus we assume d=>3
and that the theorem holds for all d’<d. The sufficiency of conditions A4 and
B, is easy to see. First assume A, holds. Then any (d—2)-simplex of S (i.e., formed
by d—1 points of S) lies on at most d—1 of the ribs uw; of C(S), and is thus on
a boundary hyperplane. If B; bolds, then any (d—2)-simplex of S either lies in the
‘base’ HN S, and is thus on the boundary of C(S), or includes the ‘apex’ p and
meets the base in a (d—3)-simplex. But induction (applied to HNS and using
F(d—1); see Lemma 4.4 below) implies that this (d—3)-simplex is on the (relative)
boundary of the base, and thus, when p is adjoined, the resulting (d—2)-simplex
is on the boundary of C(S).

Before proving the necessity of A, or B, we require a few lemmas.

Lemma 4.3. Let k=3, and suppose K is a set with \K|=k+2 and satisfying F(k).
Then some k+1 points of k lie on a common hyperplane.

Proof. Let Py, ..., P,y determine a k-simplex D. Then the k+1 face-hyperplanes
of D divide E* into 2%t*—1 regions. Let Q be another point of K. If Q lies on any
of the face-hyperplanes, then K has k+1 points in that hyperplane, and the con-

}
I
|
.
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clusion of the lemma holds. We can assume then that Q is in the interior of one
of the regions. In particular D itself is such a region. If Q is in D, then any (k-2
simplex containing @ is not on the boundary, violating F(k). Thus Q is in the
interior of one of the other regions R.

R can be described in a nice way. Let IS {1, ..., k+1} be the set of indices
such that for i€7, the face-hyperplane not containing P; separates P; and R. Le;
F; denote the face of D determined by the P,, i€l, and let G, denote the face
determined by the P;, i¢l. Then (by linear algebra) for each point r€¢R there
are unique points f€F; and g€G; so that the line extending from f through
g meets r. If r is the interior point Q of R, then f is interior to F; or |I|=1, and
similarly g is interior to G; or |I|=k. In any case, the line fg contains interior
points of D, and hence g is on the interior of C(X).

Now both the faces determined by G; and by F;U{Q} contain g, and one
of |G/ and |F,U{Q}| is no larger than [k/2]+ 1. Thus any (k—2)-facé containing
it will contain g and thus violate F(k). Hence Q is not an interior point of R, and
the lemma is proved. J]

We note that we only used for this lemma what we might call
F’(k): S is a k-dimensional set with all its [k/2]-dimensional simplices on the bound-
ary of C(S).

Now let S be a k-dimensional set. Let H be a hyperplane determined by
k of the points of S.

Lemma 4.4. If S satisfies F(k), then HN S satisfies F(k—1) in H, k=3.

Proof. Suppose k—2 points of SMNH determine a (k—3)-simplex D containing
a point interior to C(SNH), say g. Let p be a point of S—(SNH). Then the line
Pq must have points interior to C(S), contradicting the assumption that C(DU {p})
must be on the boundary of C(S). |

Lemma 4.5. Consider the following cases:

(i) S is a k-dimensional set, k=4, and there is a (k—2)-space H,_, such
that S—(H,-,NS)21{a, b, c}, where a, b, c are not collinear, and the three lines
they determine are all skew to H,_,. Moreover, there is a set QS H,_,NS disjoint
Jrom the plane of a, b, ¢ such that Q is the vertex set of a (k—2)-simplex.

(ii) S is a 5-dimensional set {ay, a,, as, ay, by, by, by, by}, where each of the
sets {ay, g, as, a,} and {b,, by, by, bs} are 2-dimensional and form strictly comvex
quadrilaterals.

(iii) S is a 4-dimensional set {ay, a,, a;, a,, by, by, b} where ay, as, as, a4
are coplanar and form a strictly convex quadrilateral, and the points by, b,, b, are
collinear. '

Then in cases (i), (ii), (iii) respectively S does not satisfy F(k), F(5), F(4).

Proof. In case (i) assume F(k). We derive a contradiction. Applying Lemmas 4.3
and 4.4 repeatedly to QU {q, b, ¢}, we must eventually obtain a 2-dimensional
subset F of four points (satisfying F(2)). F must contain all three of a, b, ¢ for
otherwise it would be a subset of one of the sets QU {a, b}, QU {a, ¢}, QU {b, ¢}
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of which are simplices, since ab, ac, bc are skew to H,_,. So F={a, b, ¢, q)},
al This contradicts the assumption that Q was disjoint from the plane abc.
thd In case (ii) we may take the points to be:

a, = (00000) b, = (00100)
ay = (00001) by = (01000)
as = (00010) by = (10100)
a, = (00011) by = (11000)

Then the 3-face determined by as, ay, by, by contains the point (1/4, 1/4, 1/4, 1/4, 1/4),
an interior point of C(S). Thus F(5) is not satisfied.
In case (iii) we may take the points to be:

a, = (0001) b, = (1000)
ay = (0010) b, = (0100)
az=(0011) by =(x,1—x,0,0)
a, = (0000)

Then the 2-plane determined by ay, a,, b, contains the point (x/3, (1—x)/3,1/3, 1/3),
an interior point of C(S), violating F(4).

We now proceed to prove the necessity of conditions 4; and B;. Recall
that d=4. Assume that S satisfies F(d), and let H be a hyperplane so that HNS
has the maximum possible number of points of S. By Lemma 4.4 HN.S satisfies
F(d—1) in H. There are two possibilities:

(a) HNS satisfies 44—,
(b) HNS satisfies B,;_;.

In either case, if S—(SNH) has only one point, then S satisfies B,; and the con-
clusion of the theorem is satisfied. So we can assume S—(SMNH) contains at least
two points x and y.

Consider (b) first. Let p be the apex of the cone HN S, and let H,_, be the
(d—2)-space containing the base B=H,_,NS. BU{x, y} must be d-dimensional,
of any hyperplane containing BU {x, y} would violate the maximality of H. B
must be (d —2)-dimensional (not less) for the same reason. Thus xy is skew to H;—,.
Similarly px and py are ksew to H,_,. Either p, x, y are collinear, or they determine
a plane P.

Assume first pxy is a plane P. Then by Lemma 4.5 (b) this leads to-a con-
tradiction unless the plane P also contains points of B, and B— P is contained in
some (d—3)-space H,_,. BNP actually contains exactly one point, g. For if it
contains two points, then PNH,_, contains a line L. Not all of xy, yp, xp can
avoid L, and thus must meet H,_,. This would violate the fact that these lines
are skew to H,_,. So P contains x, y, p, g. Further, xypq forms a strictly convex

3]
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quadrilateral. To see this, apply Lemmas 4.3 and 4.4 repeatedly to the s
{x, y, p, q}UB’, where B’U{g} is a (d—2)-simplex in B. We ultimately get a ),
dimensional set F satisfying F(2). Since B’U{g, x, y}, B’U{g, x, p}, B"U{g, p, 1
are simplices, the only possibility for the set F is {x,y,p, q}. So F is convex, bé
F(2), and F is strictly convex since xy, xp, yp are skew to B, and x, y, p are assumeq
not to be collinear. Now in H,_, suppose there are only d—2 points of S. They
if r€H,_,, there is a hyperplane determined by [(SNH;_5)—{r}U{x, y,p, )
which violates the maximality of H. Hence H,-; contains at least (d—1) Point;
of S. Then by repeated application of Lemmas 4.3 and 4.4, if d=5, then H,_,
must contain a coplanar set of 4 points, satisfying F(2), and hence convex, say
ay, 4y, a3, 4. But if this set is strictly convex, Lemma 4.5 (ii) applies to {x,y, p,q,
a,, ds, a3, a,}, which then does not satisfy F(5). This leads to a contradiction from
repeated application of Lemma 4.4 to S. On the other hand, if ay, a,, a3, @, is not
strictly convex, then three are collinear, say a, a,, a;. But now Lemma 4.5 (iij
applies to {x,y,p, q, a;, ds, a3}, leading to the contradiction that this set does
not satisfy F(4), as in the previous case. There remains the case d=4. Here H,_,
is a line with at least (4—1)=3 points, and once again Lemma 4.5 (iii) applies

and leads to a contradiction. This completes the case where p,x;y determine :

a plane.

Now assume pxy is a line, which is skew to H,_,. By induction and Lemma
4.4, B is either a cone or a prism. If it is a cone with apex p’, then (B—{p'HU
U{x, y, p} is a (d—1)-dimensional set, violating maximality of H. So B is a prism
and not a cone. Then any of its 2-dimensional faces (determined by two of its
parallel (or concurrent) ribs) has four points forming a strictly convex quadri-
lateral. This quadrilateral, together with x, y, p must satisfy F(4), by repeated use
of Lemma 4.4, But this contradicts Lemma 4.5 (iii). This completes the case where

pxy is a line, and thus case (b), providing a contradiction for every case with :

S—(SNH)2 {x, y}.

Now consider case (a): HNS satisfies A;,. Let U={, ..., #s_1} be one
of the base simplices of the prism HNS. If HNS—{u} is (d—2)-dimensional,
then case (b) above is applicable. Thus we may assume the prism has two disjoint
simplicial bases, U and V={v,, ..., v4_,}, with possibly, but not necessarily, one
more point at the common intersection of uw; (if it exists).

Now we may assume that x and y are chosen so that the line xy is skew
to at least one of the laterial faces of the prism. For if not, then all possible choices
of x and y are on a line including a point common to all faces of the prism. But
then all points of S—(SMNH) must be collinear and together with SNH form
a d-dimensional prism, satisfying 4,. Let the face F skew to xy be determined by
{ug, ooy ttg_ }U {0, ..., v4_,}. At least one of the two triples x,y,u; or x, )%
will not be collinear, since xy is skew to F, say x, y, u;. Now xu; and yu, are aiso
skew to F, since F and u, are in H whereas x and y are not. Then the (d—2)-space
containing F, together with x, y and u, satisfy Lemma 4.5 (i). This implies S does
not satisfy F(d), a contradiction. This completes the proof of Theorem 4.1. |
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" 5. Maximizing the volume of the minimal simplex determined
by n points S with given volume of C(S)

As before we consider n-tuples S of points in E? not all on a hyperplane
and now define .
S(8) = min vol (T)/vol (¢

pere T ranges all over nondegenerate simplices with vertices in S. Set fy(n)=
tsup f(S). From Theorem 3.2 we get
=p

Theorem 5.1. fa(m)=1/(n—d)

proof. The inequality f;(n)=1/(n—d) is an immediate consequence of Theorem
32. To see that the upper bound is attained let S be the vertices of a simplex, T,
I;S n—d—1 equally spaced points on one of the edges E of T. Here C(S) has
smctly one triangulation & ={T\; ..., T,_,} where each T contains the (d—2)-
face F opposite to E in T and two consecutive vertices on E. ||

We can actually characterize all d-dimensional sets S of n points so that
[(8)= fu(n). Let S be such a set, and let I be any triangulation of C(S). By
{emma 3.2 and Theorem 5.1, J has exactly n—d simplices, all equal in volume.
|t is easy to see that for d=1 S must consist of n points equally spaced on a line,
and for d=2 either S consists of points equally spaced on two parallel lines, with
the spacing the same on both lines, or else .S is the set S, of six points formed by
the vertices of a triangle together with the midpoints of the edges. This can be gen-
eralized to arbitrary 4 as follows:

Theorem 5.2. Let S be a d-dimensional set of n points. Then f(S)=fy(n) if and only
If one of the following conditions holds.

(43): C(S) is a prism with parallel ribs (the bases are not necessarily parallel)
and S divides these ribs all into equal length segments. That is, if S’={u,, ..., uy),
$*={v;, ...,vs} are the two bases, then C(S) is the comvex hull of S’US”. The
ribs u, are all parallel. Let I, be the length of u,, and m, the number of points of
S on uw,. Then Lj/(m;—1)=1,/(m;—1) for all i, j with m,, m;=>1, and the m; points
are equally spaced on uw;. We allow the degenerate cases where my=1, I;=0, u;=v,,
and uyv; is considered parallel to any line.

(By): C(S) is a cone, where S consists of Sg together with d—2 other points.

Proof. For d=1,2 we already saw that 4; or B; holds, and they are clearly suf-
fcient for f(S)=fu(n). Since for any J we saw that there are n—d simplices,
all of equal volume, we can invoke Lemma 3.6 and Theorem 4.1 to conclude for
d&3 that S satisfies 4, or B,. First consider the case A,. It is easy to see that in
this case the ribs of the prism must be parallel, and all are subdivided by S into
the same length equal segments. For if not there will be two ‘basic’ d-simplices
of different volumes, where a d-simplex T of S is ‘basic’ if its d+1 vertices are the
only points of S it contains.

Since any basic simplex is part of some triangulation J~ (by the same ar-
gument as in Theorem 3.6), this would violate the observations about 4 above.
Thus 4] is satisfied.

vk\s 600«97\—
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On the other hand, suppose B, holds. We prove by induction on d that 4
or Bj holds. For d=3 we have a cone with apex p and a base hyperplane { m
that S—(SNH)={p}. Then every basic (d—1)-simplex of SNH must have tp,
same volume, or by -adjoining p we would obtain basic d-simplices of differep,
volumes. Then HNS satisfies 4;_; or Bj_; by induction. If 4;_, is satisfied b,
HNS, then S satisfies 4;, where p is a degenerate rib of the prism. If HNS say;.
fies Bj_,, then S satisfies Bj.

Conversely, it is easy to see that A; and Bj; imply that all basic simplice,
T have the same volume. This gives f(S)=f;(n) and completes the proof. i

6. Further Problems

6.1 Characterize triangulation graphs which are not trees.

6.2 Characterize the different sets of triangulations that arise from a single set S.
In the case where all triangulations are trees, there are only two possibilities by
Theorem 4.1. First, if S consists of some points determining an /-dimensiona)
prism, together with d—/ points in general position, then only one tree occurs,
which is the path of n—d points. On the other hand, the only other alternative
is that S consists of n—d+2 points on a convex polygon together with d—2 points
in general position. By Theorem 3.3 then the trees arising in this case all have n—J
vertices and vertex degrees at most 3. It may be that all such trees are in the set.
or only some subset of them depending on how many of the n—d+2 points are
actually vertices of the polygon, for instance.

6.3 Characterize sets with a unique triangulation graph. Besides the examples men-
tioned in the previous problem, there is the example of the vertices of the regular
octahedron, which determine only the 4-cycle C, as a triangulation graph.

6.4 Determine how close to general position the points of S may be and still have
f(S)=0(n"1). For d=2, we know that if we don’t allow three points colinear,
then the ratio for the Heilbronn proble_m is O(n=#), p=1. If we allow ¥n points
on a line, then considering the Jn X Vn square lattice we see that F(S)=0@Y.
We conjecture that if we allow no more than n'/*-¢ points to be colinear, then
f(S)=o0(n""). In general, we suspect that n‘“-Y/9 is the corresponding critical
number for points on a hyperplane in d-dimensions.

6.5 Generalize the results of [2] on the ratio of the areas of maximal and minimal
triangles to d-dimensions. This is given as problem 1 [2]: Let S be a set of »n points
not all on a hyperplane in E% Let g(S) denote the ratio of the minimal to the ma-
ximal volume of nondegenerate simplices with vertices in S. Find gd(n)=51s1p g(S).

The conjecture, by analogy, is that

1
8a(m) = 1o Dy

Note. The authors wish to thank the referee for several careful observations of
errors in the original version of the manuscript.
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