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Abstract. A new recursive procedure of the calculation of partition numbers function W(s, d™) is suggested.
We find its zeroes and prove a lemma on the function parity properties. The explicit formulas of W(s, d™) and their
periods 7(G) for the irreducible Coxeter groups and a list for the first twelve symmetric group S, are presented.
A least common multiple lcm(m) of the series of the natural numbers 1,2, ..., m plays a role in the period 7(S,,)
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1. Introduction

More than hundred years ago J.J. Sylvester stated [11, 12] and proved [13] a theorem about
restricted partition number W(s, d”) of positive integer s with respect to the m-tuple of

positive integers 4™ = {d), dy, ..., d,}:

Theorem. The number W (s, d™) of ways in which s can be composed of (not necessarily

distinct) m integers d\, d,, . .., dy, is made up of a finite number of waves
max q max k
Ws @™y = 3 We(s,d™),  Wyls,d™) =Y Wy, (s, d"), M
q k
where q run over all distinct factors indy, ds, .. ., d,, and Woiiq(s, d™) denotes the coeffi-
cient of t ™" in the series expansion in ascending powers of t of
m
1 . Dk . P
m . . _swy — rr — A
F(s,d™ k;t) = e U——l — W= 2m p +1t, w=2mi it @)
r=1
and p1, pa, ..., Pmax k are all numbers (unity included) less than q and prime to it.
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W(s,d™) is also a number of sets of positive integer solutions (x;, x2, ..., x») of the
equation Z:" d,x, = s. It is known that W(s, d™) is equal to the coefficient of ¢ in the
expansion of generating function

m 1 x
MAd™, = —_— = w ,dm 5. 3
@, 0 El_tdr };0 (s, d™) ©)
If the exponents dy, dy, . . . , d,, become the series of integers 1, 2, 3, ..., m, the number of

waves is m and W(s, d™) of s is usually referred to as a restricted partition number P,,(s)
of s into parts none of which exceeds m.

Another definition of W(s, d") comes from the polynomial invariant of finite reflec-
tion groups. Let M(d™,¢) is a Molien function of such a group G, d, are the degrees
of basic invariants, and m is the number of basic invariants [9]. Then W(s, d™) gives
a number of algebraic independent polynomial invariants of the s-degree for
group G.

Throughout his papers J.J. Sylvester gave different names for W(s, d™): quotity, de-
numerant, quot-undulant and quot-additant. Sometime after he discarded some of them.
Because of the wide usage of W(s, d”) not only as a partition number we shall call W(s, d™)
a Sylvester wave.

The Sylvester theorem is a very powerful tool not only in the trivial situation when m is
finite but also it was used for the purposes of asymptotic evaluations of P, (s), as well as
for the main term of the Hardy-Ramanujan formulas for unrestricted partition number P(s)
[14].

Recent progress in the self-dual problem of effective isotropic conductivity
in two-dimensional three-component regular checkerboards [5] and its further
extension on the m-component anisotropic cases [6] have shown the existence of
algebraic equations with permutation invariance with respect to the action of the
finite group G permuting m components. G is a subgroup of symmetric group S,
and the coefficients in the equations are built out of algebraic independent poly-
nomial invariants for group G. Here W(s,d™) measures a degree of non-universality
of the algebraic solution with respect to the different kinds of m-color plane
groups.

Several proofs of Sylvester theorem are known [3, 13]. All of them make
use of the Cauchy's theory of residues. The recursion relations imposed on W(s, d™)
provide a combinatorial version of Sylvester formula. The classical example for
the elementary (complex-variable-free) derivation was shown by Erdos [4] for the
main term of the Hardy-Ramanujan formula. Recently an elementary derivation
of Szekeres’ formula for W(s,d™) based on the recursion satisfied by W(s, d™) was
elaborated in [2]. In this paper we give a new derivation of the Sylvester waves based
on the recursion relation for W(s, d™). We find also its zeroes and prove a lemma on
parity properties of the Sylvester waves. Finally we present a list of the first twelve
Sylvester waves W(s,S,,),m=1,..., 12 for symmetric groups S,, and for all Coxeter
groups.
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2. Recursion relation for W(s, d™)
We start with a recursion that follows from (3)
M@, ) - M@ ) = t"M@", 1), )
and after inserting the series expansions into the last equation we arrive at
W(s,d™)y = W(s,d" ")+ W(s — dyp, d™), dy, <s, )
where s is assumed to be real. We apply now the recursive procedure (5) several times
W(s,d") = Z W(s = p-dp,d™ )+ W(s = (rm + 1) - du, d™). (6)
p=0

Let us consider the generic form of W(k - t{d™}+s, d™), s < t{d™} where k, s and t{d™}
are the independent positive integers. We will choose them in such a way that

k-tld}+s—(rm+Ddpn=Gk =1 -t{d"}+s, =t{d")=0n+1)-du )
Thus the relation (6) reads

Wk -t{d"} +s5,d™) = W((k=1) t{d"} +5,d™)

= z{d")
Y WO (@) = pdy s, @ 8 = T

=0

As follows from (7), in order to return via the recursive procedure from W(k - {d™}+s, d™)
to W((k — 1) t{d™} + s, d") we must use 7{d™} which have d,, as a divisor. Due to the
arbitrariness of d,, it is easy to conclude that all exponents di, ds, ..., d,, serve as the
divisors of T{d™}. In other words t{d™} is the least common multiple lcm of the exponents
di,dy, ..., d,

o{d"} = lem{dy, dy, ..., dp). ()]

Actually 7{d"} does play a role in the “period ” of W (s, d™). But strictly speaking it is not
a periodic function with respect to the integer variable s as could be seen from (8). The rest
of the paper clarifies this hidden periodicity.

As we have mentioned above, W (s, d™) gives a number of algebraic independent poly-
nomial invariants of the s-degree for the group G. The situation becomes more transparent
if we deal with the irreducible Coxeter group where the degrees d, and the number of basic
invariants m are well known.

The periods 7 of the irreducible Coxeter groups are given in Table 1.
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Table ]. The “periods” ©(G) of W(s, d™) for the irreducible Coxeter groups.

G Am B, Dy, G, Fy Eg
(G) lem@m + 1) 2 lem(m) 2 lem{m) 6 24 360
G E; Eg Hs H, L(2m) LC2m+1)
7(G) 2520 2520 30 60 2m 2Q2m+1)

where lcm(m) is the least common multiple of the series of the natural numbers
1,2,...,m.

lem(m) can be viewed as t(S,,) for symmetric group S,, or, in other words, as a “period”
of the restricted partition number P, (s). lcm(m) is a very fast growing function: lcm(10) =
2520, lem(20) = 232792560, lcm(30) = 2329089562800 etc. Actually = 'C,:’('”) oscillates
infinitely many times around 1 and according to Landau [15] the function lcm(m) grows
exponentially with the asymptotic law

Inlem(m) = m 4+ O(/m lam). (10)

3. Polynomial representation for W(s, d™)

Making use of the relations (8, 9) we obtain the exact formula for W(k - t{d™} + s, d™) for
different d™. We will treat it in an ascending order in the number m of exponents. The first
steps are simple and they yield

d' =), t{d}>s>0
Wk -dy +s,d) = W(s,d") = & (s)_[1,s=o (mod i) an
AT EREI=TEI=RA = 00,5 £0 (mod dy)

W, (s) may be represented as a sum of prime roots of unit of degree d;:

W, () 1 d‘z—:l <271iks) 1 [1+cosms +2 0 cos Z’;Tks, even d,
S)= — €xX = — .
@ d = P dy di| 14250 cos —2—’;:‘—3, odd d,
&=, dy), t{d’}>s5>0
851
Wk - t{d?} +s5,d%) = W(s,d*) + k- Z W(ls — p dy|,d"). (12)

p=0
& =, d,d3), t{d) >5>0

83—1
Wk tid’) +5, &) = W(s, &)+ k- Y W(s - pds], d)
p=0
Kk + 1) t{d®) =%

W(s —pdy—qdy|,dY). (13
> r{dz};q; (s—pds—gal,d). (13)
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Now it is simple to deduce by induction that in the general case W(k - £{d™} + s, d™) has
a polynomial representation with respect to k

Wk - t{d"} +5,d™) = AT _ (K™ + AT (k" 24+ ATk + AZ(s, d™),  (14)

where Alr_ (s} is based on the 7{d"}-periodic functions as well as the entire W(s, d™) is
based on the T{d™}-periodic functions. The coefficient of the leading term can be written
in a closed form

AT (s) = 1 Tm—2{dm}
mo1 (m-—-1" t{d?} {d3}----. T{d"-1)

Sm—18p_1—1 8—1
XYY Y W(s = pdn—qdp ~ - —vdy),dY). (15)

p=0 ¢=0 v=0
With d[ = 1 we have W(IS - pdm —-q dm-l —_e.—p d2', 1) = 1’ which makes A,’:_l(s)

independent of s and gives an asymptotics of W(s, d™) for s > m
.rm—~l{dm} 500 gm=1

Am = W S,dm ~ 16
m-1®) (m—1)!m! ( ) (m—1)!'m! (16)

Now we are ready to prove the statement about splitting of W(s, d™) into periodic and
non-periodic parts.

Lemma 3.1.  The Sylvester wave W(s, d™) can be represented in the following way
m—1 )
W(s,d™) = Qn(s)+ y_ QT(s)- ", a7
j=!
where Q;f'(s) is a periodic function with the period t{d’} = lem(d;, ds, . . ., d;).
Proof: We start with the identity for the polynomial representation for W k-t {d™} + s, d™)
Wtk +1)-t{d"} +5,d™) = Wk - {d"} + s 4 {d"}, d"),
that can be transformed, using (14), into

An () R+ 1" 4 AR )k +1)"2 4 AT(s) (k+ 1) + W(s,d™)
=An ((s+ T D" AT (s + T DA+ 4 AT + T{d" ) k
+ W(s + o{d™},d™). (18)

The lastidentity generates a finite number of coupled difference equations for the coefficients
AT (s)

r
Aps+T@ D= Cnl A (s), 1<rs<m, (19)
j=I1
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where C,’,‘ denotes a binomial coefficient. The first equation (r = 1)
Ar (s +T{d™) =A% _(s)

declares that A’,_,(s) is an arbitrary r{d™}-periodic function. We can specify the last
statement taking into account (14) that actually A} _,(s) is 7{d'}-periodic function which
will be denoted as Q7 (s). The second equation (r = 2)

Ar L+ T{d"h) =A% _(s)+(m—1)- AL _(s)
can be solved completely
AL _(8) = Q3 () + (m —1) -5 - QT (s), (20

where Q7(s + r{d?}) = @7 (s). Continuing this procedure, it is not difficult to prove by
induction that for any » we have

An_ ()= CnZi- QF(s)- s, @
j=1

where Q;f‘(s + r{d')) = Q;f'(s). Since W(s,d™) = A{(s) we arrive finally at (17) by
inserting r = m into Eq. (21), that splits W(s, d™), in accordance with the Sylvester
theorem, into periodic and non-periodic parts. 0

4. Partition identities and zeroes of W(s,d™)

In this section we assume that the variable s has only integer values.
Consider a new quantity

V(s,d") = W(s —£(d"),d"),  E(d"} = %z:d @)
Lemma 4.1. V(s, d™) has the following parity properties:
V(s,d™) = —=V(=s,d™), V(s,d) = V(~s,d>*"). (23)
Proof: The basic recursion relation (5) can be rewritten for V (s, d™)

Vis,d™) = V(s —dy, d™) = V(s - ‘%’”, d'"-‘). 24)
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The last relation produces two equations in a new variable ¢ = s — "7"‘

dy dy
Vig,d" = V(q + 7,«1"’) - V(q - —2—,d"’),

d d (25)
V(_q’ dm_l) = V(“] + 7”" dm) - V(“q - va dm)'

Hence if V(g, d™) is an even function of g, then V(gq, d™~!) is an odd one, and vice versa.
Because V(q, d!) is an even function, we arrive at (23). O

Corollary. Ifs; + s, +2£{d™} = 0, then
W(si, d") = (—=1)"*' W(s;, d™)

Proof: This follows from the parity properties and after substitution of two new variables
st =5 — E{d™}, 5, = —s — £{d™} into (23). O

Lemma 4.2. Let m-tuple {d™) generate the Sylvester wave W(s,d™). Then for every

integer p the m-tuple {p-d™} = {pd|, pds, ..., pd,)} generates the following Sylvester
wave

W(s, p-d™y=W,(s)- W(i, d"’), or V(s,p-d")=W,(s — p£{d™})- V(i, d"’),
p 4
(26)
where the periodic function W,(s) = W, (s + p) is defined in (11).

Proof: According to the definition (3)

ZW(s,p-d"’)-ts = ZW(s,d’")-tP‘ = ZW(%,d’") o

Equating powers of ¢ in the latter equation and taking into account that s’/ p must be integral
we obtain (26). 0

Lemmad.3. Let m-tuple {(d™} generate the Sylvester wave W(s, d™). Then W (s, d™) has
the following zeroes:
o If all exponents d, are mutually prime numbers, then the zeroes so(d™) read

so(d™) = —1,—2,...,—Zd,+1, ifm=2k+1,
— @7
so@™) = —1,=2,..., = "d, + 1, —&{d"}, if m=2k;
. r=1
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e Ifall exponents d, have a maximal common factor P, then W(s, d™) has infinite number
of zeroes & (d™) which are distributed in the Sfollowing way

6:1@™) = s1(d™) U (Z/ pZ}, (28)
where {Z/ pZZ} denotes a set of integers 7 with deleted integers of modulo p
Z/pZ)={...,—p— L—p+1,...,-L1L,...,p=-1,p+1,..} 29)
and
d+p, if m=2k+1,

' = (30)
s1@") = ~p, =2p,...,= Y d, +p,~E{d"), if m=2k.
r=1

51d") = ~p,-2p,...,—

Proof: Consider again the relation (6) which we rewrite as follows

1
1 — ¢n

o0 o0
ZW(s,d'").f = .ZW(S’,d'"—l).f’ (31)
s=0 §'=0

assuming that the exponents in d™ are sorted in the ascending order. Note that the influence of
the new d,, exponent appears only in terms #* with s > d,,. This enables us to deduce that the
values of W(s, d"~!)and W(s, &™) coincide at integer positive valuess = 0, 1, ..., d,—1.
This means that for 0 < s < d,, — 1 we have W(s, d™) = W(s, d™1). Recalling the main
recursion relation (5) we conclude that

W(s,d")y= 0(-d, <s <-1).
Using the last relation for m and m — 1 in (5) we can find also
Wi —dn,d") = 0(—dp_1 <s<-1)= W, d) = 0(-dy_; —d, <s <—1).
Repeating this procedure and taking into account that at the last step it leads to the zeroes

of Wy, which are located at (1 — d; < s < —1), we get the set of the zeroes for W(s,d™)
with odd number of exponents m = 2k + 1

Wis,d = 01— d <s<-1) (32)
i=1

The eveness of m gives one more zero of W(s, d”) which arises from the parity prop-
erties of V(s,d™), namely, V(0,d*) = 0. The last equality immediately generates a
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zero —&{d*} of W(s,d?) that together with (32) proves the first part (27) of
Lemma 3.

The second part of Lemma 3 follows from (26) and from the first part of (27) because a
set of integers {Z/pZ)} represents the zeroes of the periodic function W(s). O

The complexity of the exponents sequence {d"} and its large length make the cal-
culative procedure of restoration of Q7 (s) very cumbersome. Therefore it is important
to find the inner properties of {d™} when this procedure could be essentially
reduced.

Lemma 4.4. Let m-tuple (A"} = {d|,ds,...,d;,d,, ..., dw} contain an exponent d,
twice. Then the Sylvester wave V (s, &™) is related to the Sylvester wave V (s, d™) produced
by the the non-degenerated tuple (0™} = {dy, d>, ..., dy, ..., dn, 2d,} as follows

d, d,
V(S,dm)=V(S—E,dm‘>+V(S+—2—,dml). (33)
Proof: According to the definition (3)

(1+fﬂ-§:W@JWU45=§:W@Jwyf.

Taking into account that £{d™} — £{d™} = d,/2 and equating powers of ¢ in the latter
equation we obtain the stated relation (33) according to the definition (22). 0

We will make use of relation (33) during the evaluation of the expression V(s, d™) for
the Coxeter group D,,.

5. Recursion formulas for V(s,d™)

The shift (22) transforms the relation (8) into

Sm—1
o 1
V(s +t(d"},d") = V(s,d")+ Y V(s +t{d"} = X, - dp, 4" ), bp=p+3
p=0
(34)
and the relation (17) into
m—1 )
Vs, d™) = Rp(s)+ Y _ R} (s)-s™, (35)
j=1

where
oo .
RI(s)=) Cp 7 (—£{d™}Y ™. Qs — £{a™)),

i=1
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ie, RY'(s)= Q7 (s — §{d™}); RY(s)= Q5 (s — £{d™)) — (m — 1) - £{d™} - Q' (s — £{d™})
etc. This means that the functions R;”(s) and Q"‘(s) have the same period z{d/}.

Inserting the expansion (35) into the relation (34) and equating powers of s we can obtain
fork=1,2,....,.m—1

-

CrZj ™t - RY(s) - wdmy+
1

f

J
S

k
D RPN = hpdy) - CRTITE (2(d™) = Ay - ) (36)

[l
=)

p=0 j=1

For the first successive values of k the latter Eq. (36) gives

m 1 % m—1
R] (S)—mZ_:RI (s —Ap-dn),
1
RY(s) = _2) @ ZR Ys = Ap - dm)
= 1 )‘ m—1
+;(§—E>R (s — Ap - d),
Bu—1 @D

m _ m-—1 .
RI(s) = (m_3) dm}ZR (s = Ap - dp)

= 1 )" m—1
+Z<—~—) RINs = Ap - dy)

= \2 b
m=2 e 1o, A2\
+T"{d};<6"a_+s2)'Rl (s = Ap - d).

It is easy to see that i m the summands of the latter formulas (37) there appear the Bemoulh
polynomlals B;(1 - —E) Bo(x)=1, Bi(x)=x —1/2, Ba(x)=x2—x+1/6, Bs(x)=x3
—3/2x*4+1/2x, etc. [1]. Continuing the evaluation of the general expression for R'"(s),
1 <j < m, we arrive at

Lemma 5.1. R7(s) for 1 < j < m is given by the formula

1 j—1 Sm—1
R7(s)= —— > (z{d")'~" . C m1,+zZBt( —5—") RIS (s — hp - d).
m-=J 1= p=0

(38)
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Proof: Before going to the proof we recall two identities for the Bernoulli polynomials

[1,10],

! : .
Bix+y) = Bix)= Y C/ -y - B_;j(x), B(l+x) —Bx)=Ix'"". (39

j=1
Using the definition (35) we check that formula (38) satisfies (34).

m—1 (T dm})l ~1 8m—1
Vis,d") = Rl\(s)+ ) s Zcf Z B_; ( ) R} — A pd)
j=1 1=
8p—1

dar -1
—R’"()+Z(’{ DS Rl = Apd)

=1 p=0
c/ jB 1 A”)
X,.; ’(r{dr"}) ( "5
amy 18,—1
—Rm()+2ﬂ—l})—sz-/(g Aﬂpdm)
p=0
S=hpdm) il e
x[3,<1+ T{dm}) 3,(1 8)] (40)

where we use the first of the identities (39). Having in mind the t{d™}-periodicity of
functions R™(s) and R™~'(s) and the second identity (39) we may rewrite the difference in

the Lh.s. of relation (34) in the following form:

Vs, d™) — V(s — t{d™},d™)
m—1 my—1 dm—1
_ o (z{d"h mtg. Ap $
= ; ; R™ (s =1 d,,,)[B,( 5 + T{dm})

p=0
X s\ @y R s = Apdm \'™!
_Bf -2 4 )} R™= s = Apd)l (——" '")
’( 8 | T{d™) ; ! re i’ t{d)
Sp—1lm—2 Sm—1
=ZZ(S—A,,d YR l,(s—kd)_ZV(s—k dp, d"1). (41)
p=0 (=0 p=0

()

The formula (38) enables us to restore all terms R}"(s) except the last R™(s). Actually we
can learn about it from the following consideration. Let us separate R _, () in the following

way

Ry (()=TRy_(s)+rl (8), 0<k<m-—1, 42)
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where
dm -t Sm—1
" (8= Z (T{l +}12 C1+kZB’< ) R (s =R - dy) @3)
&y —1
Pk = e dm} DRI = hpdn), () =10 (s —dw), (K£0)  (44)
p=0

The representation (42) and d,,-periodicity of the function rm_i(s) make it possible to prove
the following.

Lemma 5.2. R . (s)forO <k <m — 1 and Rin_(s) for 0 < k < m — 1 satisfy the
recursion relation

Ry () = R} _ (s —dy) = RI_(s) — R (s — dw)

m—1 ) 4.\ i1k d
= > J(dn)* ChRT_ (s —dy) + (—é”) -Ch_ Ry <s - 7’”)]

j=k+1
(45)

Proof: Inserting (35) into (24), expanding the powers of binomials into sums and equating
the powers of s in the latter equation we obtain the relation (45) for the function R _i(8),
0 < k < m — 1. Using the definition (42) we immediately arrive at the relation for the
function R}, _,(5),0 <k <m — 1. O

In the special case k = 0 the general relation (45) produces the recursion for R(s)

Ry(s) — Ry(s — dy)

m—1 j-1
> {(—dm)f R[G5 — dy) + (—fizﬂ) R (s - d;’")l e
=1

We cannot use (43) directly with k = 0 since 7 (5) can not be derived from (44). But it is
a good mathematical intuition to exploit the formula (43) for & = 0 in order to prove

Lemma 5.3. R (s) is given by the formula
m—1 I—1 dn—1
da” A
Ru(s)=Y Sakthan Bil1==2) . Ri=Ns =X, - dn). (47
=1 ! = B
= p=0
Proof: In order to prove that R™(s) given by (47) satisfies the difference Eq. (46) we
consider a difference Ry (s) — RII(s — dy) = Ap(s) = AL(s) + A2 (s):

LS (‘L’{dm )l el m—1 m—1
m(s)=2 ZB,( )[R S0 = Apdm) = RIZ)(S = Aps1dn)]

p=0
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with

m—1 miy—1
(z{d™}) 1 1 — dn
AL(s) = E T ’31 <1 - ﬁ;) -5 <_Z5—,;)] Ry} (S - 7>,

=1
m -1
A2()_Z(r{d) [ ( ) B,(l—g—”+8i)l-jo,‘(s—x,,d,,,).

The first term A} (s) is calculated with the help of one of the identities (39):

m—1 dm 1-1 B dm
An) =" (—7> Ry (s - 7). (48)

=1
Using another identity from (39) we may write for A2 (s):

m—1

myy—1 X
AL(s) = Z(f{d—l})—.cf <——) ZB, ,( ——>-R;,",:,'(s—x,,d,,,).

=1 j=1

Interchanging the summation order Zk_l +1 ';z, = }: o +1 Zk -, and comparing the

inner sum with (38) we arrive at

m—1
ALY = (—dn) - RI_ (s —dp) (49)

=1

Then (48) and (49) prove the Lemma. O

From this Lemma follows the existence of the d,,-periodic function rm(s) =ri(s —dy)
which could not be derived from (44). The unknown function r(s) corresponds to vanishing
harmonics in the r.h.s. of the Eq. (45). We are free to choose any basic system of continuous
t{d™}-periodic functions. This arbitrariness can affect the behaviour of W(s, d") only for
non-integer s that does not violate the recursion relation (5). In the rest of the paper we will
choose a basic system of the simplest periodic functions sin and cos.

The function r;;(s) corresponds to the harmonics of the type

sin | 2mwn

cos —d—m_s
Because the parity of R!(s) coincides with that of V (s, d™) itself we can rewrite (35) in the
following form

2m—1

Vis,d™) = 3 R¥(s). s~ 4 R (s)+Zp . sin ——-s (50)
j=1
2m

. 2mn
Vs, d2m+1) — Z R?m+](s) . s2m+1-] + Rgrmni}(s) + Zp2m+1 cos y
2m+1

5. (51
j=1
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In order to produce r%(s) we use some of the zeroes s, described in the preceding Section,
constructing a system of linear equations for [(m + 1)/2] coefficients p,; n runs from 1 to
m/2 in (50) and from O to (m — 1)/2 in (51). We use a trivial identity V(&£(d™),d™) = 1,
and choose the values of s out of the set s, adding homogeneous equations to arrive at a
non-degenerate inhomogeneous system of linear equations. This system is solved further to
produce the final expression for corresponding Sylvester wave. These explicit expressions
are given in the next Section. Appendix A presents two instructive examples of the above
procedure.

6. Sylvester waves V(s, G)
We start with the symmetric group S,, because of two reasons: first, of their relation with

restricted partition numbers and, second, they form a natural basis to utilize the Sylvester
waves V (s, G) in all Coxeter groups.

6.1. Symmetric groups S,

Making use of the procedure developed in the previous section we present here the first
twelve Sylvester waves V(s,S,,) ,m=1,...,12.!

G =58 d=1,2,3,....,m £S,) = "t

V(S»Sl) = 17

1
Vs, S,) = -S2— ~ 3 sin s,

V(s,S3)=ﬁ—l—lcosnsﬁ-zcosm,
12 72 8 9 3
3
V(s,S4)=;ﬂ—;—6~(5+3coszrs)+ésinzr2—s—g—j—gsinzz—s,
V(s,Ss)z—S4 ——-——“'sz——s—nsinn’s—{— 17083 —icoszn—s
2880 1152 64 691200 27 3
1 ) 2 27s dns
+mcos—2—+fg<—cos-5—+cos—5—>,
5 3 2
Vs, Se) = 86S4W - 190136;0 + ;ﬁ sinms + m : (9191 — 10240 cos 2’3’—s>
161 1 . TS 1 . 27ws 1 . ns
—%smns—mmn?—WSInT—E-Sln?

2 LT, 47rs+ 27 . 27;s
— ——(sin= sin —— + sin =— sin — |,
G sin sin — S S
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58 54 52 s s

- -(711 425 —— .sin=="
3628800 20736 | 3g4op /! T I3COSTE) — s - sin
52705 77 1 TS 5 2rs 1 TS
- = —— 0SS’y — —C0§ — — —— C0§ —— — — CO0S —
6096384 4608 32 2 486 3 18 3
+ 2 s} 2 cOs drs -+ 2 coszns -+ cos drs + cos il
— s —— — — — —_— e —_ I,
255 5 5 49 7 7 7
s 17 - 5% + 53
203212800 9676800 = 8294400

16133 1 TS N 1 o8 2rs 31 cos
=—m——=——=cos— + —=c0s — — ——cos T
T\ 79976640 2562 T 223 3 T 12283 7

1 ( . s . 371s> 1 sin s n 1 . 2ms + 1 i s
— — il ~— + ——— sin — + —— sin —
1287 2 16243 3 18v/3 3

n 4 . 2m . dms . m o, 2ms
—— { sin — sin —— — sin — —
25 in 5 i 5 S 5 sin 5

V(S, S7) =

Vs, Sg) =

- (1343 + 225cos 7s)

1 in271s b4 . 4dns g 2 +si 6rs 3
— —|{ sin——c¢sC — — sin —— ¢s¢ — + sin —— ¢s¢ —- |,
49 7 7 7 7 7 7

s8 19 - 56 N 145597 . s4 4 $3
14631321600 418037760 = 16721510400 ' 73728
2 ( 67293991 1 27rs>

Vs, Sg) = -sinms

120460687360 T 4374 < 3~

1
-5+ | ———=sin— + ———=sin — + ——
(256ﬁ 2 14583 3 98304

199596951167 1 ( s T 3ms 371)

s 1 2ns 205 . )
sinms

56184274944000 T 62 \ % 7 ¢ g T oS ose

4 8 4
4 2 cos 4rs cos 2ns 5 os s n 257 c 27s
— —_ = — |- ——=¢08S — + ————cos ——
125 5 5 5122 2 17496 3

" 1 cos s + 2 cos 2rs + cos 4 + cos 8ms
3643 3 81 9 9 9

1 2rs ki1 2w n 4rs 2w 3
— — ] COS —— CSC — CSC — § — _ —_
98 7 e e TS e ese

+ ors 3 c b4
CO0S —— CSC — —
7 7 T )

s° 11.57 113113 .55 sinms 4
1316818944000 12541132800 @ 358318080000 2949120
_ 18063859-s% < L 2ms 143 Sinm)

468202291200

V(s, Spo) =

23723 "3 T 1179648
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273512277643 1 s 7 2rs
' [240789749760000 T SRA T T
1 4ns 2ns 2877523 1211 | 2ws
+ 635 (cos 5 " cos ?)] ~ 707788300 sinws — —_52488\/5 sin 5

s 1 . &s 1 ( 3r . 3ns P14 JTS)

——————sin————sm—+ €SC— Sin —— — ¢SC — sin —
1024427 2 108" 3 642 8 4 8 4

1 < s . ns) 2«/5(\/§+2 . 2ns V5-2 . 4ns>
+—sin— —sin — | - — ——n — + —————3in
50 5 5 625 5445 5 5-.3 5
——1—-csc£cscz—”csc3—7r <sin6n—s+sin4£ ~sin2—n£>
196 7 7 7 7 7 7
+—1— (cscﬁsin@ +csc2—”sin4£+csc£sin@),
81 9 9 9 9 9 9
V(s Siy) = slo _ 23 . 5% + 23 .56
144850083840000 1755758592000 = 2799360000
a4 ( 381869 n 1 cos n's)
195084288000 = 5898240
2 ( 31377037 + 1 cos 27t_s + 539 cosns)
210691031040 ~ 13122 3 5898240

) + 2 . 27s N 25
5| ——sin — + ————sin — + ——
102472 T gse1a3 3 T 3125

« (sin T sin 4 s . 27 sin 2rs 209272989329
il —an & _ /2989329
573 5 g 130069463040000

n 2 27s + drs n 6ms " 8ms n 107z s
= it it = it S
cos T cos 1 cos 1 cos 1 co. T

1 TS 3 TS

— ——cos —— o8
108 3 1024 2

277 27s 1 s 3ns 821381
———— 0§ — — — 0§ —— | — ——————
26244 3 64 4 176947200

154175  27s  15—17/5  4nms 1 7 2n  Ax

cosmTs

12500 %75 T 12500 %5 Tig oSy ey
vig 27s T 4ms 2 8rs 4 1 cse
T os Y inZcos 2 _sin T cos 5 4 L e B
X Sin Ccos 9 sin 9 COs 9 sSin CO: 9 392 7

2 3 3 2ns . T cos drs 4 ose 2 cos 6ms
X — ¢s¢ — | €8¢ — cOS —— — CSC — —_ — —,
e e 7 €% 7 %77 7 7
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s 13.5° 2327 . 57

19120211066880000  83433648291840 | 1448508384000
S < 351143

5150225203200 | 353894400 °° 7”)

3 22832915807 n 611 cos s + 1 cos 2rs
4 2085841207296000 ' 212336640 472392 3

Vs, S) =

o2 1 sin 2ms 1 sin TS
2 —0/0 —gin 2™ g
787323 3 24576 2
( 710427757 1 TS s 301 2ms
s

1
— — COS — + ——— CO§ — — ———— CO0S ——
1589212348416 1296 3 4096 2 314928 3

206713 cos 1 4mrs + 1 cos 2rs
- COS 7§ — —=CO0S — + ——= —_
424673280 6255 5 6255 5

+ T 2ns+ 2r . 4 .
—_—f — — 81N — CSC — 8§ — — CSC — SIn ——
21 ST 11T 11T

N 47 . 8ms St . 107s 1 T cse 2w :%:4
€8¢ — sin —— — ¢s¢ — sin ——— csC — — ¢SC —
11 11 11 11 1623 9 9 9
.2 . 8ms .o . 4ms . 4m | 2ms
X { sin— sin — — sin — sin —— — sin — sin ——
9 9 9 9 9 9

+ csc? i csc? 2m csc? 3 sin— sin 2
L Zoesc 2= 2 —sin= sin —/—2
784 7 7 7

. 2m . 4ms . 3m . 6ms 1 LTS . 3ms
+ sin — sin ~—— — sin — sin — | + — | sin— — sin ——
7 7 7
7 sin s 1087 sin 2ns 4 617 . 7ms
- —— i — — ————— sin — sin —
6483 3 4723923 3 737287 2
15+ 45 cse 2ns . 2ms  15—4/3 ws . 4ms
5000 5 %75 5000 5 "3

+ 1 c TS cos TS in TS 2rs 2rs § 3rs
— [ csc — — §in — — ¢SC —— €08 —— —
50 5 T 5 5 9073

+L sinE —|—sin5ﬂ—s
72 6 6 )

(52)
Appendix C presents the figures of all twelve Sylvester waves V(s, S,,), m=1,...,12.

6.2.  Coxeter groups

Let us define two auxiliary functions

Uils, p.G)=V(s+p,G)+ V(s — p,G),

(53)
U(s,0,G)=V(s+p,G)—V(s—p,G)
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with obvious properties
d, d,
U, (s, p, d’"/d,) = U_(s, p+ > d"’) -U_ (s, p - > d'"),
Uy(s,0,G)=2V(s, G),
4, q
U_(s,p,d"/d,) = U+(s, P+ ? d"') - U+(s, p— ? d"’),
d,

U_(s, 5 d™) = V(s,d"/d,),
where the (m — 1)-tuple {d™ /d,} ={d,, d>, . .., d,_1, driy, ..., dp} doesn’t contain the d, -
exponent.

Sylvester waves for the Coxeter groups are given below expressed through the relations

elaborated in the previous Sections.

G=An, d=23,....m+1; §(Ay) = tm(m +3)
1
Vs, Am) = U_ (s, 5,8,,,). (54)
G =Bn, d, =2,4,6,...,2m; £(B,) = sm(m + 1)
Vs, Bn) = %‘llz(s —é‘(Bm))-U+<%,O, Sm)- (55)

In the list for D,, groups the degree m occurs twice when m is even. This is the only case
involving such a repetition.

G =Dy, d,=2,4,6,...,20m ~1),m, m > 3; £(Dy) = im?,

V(s, Dyy) = Wa(s) - U+(§, % Szm), (56)

Vs, Dyyr) =

s=E(Dapmr1) 2m + 1
V(S—I- — 51, B2m)'\l"2m+l(sl),

51=0

Vs, D3) = V(s, A3),

11 9 5 3
=Uu_ T - M- - - V- ) ~ L] _aS .
Vs, Ds)=U (s, 2 ,Sg) U (s, X Sg) U (s, 2 Sg) + U (s 3 3)

G =06y d, =2,6; £(Gy) =4,

V(s, Ga) = Wy(s) - U_ (% 1, 83). (57)
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G=F,, d =2,6812; £E(Fy) =14,

s 7 s 3
V(s, F3) = Wa(s) - |:U+<§' 5786> - U+<§, ok 36):|- (58)
G =Eg, d=2,5,6,8,9,12; £(E¢) =21,

V(s, E¢) = Uy (5,18, 812) — Ui (5,17, S12) — U (s, 15, S12)
+ Ui (s, 13, 812) + Ui (5, 5, S12) — U (s, 2, Si). (59)

G =E, d, =2,6,8,10,12, 14, 18; £(E;) = 35,
Vs, E7) = Wy(s — 1) - [U+(%, 5 59> - U+(—sz—, 3, 59)]. (60)

G =Eg, d =2,8,12, 14, 18, 20, 24, 30; &£(Eg) = 64,

2

5 s )
U {=-,11,855}-U_|-,8,S -U_(=,7.8
+ (2 15) (2 15) (2 15)
s s s
-U_ (E’ 6, 515) - U—<5, 26, SlS) -U_ (5, 25, 515)]. (61)

G=Hs, d =2,6,10;, &(H3) =9,

V(s, Eg) = Wy(s) - [U_(%, 28, sls) + U_(%, 21, 815) + U_<f, 12, 815)

V(s, Hy) = Uy(s — 1) - [U+(§, 3,85) - U+(%, 1, 55>]~ (62)

G = Hg, dr =2,12,20,30; §(H;) =32,

V(S, H4) = U+(S, 32’ EB) - U+(S, 241 ES) - U+(S, 187 E8) - U+(S, ]47 E8)
+ U+(S, 101 E8) - U+(S, 8» E8) + U+(S, 61 ES) + U+(S, O! ES) (63)

G =1l d =2,m; £() =1+ im

s—&(In)
Vs, In) = ) Wals — §(In) = 51) - Un(s1),

51=0

Vis,h) =V(s, By), V(s,3)=V(s, Ay, V(s,LL)=V(s, By),

7 1
Vs, Is) = U, <S, Ey A4) - U, (S, -2‘, A4> ,

Vs, Ie) = V(s,Ga), V(s,1Is) =U,(s,5, Bs) — Uy(s, 1, By)
Vis,ho) =U_(s,3, H3), V(s,112) =Us(s,7, Fs) = Uy(s, 1, Fa).
(64)



326 FEL AND RUBINSTEIN

Appendix A: Derivation of Sylvester waves V (s, S;) and Vi(s,Ss)

We will illustrate how the formulas (38)—(51) work in the case of the symmetric groups Sy
and Ss.
We start with Sylvester wave V (s, S3) taken from (52)

s? 7 1 2 2ms
V(s,53)=1—2-—7§—§cosﬂs+§cos—3— (Al)

and with successive usage of the formulas (38) and (47) one can obtain

1 1 2 . 2ms
RiGs) = T Ry(s) =0, Ri(s)= —5g ' (5 +3cos ), Ri(s) = N
(A2)
Now we will use the representation (50)
3 ) T
V(s,Sa) = ) R}(s)-s*7 + Ri(s) + p} - sin 55+ 3 - sinms. (A3)
j=1

Since V (s, S4) = W(s — 5, S4) the variable s takes only integer values what makes the last
contribution in (A3) into the V (s, Sy) irrelevant. The unknown coefficient p;‘ is determined
with help of zeroes (27) of W(s, Sy)
3
0=V(LS)=) RIM+RID+p], or pf= (A4)
=

Thus we arrive at the Sylvester wave V (s, S;) presented in (52).
Repeating the same procedure with symmetric group S5 we find

1 11 1,
Ri(s) = 2880° Ry(s)=0,. R;(S)=“ﬁ, RZ(S)Z—&‘ sinms, )
5 475 2 27s 1 TS
R3(s) = =——— — —= c0s — + —— cos —.
27648 27 3 82 2
The representation (51) produces
4 . 5 5 5 27 s 5 4s
Vs, Ss) = Z R(s) - s*1 + RY(s) + p§ + ] - cos —5— P2 cos . (A6)

=1
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Since V(s,S5) = W(s — 1—25, Ss) the variable s has only half-integer values. By solving
three linear equations V (4, S5) = V(3, 85) = V(3, Ss) = 0 we find

2
25°

217 2

SaRen (A7)
28800 25

which together with (A6) produces the Sylvester wave V (s, Ss) from (52).

Appendix B: Table of restricted partition numbers W(s, S,)

In this Appendix we give the Table of the restricted partition numbers P, (s) = W(s, Sp)
m <10 for s running in the different ranges. One can verify that the content of this Table
can be obtained with the help of the formulas (52).

s M S, S3 Sa Ss S S7 Sg So Sio
1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2 2 2 2
3 1 2 3 3 3 3 3 3 3 3
4 1 3 4 5 5 5 5 5 5 5
5 1 3 5 6 7 7 7 7 7 7
6 1 4 7 9 10 11 11 11 1 11
7 1 4 8 11 13 14 15 15 15 15
8 1 5 10 15 18 20 21 22 22 22
9 1 5 12 18 23 26 28 29 30 30
10 1 6 14 23 30 35 38 40 41 42
51 1 26 243 1215 4033 9975 19928 33940 51294 70760
52 1 27 252 1285 4319 10829 21873 37638 57358 79725
53 1 27 261 1350 4616 11720 23961 41635 64015 89623
54 1 28 271 1425 4932 12692 26226 46031 71362 100654
55 1 28 280 1495 5260 13702 28652 50774 79403 112804
56 1 29 290 1575 5608 14800 31275 55974 88252 126299
57 1 29 300 1650 5969 15944 34082 61575 97922 141136
58 1 30 310 1735 6351 17180 37108 67696 108527 157564
59 1 30 320 1815 6747 18467 40340 74280 120092 175586
60 1 31 331 1906 7166 19858 43819 81457 132751 195491
101 1 51 901 8262 48006 198230 628998 1621248 3539452 6757864
102 1 52 919 8505 49806 207338 662708 1719877 3778074 7254388
103 1 52 936 8739 51649 216705 697870 1823402 4030512 7782608
104 1 53 954 8991 53550 226479 734609 1932418 4297682 8345084
105 1 53 972 9234 55496 236534 772909 2046761 4580087 8942920
106 1 54 990 9495 57501 247010 812893 2167057 4878678 9578879
107 1 54 1008 9747 59553 257783 854546 2293142 5194025 10254199
108 1 55 1027 10018 61667 269005 898003 2425678 5527168 10971900
109 1 55 1045 10279 63829 280534 943242 2564490 5878693 11733342
110 1 56 1064 10559 66055 292534 990404 2710281 6249733 12541802
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Appendix C: Figures of restricted partition numbers V(s, S,,)

V(s,S1) V(s,S82)
& 2|
1.5 1
1 0
0.5 -1 /
0! -2
23°2-10 1 2 3 L T30 2 4
= S
V(s,S3) V(s,S4)
2 |
1.5\ / 8:3 /
N 01
0. 51\ / -0.1
-2 -0.2—
0 -0.3—
- Z “5-4-2 0 7 ¢
s s
V{(s,S5) V{(s,S6)
1.4
1.2 £ g.o6th
1 0. 04H -
98-80 0. 08 AN A L AN
0',1 1 i -0.02 \VI \ VIV
021 I -0.04 |
Oy J -0:06 i
-7.5-375502.55 7.5 10 S50 510
S s
V(s,S7) V(s,S8)
0.10f . 0.04
0. e\\ [’ 0.02
0.06 ol ladankatlA
0. 04\ ] WY
0,02 -0.02
O—/ Y -0.04
542 Z 215-70° 101
S s
V(s,S9 V(s,$10)
0.04 0.02H-
0.02 0.01
0 0
-0.01
-0.04 -0.020k —k
-20-10 0 10 20 -20-100 1020
S s
V{s,S11) V(s,S12
I 0.01
0.005
0
-0.005
-0.01
-40 -20 20 40
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Note

1. Having in mind the results of Sylvester [11, 12] and Glaisher [7] for restricted partition numbers for m < 10
and of Gupta et al. [8] form < 12 we repeat them up to m = 12. The list of V(s, S;;) can be simply continued
up to any finite m with the help of the symbolic code written in Mathematica language [16].
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