PoSSo-RealSolving

(Simultaneous Inequalities)

by
Fabrice Rouillier and Guadalupe Trujillo

1 Introduction

2 Simultaneous Inequalities Algorithm

Let J be an ideal, and define Z as the set of real roots of J. Let @4,...,Q,
be a list of polynomials. A polynomial); is said to realize a sign condition
€ € (+,0,—) at a point if it evaluates to a positive, zero or negative number.
Given Q1,...,Q, and € = {e1,...,&,}, the realization of the sign pattern e
at the solutions of J is:

Re(J;Qu, .., Qn) = {z € Z | (V1) Qi(z)es}.

The aim of the algorithm is to compute the number of elements of Z giving
to Q1,...,Q, the sign pattern e:

ce(J; Q1 -, Qn) = card(Re(J; Q1. .., Q)

Our algorithm is based on the fact that it is possible to compute:
V(45Q) = cy(J;Q) — ¢-1(J; Q)

Definition 1 A pseudo-partition of Z is a list C = [Cy,...,C,] of n subsets
of Z whose union is Z and whose intersections two by two are empty (the
difference with a partition is that some C; may be empty). A list of polyno-
mials H = [Hy,...,H,] is adapted to a pseudo-partition C = [Cy,...,Cy]
of Z if on each subset of C' the signs of the polynomials of H are fized. If H
is adapted to C', the matrix of signs of H on C, A(H, () is the n x m matriz
whose (v,7)’s entry is the sign of H; on C;.

For example [1, @, Q?] is adapted to [Ro1(J; Q), Ri43(J; Q), Ri—3(J; Q)] and

the matrix:
1 1 1
A=10 1 -1
0 1 1

is the matrix of signs of [1,Q, Q%] on [Ri1(J; Q), R43(J; Q), Ri—3(J; Q)].

We denote by ¢(C) the list of cardinals of the C;s, by sign(H(z)) the list of
signs of H;(z) and by V(J; H) the list of integers V(J; H;), j € {1,...,m}.

Proposition 2.1 Given a pseudo-partition C' of Z, and a list of polynomials
H adapted to C:
A(C,H) - ¢(C)=V(J;H)

Proof : It is obvious since the j-the row of A(C, H) is the list of signs of H;
on the list C. 0

Corollary 2.2 Given a polynomial Q:

coy(J; Q) V(J;1)
A- C{+}(J;Q§ = | V(J;Q)

ct-3(J; Q V(J;Q%)
Proof : We have seen above that A is the matrix of signs of [1,Q, Q% on
[Be0y(J; @), Ri4y(J;Q), Re-3(J; Q). =

Notation 2.3
o [fC=[Cy,---,Ch]l and C" = [C},---,C",] are two pseudo-partitions of

n

Z, we denote by C' N C" the pseudo-partition of Z defined as:
[01mc;,---,cnmc*{,---,clmc;,,--.,cnmcg,]

e IfH=[Hy, - H,] and H = [Hi,---,H]] are two lists of polynomi-

m

als, we denote by [H - H'] the list of mm’ polynomials:
[HlHiaaHnH{a,HlH;l/HnHé/]

o If Aand A are two n x m and n' x m/ matrices, we denote by A Q A’
the nn’ x mm’ matriz obtained in replacing the entry a;; of A’ by the
matriz a} ;A.

Proposition 2.4 Consider two pseudo-partitions C and C’ of Z and two
lists of polynomials H and H' such that H (resp. H') is adapted to C' (resp.
C'). Then:

A(H,C)® A(C'H"Y = A(CNC",H - H')

Proof : This follows immediately from the definitions. O

Corollary 2.5 Consider two pseudo-partitions C and C' of Z , and two lists
of polynomials H and H' such that H (resp. H') is adapted to C (resp. C').
Then:

AH,C)® A(C",H'")-¢(CNC') = V(J;H-H')

3

2.0.1 Simultaneous inequalities

The aim of the algorithm we shall describe is to determine the number of
roots of J giving fixed signs to @1, ..., @n.

Let us consider the case n = 1. Let C{?1) be the pseudo-partition of Z
[R{O}(']v Ql)vR{-i—}(‘]; Ql)vR{—}(‘]v Ql)]a and H(Ql) = [valaQ%] Since we

know a function V such that:
V(J;Q1) =#{z € Z | Qi(z) >0} — #{z € Z | Q1(z) < 0}

we can compute co}(J; @1), c(+3(J; @1), ¢f—1(J; Q1) from these values and
the linear relation:

A- C(C(Ql)) =V(J; H(Ql))

Combining the matrix equalities corresponding to (1 and @) we have:
A®A- c(c(ch) N C(Qz)) = V(J; HQ1) . H(Qz))
More generally, for [= 1,...,n, we have the following equality:
A o(CO) = V(J; H)
where A;, H;, QW, c@Y) are recursively defined as follow:

Ay Ay A
[] Al = Al—l & A = 0 Al—l _Al—l
0 A A

o H = H_, - H@)
L4 Q(l) = [Qla sy Ql]

o CRY) — @'Y 1 Q)

Using the precedent results, we see that we can obtain all the sign conditions
realized by the polynomials Q1,...,Q, solving linear systems recursively
defined:

Ay - o(CO™N = V(J: Hy,)

4

(Note that the matrices we obtain is each step are nonsingular, since they
are the Kronecker product of two nonsingular matrices).

If we continue this process iteratively, then, without some strategy, the di-
mensions of the matrices involved in our calculus will grow in an exponential
way. We will need to solve a linear system of 3" equations in 3™ variables, and
3" calls to the V function will be necessary. To avoid this exponential behav-
ior, the algorithm applies the strategy of Ben-Or, Kozen and Reif ((BKRS6)).
The idea is to remark that, if the ideal J has k real roots, then the number
of different sign conditions realised by Q4,...,Q, at the real solutions of J,
is bounded by k. Using this idea, at any step of the algorithm, we reduce
the system by dropping the information corresponding to the sign conditions
that are not realized by a solution of the ideal. Next section presents the
algorithm in more detail.

3 Implementation

Input:

e Anideal J, given by an Univariate Polynomial (in the univariate case),
or by the Multiplication table corresponding to the problem (in the
multivariate case).

o A list of polynomials constraints, Q1,..., Q,.

Output:

e An element of the class STout, which consists of:

— SIMatriz: A non singular matrix.

— [s2g: The list of sign conditions which are realised at the roots of
the ideal.

— Ilsol: A vector containing the number of roots of .J that verify each
sign condition set of [sig.

— Ipol: The list of polynomials, products of powers of the initial set
(1, -..,Qn, which are present in the reduced system.

— IRSV: The vector V(J;Ipol).
— Sldeal: The ideal J, represented as in the input.

— Dim: The dimension of ST Matriz, which coincides with the num-
ber of distinct sign conditions.

— Nroots : The number of real roots of the ideal J.

At each step of the algorithm, the following relation holds:

SIMatriz - lsol = [RSV

The algorithm begins with an initialisation step followed by an iterative
process which computes the sign conditions over the set of polynomials
Q1,..., Q41 from the output corresponding to Q1,...,Q\.

Initialisation Step

The program starts by computing s = V(J;1), the number of real roots
of the ideal J, and creating an element of the class SIout by a call to the
constructor of the class. The output of this initialisation step is given by:

SIMatriz = (1)

lsig = {{}}

lsol = {s}

Ipol = (1)

IRSV = (V(J;1))

Sldeal = J

Dim =1

Nroots = s
Note that the identity SIMatriz - [sol = [RSV holds because (1)(s) =
(V(J;1)).

If s = 0 (i.e. if the ideal has not real roots), the program exits. If not,
the iterative process, SIadd, is applied for each polynomial in the list of
constraints.

Iterative Process: SIAdd

The input of this step is the output of the previous one, an element of the
class Slout, and a new polynomial constraint, Q,4;. We start constructing
a new system as a tensor product:

1 1 1 SIMatriz SIMatriz SIMatriz
A=5IMatriz®@ | 0 1 -—1 = 0 SIMatriz —SIMatriz
01 1 0 SIMatriz SIMatriz
C{o}(J§ Ql+1) su{o}(J Q)selsig
X =1lsol® | c(3(J; Qi) | = | ceugy(J;Q0F)sGlsz'g
c(-3(J; Quy1) ceu{=3(J; Q) cersig
V(J;l) V(J H)HElpol
=IRSV @ | V(J; Qi) = V(J; H - Qup1) Hewor
V(J§ Q12+1) V(J H- Ql+1)Helpol

Next, we call the S1Solve function (see next section for more details) to solve
the system A - X = B, and we reduce it in this way:

o Let indy,...ind,ewpim be the sequence of indices corresponding to the
non zero elements of the vector X.

e Drop the columns of the matrix A corresponding to the zeros of the
vector X.

e Drop the rows of the resulting matrix needed in order to obtain an
square matrix of full rank. This operation is performed by a call to the
MazInvert function (see next section).

o Let uy,. .. Upeypim be the sequence of indices of the rows of the matrix
A which appears in the reduced matrix.

* Reconstruct [RSV taking from B the elements corresponding to the
lines of the matrix A we have chosen:

IRSV = (Blu),. .., Blunewnim))

e Reconstruct [pol taking the polynomials corresponding to the elements
of [RSV. Ipol is given by the elements of indices uy, ... UnewDim in the
list H defined by:

H(i) = lpol(z) i=1,...,Dim
H(i + Dim) = Ipol(z) - Q41 i=1,...,Dmm
H(i+2- Dim) =Ipol(1)-Qf;, i=1,...,Dim

e Reconstruct [sol with the non zero elements of the vector X:

lsol = {X(lnd1)7 cee 7X(indneu/Dim)}

e Reconstruct [sig as the list of sign conditions corresponding to lsol,
taking the elements of indices indy, . . . indpewDim from the list L defined
by:

L(i) = lsig(z) U {0} i=1,...,Dim
L(i + Dim) = lsig(1) U {+} i=1,...,Dwm
L(i+2-Dim) =lsig(t)U{-} ¢=1,...,Dim

In each step, some tests can be applied in order to minimize the number of

calls to the V function (see [G89]):
e We compute V(J;Qi41):

— Case 1: V(J; Qiy1) = Nroots.

All the roots of J take a positive value if evaluated in Q4;- We
append ” +7 at the end of each list of signs. No modifications are
needed for the rest:

Isig — {e U {+}}eetsig

— Case 2: V(J;Qiy1) = —Nroots.
All the roots of J take a negative value if evaluated in Q1. We
append 7 — 7 at the end of each list of signs:

Isig — {e U {—}}eetsig

The rest, as in the previous case, remains unchanged.

8

o If V(J;Qi41) # Nroots and V(J; Q1) # —Nroots, then we compute
V(J; Q12+1):
— Case 3: V(J;Qf,) =0.
All the roots of J are also roots of Q1. We append 707 at the
end of each list of signs:

Isig — {e U {0} }eetsig

— Case 4: V(J§ Q12+1) = V(']Z Ql+1)~
Each root of J is a root of @;11 or takes a positive value. Next
relation follows:

(1 1><C{0}(J§Qz+1)):(V(J;1) >
0 1 e+ (J; Quyr) V(J; Quy1)
In this case, the system we construct starting SIadd process is

given by:

. 1 1
A= SIMatriz & <O 1)

J; Quy1)
X =] Z®<C{0}(s &t)
°0 C{+}(J; Ql+1)

B=IRSV @ (VX](;JC;QI?I))

Next, we solve the system and we reduce it as described before.
~ Cuse 5 V(J;Qh) = ~VI(J: Quaa).

Each root of J is a root of) or takes a negative value.

b 5) C0EE) = ()
— Case 6: V(J;Q7,,) = Nroots.

No root of J is at the same time a root of ;. All the roots of
the ideal take a positive or negative value when evaluated in Q41:

(0 L) () = (o)

9

— (Clase 7: General case.

Each root of J is a root of Q41 or takes a positive or negative

value:
11 1 cio1(J; Quar) V(J;1)
0 1 -1 C{+}(J; Qz+1) = V(J; Ql+1)
01 1 c(-31(J; Qi) V(J; Q)

3.1 Some specialized Linear Algebra Tools

This section deals with the strategies used for :
e Solving the linear system SIMatriz - lsol = [RSV

e Extracting from SIMatriz an invertible sub-matrix with a fixed rank,
using choosen columns of STMatriz (those that correspond to non null
coordinates of [sol).

These two algorithms are called frequently in the algorithm, they have to be
as efficient as possible.

Since SIMatriz - lsol = IRSV is a linear system of diophantine equations,
a first method consists in using Bareiss-like methods to prevent from using
rational numbers.

3.1.1 IntSISolve

IntSISolve takes a square matrix A and a vector V and returns a vector X
such that AX =V assuming that A is invertible.

Using Bareiss relations (see [BAR68]), we put A into a row-echelon form
using elementary fraction free manipulations on its lines and doing the same
operations on V. We obtain then a triangular system A’X = V' that have
exactly the same solution than the original one. Since it is a system of
diophantine equations , we know that the divisions involved to solve the
triangular system are exact and so we can solve the system without using
rational numbers.

10

3.1.2 IntMaxInvert

IntMaxInvert takes as arguments, a square matrix A with integer coefficients,
a list of indices ctnd and an integer d, and returns an invertible matrix B
of rank d extracted from the rectangular matrix A[z][ind[;]], and the list of
rind row indices of A[¢][snd[s]] that has been used to construct B.

Also, if A- X = V then we will obtain: B - X’ = V' where:
o X'li] = X[cind[1]]
o V'[i] = V[dind[/]]

Since, in the SI algorithm, the coordinates of V correspond to the computa-
tion of V(J; H) for a given polynomial H, this polynomials must have degrees
as small as possible to optimize the algorithm and so, in IntMaxInvert, this
means that we have to take first the lines of A[z][ind[;]] that have the smallest
indices to construct B.

This can be done using an appropriate strategy for choosing a new pivot in
the row-echelon algorithm, searching first in the current line instead of in the
current column.

Combining these operations with Bareiss relations, we obtain a fraction-free
specialized algorithm.

Unfortunately, such methods implies the use of a multi-precision arithmetic
for the computations because of the growth of the coefficients in the Bareiss
method.

A second idea is to use modular arithmetic. Let’s study the size of the
involved data:

¢ The coordinates of [sol represent the number of real roots realized by
some sign conditions, so they are positive and their sum is bounded by
the total number of real roots.

e In the same way, we can remark that each coordinate {RSV[i] of IRSV
verify the following relation:

—Nroots <[RSV [i] < Nroots

where Nroots is the total number of distincts real roots.

11

e The entries of SIMatriz stand in {0,1, —1}

So, let suppose that p is a prime integer so that p > 2 - Nroots and study
STMatriz - lsol = [RSV as a linear system with p-modular coefficients (de-
noting by STMatriz (resp. lsol, IRSV) the expression of SIMatriz (resp.
Isol, IRSV) reduced modulus p).

If STMatriz is invertible, then there is an unique solution Isol giving a
family of potential solutions lsol so that Isol[i] = Isoli] + ki -p , i =
1...dim(SIMatriz). But because all the coordinates of [sol are positive

and bounded by p, taking k; = 0 Vi € 1...dim(SIMatriz), we obtain the
expected solution.

To be sure that STMatriz is invertible at each step, we use the following

recursive method:
At the first step,
1 1 1
SIMatriz=10 1 -1
0 1 1

so det(SIMatriz) = 2 implies that STMatriz is invertible modulus p > 2
and we can use the method precedently described to solve SIMatriz - [sol =
IRSV. Since STMairiz is invertible, we can find a sub-matrix B of full rank
that is invertible modulus p using an algorithm similar to IntMazInvert,
working with modular arithmetic (using the classical gaussian reduction for
example).

At the next step, SIMatriz is defined as the tensor product: M ® B where

1 1 1
w31 G))

1

Since, in each case, det(M) is a power of 2, the relation :
det(M ® By = det(ZW)dim(B) . det(B)dim(M)

shows that M @ B is invertible modulus p and so the modular solver described
before can be used at each step.

These different results give two algorithms ZpSISolve and ZpMaxInvert
that can replace IntSISolve and IntMaxInvert.

12

4 Real Algebraic Numbers Coding: RAN
Algorithm

The algorithm we present in this section has been introduced by Coste and
Roy ([CR88]). It is based on the following fact:

Let P be a polynomial of degree d with integer coefficients, P',..., P41
its derivatives. Let o and 8 be two real roots of P. If sign(PW(a)) =
sign(PO(B)) (i = 1,...,d — 1), then a = B.

This result is a consequence of Thom’s lemma (see [BCR87]) and provides a

caracterization of a real root of a polynomial P by the sequence of signs it
takes when evaluated in the derivatives of P.

4.1 Algorithm RAN
Input:

e A polynomial P.
Output:

e An element of the class STout where lsig contains the coding of the
real roots of P.

The algorithm consists on applying the SI algorithm to the derivatives of
P. Moreover, some strategies are applied (see [G89] or [RS90]), in order to
reduce the computational cost:

- The algorithm stops when all the elements of /sol are ”1”. (That means
that there is exactly one root of P which realize each sign condition, and
then all the roots are distinguised and we do not need to compute the signs
realized over the rest of derivatives).

- The list of derivatives is given in decreasing order: P(¢=Y . P’ Like
this, we start the computation with the polynomials of smaller degree.

- We replace P* by I;—f, (t=1,...,d —1), reducing in this way the coeffi-
cients of the polynomials we deal with.

13

5 Examples

Example 1: Univariate case. Caracterization of the zeroes of the polyno-

mial:

P=21z%4+2*—22° + 16222 — 13z — 1
Output of RAN :

RAN({21%T**5 1+T**4,-2%T*x3,162%T**2, -13*T**1,~1})

{ {+,+} , 1}
{{-,+}, 1}
{{-,-», 1}
User Time: 0,110000 sec

This means that there are tree zeroes, oy, oz and a3 such that:

[P =0,P®>0,P® > (]

o =
oy =[P =0,PW <0, PO >0
a3 =[P =0,PW <0, P <0

Example 2: Multivariate case. Cassou-Nogues (from the PoSSo test suit
data base) :

156%cd? 4 6b1c® + 21b%c*d — 144b%*c — 8b*c?e — 28b*cde — 648b%d
+36b%d%e + 964 d® — 120

30c3b%d — 32de?c — T20db%c — 24c3h%e — 432¢2b% + 5T6ec — HT6de
+16cb?d%e + 16d%e? + 16€2c% + 9¢b* + 5184 + 39d%b*c?
+18d3b e — 432d%b? + 24d3b%e — 16c2b?de — 240c

216db%c — 162d2b? — 81¢2b? + 5184 + 1008ec — 1008de 4 15c*b*de
—15c3b%e — 80de?c + 40d%e? + 40e%c?

261 + 4db*c — 3d?b* — 4c?b% 4+ 22ec — 22de

14

Variables: {b,c,d, e}
List of constraints : {b,c,d,e}

Output of ST :

SI Algorithm

Number of distinct real roots : 4

For the list of constraints :

{{b},{c},{d},{e}}

{ {+,+,+4,+F , 1 }
{ {-,+,+,4F , 1}
{{+,+,+,-3 , 1}
{{-,+,+,->, 1}

(SI) User Time : 6,720000 sec
(RealSolving) User Time : 7,230000 sec

(Global) User Time : 49,500000 sec

This means:

e There is 1 real solution where 5> 0c¢>0d>0e > 0
o There is 1 real solution where b< 0e¢>0d>0e >0
o There is 1 real solution where > 0c¢>0d >0e < 0

o There is 1 real solution where b<0¢c¢>0d >0 e < (

One table of timings
In this table we show timings for RAN algorithm over a collection of univari-
ate polynomials. Times are given in seconds. The computations has been

performed on a SPARCStation 10, 80 MB.

15

‘ n PoSSo | AXiomJ
Feng 33,50 794.83
Mignotte_51.974 15,48 | 5967.53
Mignotte 67-3245 || 41,57 | 5859.37
Mignotte_89-3523 || 119,74 | 39706.67
Wilkinson_354_16 || 48,79 307.32
Wilkinson 87_21 253,08 | 1819.85

e Feng represents the discriminant in respect of y of the polynomial
(from the PoSSo test suit data base):

9% + 428y? + 3ztyt + 20%y% + y® — 8320y — 88zty® — 4Tay® — 42y7
13982° + 13232%y? + 40122y* + 6825 — 8637y — 22412%y°
—5262y° + 202002* + 1225922y 4+ 18741y* — 3030027y

—24220y3 + 10100y>

e Mignotte_d_a represents the polynomial:

P = :vd—Q(ax — 1)2

o Wilkinson_M _n represents the polynomial:

x”_1+M-ﬁ(:c—z')

References

=0

[BARG68] Bareiss E. H: Sylvester’s identity and multistep integer preserving
Gaussian elimination. Math. Comp. 22, 565-578 (1968).

[BCR87] J. Bochnak, M. Coste and M. F. Roy: Géometric algebrique réelle.
Ergebnisse der Mathematik. Berlin: Springer-Verlag (1937).

[BKR86] M. Ben-Or, D. Kozen and J. Reif: The complezity of elementary
algebra and geometry. Journal of Computation and Systems Sciences 32,

251-264 (1986).

16

[CR88] M. Coste and M.F. Roy: Thom’s lemma, the coding of real alge-
braic numbers and the topology of semialgebraic sets. Journal of Sym-
bolic Computation 5, 121-129 (1988).

[G89] L. Gonzalez Vega: La sucesion de Sturm-Habicht y sus aplicaciones
al Algebra Computacional. Doctoral Thesis. Universidad de Cantabria.
(1989).

RS90] M.F. Roy and A. Szpirglas: Complezity of Computation on Real Al-
g
gebraic Numbers. Journal of Symbolic Computation 10, 39-51 (1990).

17

